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Let Ŵ = (V,E) be a connected graph. A vertex i ∈ V recognizes two elements (vertices

or edges) j, k ∈ E ∩ V, if dŴ (i, j) 6= dŴ (i, k). A set S of vertices in a connected graph Ŵ is

a mixed metric generator for Ŵ if every two distinct elements (vertices or edges) of Ŵ are

recognized by some vertex of S. The smallest cardinality of a mixed metric generator for

Ŵ is called the mixed metric dimension and is denoted by βm. In this paper, the mixed

metric dimension of a generalized Petersen graph P(n, 2) is calculated. We established

that a generalized Petersen graph P(n, 2) has a mixed metric dimension equivalent to 4

for n ≡ 0, 2(mod4), and, for n ≡ 1, 3(mod4), the mixed metric dimension is 5. We thus

determine that each graph of the family of a generalized Petersen graph P(n, 2) has a

constant mixed metric dimension.
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Keywords: mixed metric dimension, metric dimension, edge metric dimension, generalized Petersen graph, exact

values

1. INTRODUCTION

The aim of robot navigation functionality is to attain the coveted position promptly whenever it is
desired. Let us imagine that robot navigation in a sensor network that can obtain the distances to
a collection of landmarks. A robot’s position is solely resolved by determining the subset of nodes
in the sensor network. It can be achieved by the concept of landmarks in the graphs introduced in
Khuller et al. [1]; this idea was later named the metric dimension. All the graphs considered here
have no loops and are simple, measurable, and undirected.

Let Ŵ = (V ,E) be the graph of the distance dŴ(a, b) (or d(a, b)) among the vertices a, b ∈ V(Ŵ)
the minimum length of paths between them. For a vertex a ∈ V , distinguish two vertices in a graph,
say b and c, if the condition dŴ(a, b) 6= dŴ(a, c) holds. A set R ⊂ V(Ŵ) is the metric generator if
some chosen vertices of the set R recognizes a pair of distinguished vertices. The metric basis with
the least number of elements is called the metric generator, and the cardinality of its metric basis
is termed the metric dimension. The notation employed here is β(Ŵ). The fundamental concept
of the metric dimension was instated by Slater [2], and the notation of the metric dimension was
initiated by Haray and Melter [3]. This concept was later studied by many researchers with unique
modifications; for reference, see [4–8]. Some of the recent results on metric dimension and its
further variations are studied in Shao et al. [9] and Raza et al. [10–13].

Lemma 1. Suppose R is the distinguishing set of Ŵ and the vertices a, b ∈ V(Ŵ). If dŴ(a, c) 6= dŴ(a, c),
for all vertices c ∈ V(Ŵ)\{a, b}, then {a, b}

⋂

R 6= ∅.
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Analogous to this definition, Kelenc et al. [14] introduced the
concept of edge metric dimension, and this was further studied
in Zubrilina [15], Peterin and Yero [16], and Zhu et al. [17]. This
distance between an edge e = ab and a vertex c is given as follows

d(e, c) = min{d(a, c), d(b, c)}

A vertex c ∈ V(Ŵ) distinguishes two edges of a graph e1, e2 ∈

E(Ŵ) if dŴ(e1, u) 6= dŴ(e2, u). The set Re ⊂ V is termed
as the edge metric generator if some distinct edges of Ŵ are
distinguished by the vertex set Re. The cardinality of an edge
metric generator is called an edge metric dimension, and it is
depicted as βe(Ŵ). Having defined the notion of an edge metric
generator, which distinctly recognizes every edge in a graph, a
common assumption would be that any edge metric generator
Re would be a metric dimension as well. This assumption is far
from reality, as indicated in Kelenc et al. [14], but there are several
families of graphs where this occurs, that is, β(Ŵ) = βe(Ŵ). Some
other distance related parameters are studied in Liu et al. [18–22].

In this paper, our focus is on mixed metric dimension, which
is a mixed version of metric and edge metric dimension. A set Rm
of vertices of a graph Ŵ is known as a mixed metric generator
if any two distinct elements (vertices or edges) of a graph are
recognized by some the vertex set of Rm. The least cardinality
of a mixed metric generator for a graph is termed as a mixed
metric dimension, denoted as βm(Ŵ). The idea is recently brought
forward by Kelenc et al. [23].

Lemma 2. Let for some vertex a ∈ V(Ŵ), and let Rm = V(Ŵ)\a,
and if there is an element b ∈ N(a), also for some c ∈ Rm,
dŴ(ab, c) 6= dŴ(b, c), then Rm is the mixed metric generator for
the graph Ŵ.

The notion of a mixed metric dimension clearly indicates that a
mixedmetric generator is also a standardmetric generator and an
edge metric generator, The following relationship is given in [23],

βm(Ŵ)max ≥ {β(Ŵ),βe(Ŵ)}

The following remark shows the structure of mixed
metric dimension:
Remark 1: [23] Suppose for some graph Ŵ we have 2 ≤ βm ≤ n.
Recently, this concept has attracted some attention, and it has
been studied by Raza et al. [24]. The authors discussed the mixed
metric dimension among the prism graphs, which are commonly
known as generalizes Petersen graphs P(n, 1), and two families
of convex polytopes An,Rn, further presenting the problem of
finding βm(P(n, 2)).

Some of the results regarding metric and edge metric
dimension are given:
Remark 2: [14] For n ≥ 2, the metric and edge metric dimension
are, β(Pn) = βe(Pn) = 1; for cycle graph, β(Cn) = βe(Cn) = 2;
for complete graph, β(Kn) = βe(Kn) = n − 1; and for any
complete bipartite graph (Kr,t) different from (K1,1), β(Kr,t) =

βe(Kr,t) = r + t − 2.

1.1. Known Results
Next, we present some already known results for βm,

Proposition 1: [23] For a path graph (Pn) order n ≥ 4,
we have βm(Pn) = 2.
Proposition 2: [23] Let us consider any two positive integers: e, f

βm(Ke,f ) =

{

e+ f − 1, if e = 2 or f = 2;
e+ f − 2, otherwise.

Proposition 3: [23] For a grid graphs, Pm2Pn, with
m ≥ n ≥ 2, βm = 3.

Proposition 4: [23] Let us assume cycle graph (Cn) of order
n ≥ 4, then βm(Cn) = 3.

Lemma 3. [24]The mixed metric generator Rm must contain
vertices from both the outer and inner cycle for the prism graph Dn.

Proof: For P(n, 1), this holds, and, by the same intuition,
this must be true for P(n, 2). The mixed metric resolving set
comprises of vertices from both the cycles, which contain vertices
of outer and inner cycle, respectively.

2. MAIN RESULT

The generalized Petersen graphs is introduced by Watkins [25].
The P(n, ℓ), where n ≥ 3 and 1 ≤ ℓ ≤ ⌊ n−1

2 ⌋ (see Figure 2),
which is the cubic graph consists of vertices and edges, is
shown below.

V(P(n, ℓ)) = {q0, q1, . . . , qn−1, p0, p1, . . . , pn−1}

E(P(n, ℓ)) = {qiqi+1, pipi+ℓ, qiqi|i = 0, 1, . . . , n− 1}

Example: We used the graph of P(n, 8), as can be seen
in Figure 1. The mixed metric generator for P(n, 8)
is βm = {q0, q1, p4, p5}, and it can been seen from
Table 1 that all the representation of vertices and edges
are distinct.

The graph of the generalized Petersen graph comprises of
three types of edges, external edges, internal edges, and spokes
between qi and qi+1, pi and pi+m, and qi and pi, respectively. The
vertices qi and pi (0 ≤ i ≤ n − 1) are termed as external and
internal vertices, respectively.

The prism graph Dn is known as P(n, 1) for m = 1. Some of
the already known results are given as

Theorem 1. [26] The metric dimension of Dn, for n ≥ 4:

β(Dn) =

{

2, n is odd;
3, n is even.

Theorem 2. [27]When, n ≥ 4, βe(Dn) = 3.

Theorem 3. [24] For n ≥ 5,

βm(P(n, 1)) =

{

3, n is even;
4, n is odd.
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FIGURE 1 | The generalized Petersen graph P(8, 2).

TABLE 1 | Codes for P(n, 8).

v rm(v) v rm(v) e rm(e) e rm(e) e rm(e)

q0 (0, 1, 3, 3) p0 (1, 2, 2, 4) q0q1 (0, 0, 3, 3) q0p0 (0, 1, 2, 3) p0p2 (1, 2, 1, 4)

q1 (1, 0, 3, 3) p1 (2, 1, 4, 2) q1q2 (1, 0, 2, 3) q1p1 (1, 0, 3, 2) p1p3 (2, 1, 3, 1)

q2 (2, 1, 2, 3) p2 (2, 2, 1, 4) q2q3 (2, 1, 2, 2) q2p2 (2, 1, 1, 3) p2p4 (2, 2, 0, 3)

q3 (3, 2, 2, 2) p3 (3, 2, 3, 1) q3q4 (3, 2, 1, 2) q3p3 (3, 2, 2, 1) p3p5 (3, 2, 3, 0)

q4 (4, 3, 1, 2) p4 (3, 3, 0, 3) q4q5 (3, 3, 1, 1) q4p4 (3, 3, 0, 2) p4p6 (2, 3, 0, 3)

q5 (3, 4, 2, 1) p5 (3, 3, 3, 0) q5q6 (2, 3, 2, 1) q5p5 (3, 3, 2, 0) p5p7 (2, 2, 3, 0)

q6 (2, 3, 2, 2) p6 (2, 3, 1, 3) q6q7 (1, 2, 2, 2) q6p6 (2, 3, 1, 2) p6p0 (1, 2, 1, 3)

q7 (1, 2, 3, 2) p7 (2, 2, 4, 1) q7q0 (0, 1, 3, 2) q7p7 (1, 2, 3, 1) p7p1 (1, 2, 2, 1)

The known results for P(n, 2) concerning metric and an edge
metric dimension are

Theorem 4. [28] For n ≥ 5, the metric dimension is
β(P(n, 2)) = 3.

Theorem 5. [27] For n ≥ 5, βe(P(n, 2)) = 3.

It is quite natural to investigate the mixed metric dimension
of P(n, 2). Now, we will find mixed the metric dimension of
(P(n, 2)), and for this the following lemmas are presented.

Lemma 4. Case 1: If n ≡ 0(mod)4, then βm(P(n, 2)) ≤ 4.

Proof: The proof is n = 4r, r ≥ 4, where r ∈ Z
+. The

distinguishing vertices that will distinguish the whole vertices and
edges of the graph are Rm = {q0, q1, p2r , p2r+1}. The following
representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =































(2s, 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, r), s = 2;

(s+ 2, s+ 2, r − s+ 1, r − s+ 2), 3 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, s− r + 1, r + 1 ≤ s ≤ 2r − 2;

s− r + 1),

(2, 3, s− r + 1, s− r + 1), s = 2r − 1.

and,

CRm (q2s+1) =







































(2s+ 1, 2s, s− r + 1, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, 2, r − s+ 1), 3 ≤ s ≤ r − 1;

(r + 2, r + 2, 2, 1), s = r;

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 3;

s− r + 2, s− r + 1),

(3, 4, s− r + 2, r − s+ 1), s = 2r − 2;

(1, 2, s− r + 2, s− r + 1), s = 2r − 1.

Representation of internal vertices:

CRm (p2s) =















(s+ 1, 2, r − s, r + 2), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s, r − s+ 3), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1.

s− r, s− r + 2),

and,

CRm (p2s+1) =















(s+ 2, s+ 1, r − s+ 2, r − s), 0 ≤ s ≤ r − 1;

(2r − s+ 1, r, s− r + 3, s− r), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1.

s− r + 3, s− r),

Representation of external edges:

CRm (q2sq2s+1) =























































(2s, s, r − s+ 1, r − s+ 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, s = 2;

r − s+ 1),

(s+ 2, s+ 2, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 1),

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 3;

s− r + 1, s− r + 1),

(3, 4, s− r + 1, s− r + 1), s = 2r − 2;

(1, 2, s− r + 1, s− r + 1), s = 2r − 1.

and,

CRm (q2s+1q2s+2) =































(2s+ 1, 2s, r − s, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s, r − s+ 1), 3 ≤ s ≤ r − 1;

(2r − s+ 1, 2r − s+ 2, r ≤ s ≤ 2r − 3;

s− r + 2, s− r + 1),

(2, 3, s− r + 2, s− r + 1), s = 2r − 2;

(0, 1, s− r + 2, s− r + 1), s = 2r − 1.

Representation of external and internal edges:
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FIGURE 2 | (A) The generalized Petersen graph P(5, 2), (B) The generalized Petersen graph P(6, 2).

CRm (q2sp2s) =















(2s, 1, r − s, r + 1), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 2, s− r, r + 1 ≤ s ≤ 2r − 1.

s− r + 1),

and,

CRm (q2s+1q2s+1) =































(2s+ 1, 2s, r − s+ 1, r − s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, r − s+ 1, r − s), 2 ≤ s ≤ r − 1;

(r + 1, r + 1, 2, 0), s = r;

(2r − s+ 1, 2r − s+ 1, r + 1 ≤ s ≤ 2r − 2;

s− r + 2, s− r),

(1, 2, s− r + 2, s− r), s = 2r − 1.

Representation of internal edges:

CRm (p2sp2s+2) =































(1, 2, r − s− 1, r − s+ 2), s = 0;

(s+ 1, s+ 1, r − s− 1, 1 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s, r, s− r, 3), r ≤ s ≤ r + 1;

(2r − s, 2r − s+ 1, s− r, r + 2 ≤ s ≤ 2r − 1.

s− r + 2),

and,

CRm (p2s+1p2s+3) =







































(2, 1, r − s+ 1, r − s− 1), s = 0;

(s+ 2, s+ 1, r − s+ 1, 1 ≤ s ≤ r − 3;

r − s− 1),

(s+ 2, s+ 1, 3, r − s− 1), r − 2 ≤ s ≤ r − 1;

(2r − s, 2r − s, s− r + 3, r ≤ s ≤ 2r − 2;

s− r),

(2, 1, s− r + 3, s− r), s = 2r − 1.

Case 2: For n ≡ 2(mod)4, we have βm(P(n, 2) ≤ 4

Proof: Now we can see n = 4r + 2, r ≥ 4, where r ∈ Z
+.

The set of vertices that will distinguish the whole vertices and
edges of the graph are Rm = {q0, q1, p2r+1, p2r+2}. The following
representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =































(2s, 2− s, r − s+ 2, r + 1), 0 ≤ s ≤ 1;

(2s, 3, r − s+ 2, r − s+ 2), s = 2;

(s+ 2, s+ 2, r − s+ 2, r − s+ 2), 3 ≤ s ≤ r;

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 1;

s− r + 1, s− r),

(2, 3, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1) =































(2s+ 1, 2s, s− r + 1, r − s+ 2), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s+ 1, r − s+ 1), 3 ≤ s ≤ r;

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 2;

s− r + 1, s− r + 1),

(3, 5, s− r + 1, s− r + 1), s = 2r − 1;

(1, 3, s− r + 1, s− r + 1), s = 2r.

Representation of internal vertices:

CRm (p2s) =















(s+ 1, 2, r − s+ 3, r), 0 ≤ s ≤ 1;

(s+ 1, r + 1, r − s+ 3, r − s+ 1), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r + 2, s− r − 1),

and,

CRm (p2s+1) =







(s+ 2, s+ 1, r − s, r − s+ 3), 0 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r, s− r + 2),
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Representation of external edges:

CRm (q2sq2s+1) =















































(2s, s, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s+ 1, r − s+ 1, r − s+ 2), s = 2;

(s+ 2, s+ 2, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, 2r − s+ 3, r + 1 ≤ s ≤ 2r − 2;

s− r + 1, s− r),

(3, 4, s− r + 1, s− r), s = 2r − 1;

(1, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1q2s+2) =















































(2s+ 1, 2s, r − s+ 1, r − s+ 1), 0 ≤ s ≤ 2;

(s+ 3, s+ 2, r − s+ 1, r − s+ 1), 3 ≤ s ≤ r − 1;

(2r − s+ 2, r + 2, s− r + 1, r ≤ s ≤ r + 1;

s− r + 1),

(2r − s+ 2, 2r − s+ 3, s− r + 1, r + 2 ≤ s ≤ 2r − 2;

s− r + 1),

(2, 3, s− r + 1, s− r + 1), s = 2r − 1;

(0, 1, s− r + 1, s− r + 1), s = 2r.

Representation of external and internal edges:

CRm (q2sp2s) =















(2s, 1, r − s+ 2, r), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s+ 2, r − s+ 1), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r.

s− r + 1, s− r − 1),

and,

CRm (q2s+1q2s+1) =























(2s+ 1, 2s, r − s, r − s+ 2), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, r − s, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 2, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1;

s− r, s− r + 1),

(1, 2, s− r, s− r + 1), s = 2r.

Representation of internal edges:

CRm (p2sp2s+2) =























(s+ 1, 2, r − s+ 2, r − s), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, r − s+ 2, r − s), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 1, 3, 0), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r.

s− r + 2, s− r − 1),

and,

CRm (p2s+1p2s+3) =







































(s+ 2, s+ 1, r − s− 1, 0 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s+ 1, 2r − s+ 1, r ≤ s ≤ r + 1;

s− r, 3),

(2r − s+ 1, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1;

s− r, s− r + 2),

(2, 1, s− r, s− r + 2), s = 2r.

Now from lemma3, the resolving set Rm contains vertices from
external and internal cycles; that is, the resolving set cannot
comprise either external or internal vertices.

Lemma 5. When n ≡ 0, 2(mod4),then βm(P(n, 2)) ≥ 4.

Proof: Suppose that βm(P(n, 2)) = 3, the following
contradictions arises:

Case 1: This is when the two fixed vertices are in the external
cycle, {q0, q1}, and the other vertex lie in internal cycle pℓ, that
is, Rm = {q0, q1, pℓ}.
(i) If 0 ≤ ℓ ≤ 1 then, rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ} = (0, 1, ℓ + 1).
(ii) If ℓ = 2, 4, . . . , 2r, then rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ}.
(iii) If ℓ = 3, 5, . . . , 2r − 1, then rm{q0|q0, q1, pℓ} =

rm{q0qn−1|q0, q1, pℓ}.

Case 2: When internal cycle contains two fixed vertices that
is {p0, p1}, and the other vertex lie in external cycle qℓ. That
is Rm = {p0, p1, qℓ}.
(i) If 0 ≤ ℓ ≤ 3, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ} = (1, 2, ℓ).
(ii) If ℓ = 4, 6, . . . , 2r, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ}.
(iii)If ℓ = 5, then rm{q0|p0, p1, qℓ} =

rm{q0qn−1|p0, p1, qℓ} = (1, 2, ℓ).
(iv) If ℓ = 7, 9, . . . , 4r − 1, then rm{q1|p0, p1, qℓ} =

rm{q1q2|p0, p1, qℓ}.

Similarly, other contradictions can be assumed; all the cases
mentioned above suggest that βm(P(n, 2)) ≥ 4, which clearly
indicates that βm(P(n, 2)) = 4 for n ≡ 0(mod4). Similar kind
of contradictions can be proved for n ≡ 2(mod4).

Remark 3: From the above cases, it can be deduced that if the
mixed metric generator Rm for P(n, 2) contains two vertices of
one cycle, then Rm contain at least two vertices of another cycle.

Lemma 6. βm(P(n, 2) ≤ 5, for n ≡ 1(mod)4

Proof: Case 1: Now we can write, if n = 4r + 1, r ≥ 4, where
r ∈ Z

+. The set of vertices that will distinguish the whole vertices
and the edges of the graph are Rm = {q0, q1, p1, p2r+1, p2r+2}.
The following representations are presented with respect to Rm.

Representation of external vertices:

CRm (q2s) =







































(2s, 2− 2s, 2, r + 1, r + 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 2, r − s+ 2), s = 2;

(r + 2, r + 2, r + 1, 2, 1), s = r + 1;

(2r − s+ 3, 2r − s+ 4, r + 2 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r + 1, s− r),

(3, 5, 3, s− r + 1, s− r), s = 2r − 1;

(1, 3, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1) =























































(2s+ 1, 1, s+ 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s+ 1, s+ 1, s+ 1, r − s+ 1, s = 2;

r − s+ 2),

(s+ 3, s+ 2, s+ 1, r − s+ 1, 3 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s+ 2, r + 2, r + 1, s− r + 1, 2), r ≤ s ≤ r + 1;

(2r − s+ 2, 2r − s+ 3, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 2;

s− r + 1, s− r + 1),

(2, 4, 3, s− r + 1, s− r + 1), s = 2r − 1.
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Representation of internal vertices:

CRm (p2s) =







































(s+ 1, 2− s, 3, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s+ 1, s+ 2, r − s+ 3, 2 ≤ s ≤ r − 1;

r − s+ 1),

(r + 1, s, 2r − s+ 1, 3, r − s+ 1), r ≤ s ≤ r + 1;

(2r − s+ 2, 2r − s+ 3, 2r − s+ 1, r + 2 ≤ s ≤ 2r − 1;

s− r + 2, s− r − 1),

(2, 3, 1, s− r + 1, s− r − 1), s = 2r.

and,

CRm (p2s+1) =























(s+ 2, 2− s, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 3), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 2, s, s− r, 3), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 1.

2r − s+ 3, s− r, s− r + 2),

Representation of external edges:

CRm (q2sq2s+1) =















































(2s, 1− s, s+ 1, r − s+ 1, r + 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 1, r − s+ 2), s = 2;

(s+ 2, s+ 1, s+ 1, r − s+ 1, 3 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 2, 2r − s+ 3, r + 1 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r + 1, s− r),

(2, 4, 3, s− r + 1, s− r), s = 2r − 1;

(0, 2, 2, s− r + 1, s− r), s = 2r.

and,

CRm (q2s+1q2s+2) =







































































(2s+ 1, s, s+ 1, r − s+ 1, 0 ≤ s ≤ 1;

ar − s+ 1),

(2s+ 1, s+ 1, s+ 1, r − s+ 1, s = 2;

r − s+ 1),

(2r − s+ 1, s+ 2, s+ 1, 3 ≤ s ≤ r − 1;

r − s+ 1, r − s+ 1),

(2r − s+ 2, r + 1, 2r − s+ 1, r ≤ s ≤ 2r − 4;

s− r + 1, s− r + 1),

(5, 6, 4, s− r + 1, s− r + 1), s = 2r − 3;

(3, 5, 3, s− r + 1, s− r + 1), s = 2r − 2;

(1, 2, 3, s− r + 1, s− r + 1), s = 2r − 1.

Representation of external and internal edges:

CRm (q2sp2s) =































(2s, 2− s, 2, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 1, r − s+ 2, 2 ≤ s ≤ r;

r − s+ 1),

(2r − s+ 2, r + 1, 2r − s+ 1, r + 3 ≤ s ≤ 2r − 1;

s− r + 1, s− r − 1),

(1, 3, 1, s− r + 1, s− r − 1), s = 2r.

and,

CRm (q2s+1p2s+1) =























(2s+ 1, 1, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 2), 2 ≤ s ≤ r − 1;

(r + 1, r + 1, 2r − s, 0, 2), s = r;

(2r − s+ 1, 2r − s+ 2, r + 1 ≤ s ≤ 2r − 1.

2r − s+ 2, s− r, s− r + 1),

Representation of internal edges:

CRm (p2sp2s+2) =































(s+ 1, 1, 3, r + s, r − s), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 2, r − s), 2 ≤ s ≤ r − 1;

(2r − s+ 1, s, 2r − s, 3, 0), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, 2r − s, r + 2 ≤ s ≤ 2r − 1;

s− r + 2, s− r − 1),

(2, 2, 0, s− r, s− r − 1), s = 2r.

and,

CRm (p2s+1p2s+3) =































(s+ 2, 2, s, r − s− 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s− 1, 2 ≤ s ≤ r − 1;

r − s+ 2),

(2r − s, 2r − s+ 1, s, r − s, 3), r ≤ s ≤ r + 1;

(2r − s, 2r − s+ 1, 2r − s+ 2, r + 2 ≤ s ≤ 2r − 1.

s− r, s− r + 2),

Proof: Case 2: Now we can write, if n = 4r + 3, r ≥ 4, where
r ∈ Z

+. The set of vertices which will distinguish the whole
vertices, and edges of graph are Rm = {q0, q1, p1, p2r+3, p2r+4}.
The following representations are presented with respect to Rm.
Representation of external vertices:

CRm (q2s) =















































(2s, 2− 2s, 2, r + s+ 1, r + s+ 1), 0 ≤ s ≤ 1;

(s+ 2, 2s− 2, s+ 1, r − s+ 3, 2 ≤ s ≤ 3;

r − s+ 3),

(s+ 2, s+ 1, s+ 1, r − s+ 3, r − s+ 3), 4 ≤ s ≤ r + 1;

(2r − s+ 4, 2r − s+ 5, 2r − s+ 3, r + 2 ≤ s ≤ 2r − 1;

s− r, s− r − 1),

(3, 5, 3, s− r, s− r − 1), s = 2r;

(1, 3, 2, s− r, s− r − 1), s = 2r + 1.

and,

CRm (q2s+1) =







































































(2s+ 1, 1, s+ 1, r − s+ 2, 0 ≤ s ≤ 1;

r + s+ 1),

(s+ 3, 2s− 1, s+ 1, r − s+ 2, 2 ≤ s ≤ 3;

r − s+ 3),

(s+ 3, s+ 2, s+ 1, r − s+ 2, 4 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ r + 2;

2r − s+ 3, s− r, 2),

(2r − s+ 3, 2r − s+ 4, r + 3 ≤ s ≤ 2r − 1;

2r − s+ 3, s− r, s− r),

(2, 4, 3, s− r, s− r), s = 2r.

Representation of internal vertices:

CRm (p2s) =























(s+ 1, 2− s, 3, r + s, r − s+ 2), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 4, r − s+ 2), 2 ≤ s ≤ r;

(2r − s+ 3, s, 2r − s+ 1, 3, r − s+ 1), r + 1 ≤ s ≤ r + 2;

(2r − s+ 3, 2r − s+ 4, 2r − s+ 2, r + 3 ≤ s ≤ 2r + 1.

s− r + 1, s− r − 2),
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and,

CRm (p2s+1) =































(s+ 2, 2, s, r − s+ 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s+ 1, r − s+ 4), 2 ≤ s ≤ r;

(2r − s+ 1, 2r − s+ 3, 2r − s+ 5, r + 1 ≤ s ≤ r + 2;

s− r − 1, 3),

(2r − s+ 2, 2r − s+ 3, 2r − s+ 4, r + 3 ≤ s ≤ 2r.

s− r − 1, s− r + 1),

Representation of external edges:

CRm (q2sq2s+1) =































































(2s, 1− s, s+ 1, r + 1, r + s+ 1), 0 ≤ s ≤ 1;

(2s, s, s+ 1, r − s+ 2, r − s+ 3), s = 2;

(s+ 2, s+ 1, s+ 1, r − s+ 2, 3 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 3, r + 2, 2r − s+ 3, r + 1 ≤ s ≤ r + 2;

s− r, s− r + 3),

(2r − s+ 3, 2r − s+ 4, 2r − s+ 3, r + 3 ≤ s ≤ 2r − 1;

s− r, s− r − 1),

(2, 4, 3, s− r, s− r − 1), s = 2r;

(0, 2, 2, s− r, s− r − 1), s = 2r + 1.

and,

CRm (q2s+1q2s+2) =























































(2s+ 1, s, s+ 1, r − s+ 2, r + 1), 0 ≤ s ≤ 1;

(s+ 3, 2s− 1, s+ 1, r − s+ 2, 2 ≤ s ≤ 3;

r − s+ 2),

(s+ 3, s+ 2, s+ 1, r − s+ 2, 4 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, 2r − s+ 4, r + 1 ≤ s ≤ 2r − 2;

2r − s+ 2, s− r, s− r),

(3, 5, 3, s− r, s− r), s = 2r − 1;

(1, 3, 2, s− r, s− r), s = 2r.

Representation of external and internal edges:

CRm (q2sp2s) =















































(2s, 2− s, 2, r + s, r + 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 1, r − s+ 3, 2 ≤ s ≤ r;

r − s+ 2),

(2r − s+ 3, s, 2r − s+ 2, 2, r + 1 ≤ s ≤ r + 2;

r − s+ 2),

(2r − s+ 3, 2r − s+ 4, 2r − s+ 2, r + 3 ≤ s ≤ 2r;

s− r, s− r − 2),

(1, 3, 1, s− r, s− r − 2), s = 2r + 1.

and,

CRm (q2s+1p2s+1) =















































(2s+ 1, 1, s, r − s+ 1, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s+ 1, 2 ≤ s ≤ r;

r − s+ 3),

(2r − s+ 2, 2r − s+ 3, r + 1, s = r + 1;

s− r − 1, 2),

(2r − s+ 2, 2r − s+ 3, 2r r + 2 ≤ s ≤ 2r + 1.

−s+ 3,

s− r − 2, s− r − 1),

Representation of internal edges:

CRm (p2sp2s+2) =































(s+ 1, 1, 3, r + s, r − s+ 1), 0 ≤ s ≤ 1;

(s+ 1, s, s+ 2, r − s+ 3, r − s+ 1), 2 ≤ s ≤ r − 1;

(r + 1, s, 2r − s+ 1, 3, 1), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 3, 2r − s+ 1, r + 2 ≤ s ≤ 2r;

s− r + 1, s− r − 2),

(2, 2, 0, s− r, s− r − 2), s = 2r + 1.

and,

CRm (p2s+1p2s+3) =























(s+ 2, 2, s, r − s, r + s), 0 ≤ s ≤ 1;

(s+ 2, s+ 1, s, r − s, r − s+ 4), 2 ≤ s ≤ r − 1;

(2r − s+ 1, r + 1, s, 0, 3), r ≤ s ≤ r + 1;

(2r − s+ 1, 2r − s+ 2, 2r − s+ 3, r + 2 ≤ s ≤ 2r.

s− r − 1, s− r + 1),

Now, from lemma3, the resolving set Rm must contain vertices
from both the external and internal cycles of graph.

Lemma 7. Suppose n ≡ 1, 3(mod4),then βm ≥ 5.

Proof: Suppose that βm = 4. If so, the following contradictions
are assumed.

Case 1: When the external cycle contain three fixed vertices,
{q0, q1, q2}, and other vertex lie in the internal cycle pℓ.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|q0, q1, q2, pℓ} =

rm{q0qn−1|q0, q1, q2, pℓ} = (0, 1, 2, ℓ + 1).
(ii) If ℓ = 1, 3, 5, . . . , 4r − 1, then rm{q0|q0, q1, q2, pℓ} =

rm{q0qn−1|q0, q1, q2, pℓ}.

Case 2: When {p0, p1, p2} lie in the internal cycle and the other
vertex lie in the external cycle qℓ.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|p0, p1, p2, qℓ} =

rm{q0qn−1|p0, p1, p2, qℓ}.
(ii) If ℓ = 1, 3, 5, . . . , 2r + 3, then rm{q0|p0, p1, p2, qℓ} =

rm{q0qn−1|p0, p1, p2, qℓ}.

We already proved that for n ≡ 1, 3(mod4), and the mixed
metric dimension is βm ≤ 5. From Remark2, we consider the
following cases where the external and internal cycles comprise
two vertices each.

Case 3: When two external vertices are fixed {q0, q1}, and the
internal vertices are {p0, pℓ}.
(i) If ℓ = 0, 2, 4, . . . , 2r, then rm{q0|q0, q1, p0, pℓ} =

rm{q0qn−1|q0, q1, p0, pℓ}.
(ii) If ℓ = 1, 3, 5, . . . , 4r − 1, then rm{q0|q0, q1, p0, pℓ} =

rm{q0qn−1|q0, q1, p0, pℓ}.

Because of the symmetry, other possible cases can also be derived.
From all the above cases, therefore, it is proven that, for n ≡

1, 3(mod4), the mixed metric dimension is βm ≥ 5. We can
therefore say βm = 5 when n ≡ 1, 3(mod4).

Theorem 6. For n ≥ 7, we have a mixed metric dimension

βm(P(n, 2)) =

{

4, n ≡ 0, 2(mod4);
5, n ≡ 1, 3(mod4).
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TABLE 2 | Mixed Metric generator βm for P(n, 2).

n Basis βm

5 {q0, q3, p1, p2, p4} 5

6 {q0, q3, p1, p2, p4} 5

7 {q0, q3, p1, p2, p4} 5

8 {q0, q1, p4, p5} 4

9 {q0, q3, p5, p6} 4

10 {q0, q1, p5, p6} 4

11 {q0, q2, p6, p7} 4

12 {q0, q1, p6, p7} 4

13 {q0, q2, p7, p8} 4

14 {q0, q2, p7, p8} 4

15 {q0, q2, p10, p11} 4

Proof: Case 1:When n ≡ 0, 2(mod4).
From lemma 4,5, we have βmP(n, 2) = 4.

Case 1:When n ≡ 1, 3(mod4).
From lemma 6,7, we have βmP(n, 2) = 5.

For the remainder of the cases, when n ≤ 15, the mixed
metric dimension βm(P(n, 2)) is calculated through the total
enumeration method, shown in Table 2, along with the mixed
metric basis.

3. CONCLUSION AND FURTHER
RESEARCH

The recently introduced mixed metric dimension is calculated
for P(n, 2). It has been shown that P(n, 2) has mixed metric
dimension equal to 4 for n ≡ 0, 2(mod4), and, for n ≡

1, 3(mod4), themixedmetric dimension is 5. This shows that each
graph of the family of generalized Petersen P(n, 2) has constant
mixed metric dimension.

Theorem 7. [29] For the graph of P(n, 3),

β(P(n, 3)) =

{

4, when n ≡ 0(mod6);
3, when n ≡ 1, (mod6).

and,

β(P(n, 3)) ≤

{

5, when n ≡ 2(mod6);
4, when n ≡ 3, 4, 5(mod6).

Theorem 8. [30] For n ≥ 17, we have,

β(P(n, 4)) ≤

{

3, when n ≡ 0(mod4);
4, when n ≡ 1, 2, 3(mod4).

Theorem 9. [31] The metric dimension of graph of P(2n, n) is

β(P(2n, n)) =

{

3, when n is even;
4, otherwise.

The standard metric dimension is examined for these as well
as other known classes of generalized Petersen graphs; the
mixed metric dimension for these as well as other graphs would
therefore be intriguing to investigate. If the other variants of
dimension are identified, a comparative study can be carried out;
this could evaluate the relationship between β(Ŵ), βe(Ŵ), and
βm(Ŵ) in the different families of graphs.
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