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Dynamic heterogeneity, believed to be one of the hallmarks of the dynamics of

supercooled liquids, is expected to affect the diffusion of the particles comprising the

liquid. We have carried out extensive molecular dynamics simulations of two model glass

forming liquids in three dimensions to study the time scales at which Fick’s law of diffusion

starts to set in. We have identified two different Fickian time scales: one at which the

mean squared displacement begins to show a linear dependence on time, and another

one at which the distribution of particle displacements becomes Gaussian. These two

times scales are found to be very different from each other and from the α relaxation

time in both systems. An interesting connection is found between one of these Fickian

time scales and the time scale obtained from the bond-breakage correlation function. We

discuss the relation among these different time scales and their connection to dynamic

heterogeneity in the system.

Keywords: supercooled liquid, Fickian and non-Fickian behaviors, glass transition, van Hove correlation function,

dynamic heterogeneities

1. INTRODUCTION

One of the important unsolved problems in condensedmatter physics is to understand the complex
dynamics of supercooled liquids near the glass transition. In the last several decades, immense
efforts have been made to understand the rapid rise of the viscosity and the slowing down of the
dynamics of supercooled liquids as the glass transition is approached [1–12]. It is nowwell-accepted
that the slow dynamics become increasingly heterogeneous near the glass transition. Numerous
studies have been performed to understand this behavior [12–14]. While the origin of dynamic
heterogeneity is still not fully understood, the lifetime of these heterogeneities are also debated. In a
dynamically heterogeneous system, there are regions in which the local dynamics are considerably
faster or slower than the dynamics averaged over the whole sample. One can consider any quantity
that characterizes the local dynamics over a time scale τ and define the lifetime of dynamical
heterogeneity as the minimum value of τ for which this quantity becomes homogeneous in space.
In an earlier study [15], it has been shown that the lifetime of dynamic heterogeneity grows faster
than the α-relaxation time, whereas in some other works [16–20], the ratio of this time scale with
the α-relaxation time is found to depend sensitively on the temperature.

It is well-known that themean squared displacement (MSD), 〈1r2〉, computed for a supercooled
liquid shows an initial ballistic growth with time and then tends to plateau at an intermediate time
scale. The plateau is followed by a diffusive region. The plateau in the MSD appears because of the
hindrance of the motion of a particle caused by the “cage” formed by its neighbors. The diffusive
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regime sets in when the particles manage to break out of the
cage, but the dependence of the MSD on time does not become
linear until a time scale that is larger than the α-relaxation time.
Although theMSD shows diffusive behavior at this time scale, the
dynamics of the system remain spatially heterogeneous. In [15],
it has been shown that the distribution of the displacements
of the particles becomes Gaussian at a time scale that is at
least 30 − 40 times larger than the α-relaxation time. True
Fickian diffusion starts after this time scale. Two different time
scales related to diffusion therefore exist. One of these is the
time at which the slope of the MSD vs. time in a log-log plot
becomes unity. We call this time scale τD. The other one is
the time at which the distribution of the displacements of the
particles becomes Gaussian. We call this time τF . A similar time
scale, τH , is obtained via the Binder cumulant of the van Hove
correlation function.

It is interesting to inquire whether the Fickian time
scales defined above are related to the lifetime of dynamic
heterogeneity. In recent studies [21, 22], it has been shown that
the short-time β-relaxation in supercooled liquid is a cooperative
process. It is also shown that the temperature dependence of the
length scale associated with the cooperative β-relaxation process
is the same as that of the dynamic heterogeneity length scale
obtained at the α-relaxation time. Note that the α-relaxation time
can be many orders of a magnitude larger than the β-relaxation
time, especially at low temperatures. Thus, the dynamics of
a supercooled liquid is heterogeneous at time scales that can
be as short as the β-relaxation time, and these heterogeneities
persist up to time scales that can be much longer. In the
experimental studies of Cicerone and Ediger [16, 17], the lifetime
of dynamic heterogeneity was defined as the time scale over
which the local dynamics in a region where it is slower than
the dynamics averaged over the whole system continues to
remain so. The difference between this time scale and the α-
relaxation time was found [16, 17] to increase with increasing
supercooling. Numerical studies [4, 23–25] have suggested that
dynamic heterogeneity in glass-forming liquids of binary hard-
sphere systems can survive up to a time scale that is larger than
the α-relaxation time by a factor of a few tens. In [15], it has been
suggested that the time scale obtained from the distribution of
single particle displacements may provide a lower bound for the
lifetime of dynamic heterogeneities present in the system, but the
actual lifetime of the heterogeneities may be much larger. The
violation of the Stokes-Einstein relation between the diffusion
coefficient and the viscosity [26–28], another poorly understood
phenomenon in glassy dynamics, is also believed to be closely
related to dynamic heterogeneity.

In this paper, we have addressed some of the issues mentioned
above via extensive molecular dynamics simulations of two well-
known model glass forming liquids in three spatial dimensions.
The primary objective of this study is to estimate the time scales
τD, τF , and τH in different generic glass-forming liquids and
to compare them with other well-known important time scales
in the system, such as the α-relaxation time τα and the bond-
breakage time scale τBB (to be defined later) We have looked
for the existence of correlations among these different time
scales and tried to figure out their consequence in understanding
the dynamics of glass forming liquids approaching the glass

transition. We find that the time scales of diffusion, τD, τF , and
τH , are longer than τα in the temperature range considered here.
The temperature dependence of τF is similar to that of τH and
their growth with decreasing temperature is faster than that of
τα . The growth of τD as the temperature is reduced but is, on
the other hand, slower than that of τα . We find that the relations
between pairs of these time scales are described by power laws
at low temperatures, so that the glass transition temperatures
obtained from Vogel-Fulcher-Tammann [29, 30] (VFT) or mode
coupling [31, 32] (power law) fits to the temperature dependence
of these time scales and are the same within error bars. We
also find an intriguing connection between τD and the bond-
breakage time scale τBB. The implications of these findings for the
violation of the Stokes-Einstein relation and the kinetic fragility
are discussed.

The rest of the paper is organized as follows. We present the
details of the models studied and the simulation methodology
in section 2. We then introduce different correlation functions
that are computed to estimate different time scales and present
our results for two different generic glass-forming liquids.
Finally, we conclude with a discussion of the importance
of these different time scales for understanding the intricate
role played by dynamic heterogeneity in the dynamics of
glass-forming liquids.

2. MODELS AND METHODS

We have studied two different model glass forming liquids in
three dimensions.

• 3dKA Model [33]: This is a well-known 80 : 20 binary
Lennard-Jones mixture in three dimensions. Particles interact
via the following pairwise interaction

Vαβ (r) = 4ǫαβ

[

(σαβ

r

)12
−

(σαβ

r

)6
]

, (1)

where α,β ∈ {A,B} and ǫAA = 1.0, ǫAB = 1.5, ǫBB = 0.5,
σAA = 1.0, σAB = 0.80, σBB = 0.88. We cut off the interaction
potential at 2.50σαβ . A quadratic polynomial is used to make
the potential and its first two derivatives smooth at cutoff
distance. The temperature range for the simulations is T ∈
[0.450− 1.000] and the system size is N = 8, 000.

• 3dR10 Model [34]: It is a 50 : 50 binary mixture where the
particles interact via

Vαβ (r) = ǫαβ

(σαβ

r

)n
, (2)

with n = 10. The potential is cut off at a distance 1.38σαβ

and again, a quadratic polynomial is used to make potential
and its first two derivative smooth at the cutoff distance. Here
ǫαβ = 1.0, σAA = 1.0, σAB = 1.22, and σBB = 1.40. The
temperature range for the simulations is T ∈ [0.520 − 1.000]
and N = 1,0000.

For all the studied models we have performed NVT
molecular dynamics (MD) simulations with a modified leap-
frog algorithm. We used the Berendsen thermostat to keep
the temperature constant. Our integration time step is dt =
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0.005. The number of MD steps are 107 − 108, depending on
the temperature.

3. CORRELATION FUNCTIONS

3.1. Overlap Correlation Function
We characterize the dynamics by calculating the well-known
two-point density-density correlation function Q(t). It measures
the overlap between two configurations separated by time t. The
self-part of this correlation function is defined as

Qs(t) =
1

N

[〈

N
∑

i=1

w
(

|Eri(t)− Eri(0)|
)

〉]

, (3)

where w(x) is a window function with

w(x) =

{

1.0 if x ≤ a

0 otherwise.
(4)

The value of a is chosen to be 0.30 which is close to the value at
which the MSD forms a plateau. The window function is chosen
to remove the possible decorrelation due to the vibrational
motion of the particles inside their cage. A different choice of
the parameter a does not change the results qualitatively. The
α-relaxation time τα is obtained from Qs(t) using the condition
Qs(t = τα) = exp(−1).

3.2. van Hove Correlation Function
The van Hove correlation function measures the probability that
a particle has displacement x after time t. The self-part of the van
Hove correlation function [35] is defined as

Gs(x, t) =
N

∑

i=1

δ(x− xi(t)+ xi(0)), (5)

where xi(t) is the x-component of the position vector of particle i
at time t.

3.3. Bond-Breakage Correlation Function
The bond-breakage correlation function is defined in the
following way [36–38]. At t = t0 a pair of particle i (of type α)
and j (of type β) is considered to be bonded if

rij(t0) = |Eri(t0)− Erj(t0)| ≤ σαβ . (6)

If rij(t) ≤ 1.35σαβ , the bond is said to have survived at time t.
We calculate the number of bonds that survive at time t and the
bond-breakage correlation function is defined as the ratio of this
number to the initial number of bonds. The bond-breakage time
scale τBB is the time at which the correlation function goes to 1/e
of its initial value.

4. RESULTS

We show below the results for only one type of particle (type A).
The results for the other type of particle (type B) are qualitatively

similar [15]. In the 3dKA model (80 : 20 mixture), the number
of B-type particles is substantially smaller, resulting in larger
statistical fluctuations. So, we prefer to show the results for
A-type particles.

4.1. Time Scale From the Mean Square
Displacement
As mentioned before, the mean square displacement (MSD)
shows three distinct regimes for a supercooled liquid: initial
ballistic growth i.e., 〈1r2〉 ∼ t2, then a plateau followed by a
diffusive regime i.e., 〈1r2〉 ∼ t. So, a plot of the logarithmic
derivative of the MSD with respect to time starts from 2, goes
to a minimum and then eventually goes to 1, corresponding
to the above three distinct regimes. The time scale where it
goes to 1 is of importance as this is the time at which the
system begins to show diffusive behavior. We have calculated
this time scale, τD, for different temperatures for both the
model systems. In the top panel of Figure 1, we show the
logarithmic derivative of the MSD as a function of time for all
the studied temperatures for the 3dR10 model. We have taken
d ln 〈1r2〉

d ln t = 0.97 to define the time scale τD. The temperature
dependence of this time scale is shown in the bottom panel
of the same figure. The temperature dependence can be fitted
very well using the VFT form with the divergence temperature
TVFT ≃ 0.406, which is close to ∼ 0.404, the value obtained
using τα . We consider two other characteristic temperatures—
the mode coupling critical temperature Tc obtained from fitting
the temperature dependence of a time scale to a power-law
divergence, and the “glass transition temperature” Tg defined as
the temperature at which the time scale being considered reaches
the value 106 (this is similar to the definition of the experimental
glass transition temperature). The values of Tc and Tg obtained
from the temperature dependence of τD are∼ 0.495 and∼ 0.484,
respectively. These values are close to those (∼ 0.491 and ∼
0.481, respectively) obtained using τα .

To understand the mutual relationship between τD and τα ,
we have plotted the ratio of these two time scales (τD/τα)
as a function of temperature in the top panel of Figure 2.
As the temperature is decreased, this ratio first increases,
reaches a maximum near T = 0.8, and then decreases as
the temperature is lowered further. The temperature at which
τD/τα peaks is close to the onset temperature Ton [39] for this
model. Thus, at temperatures lower than Ton which corresponds
to the temperature below which the effects of the potential
energy landscape becomes important, the diffusion time scale τD
grows more slowly than the structural relaxation time τα with
decreasing temperature.

We have also calculated the bond-breakage time scale τBB
following the method described in section 3. It is the time scale
where most of the particles have gone though some amount of
reshuffling of their neighbors, as measured using the breakage of
nearest neighbor bonds. The temperature dependence of τBB/τα

is similar to that of τD/τα , as shown in the inset of Figure 2. In
particular, these two ratios exhibit nearly identical temperature
dependence for values of T lower than that at which they exhibit
a peak. This observation suggests an intriguing connection
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FIGURE 1 | (Top) Log-derivative of MSD is plotted vs. time for the 3dR10

model. The horizontal line corresponds to 0.97. (Bottom) The dependence of

the time scale τD on the temperature. The line passing through the data points

is a fit of the data to the VFT form, τα = τ0 exp
[

A
T−TVFT

]

.

between diffusion and bond breakage processes at temperatures
lower than the onset temperature. Possible significance of this
observation is discussed in section 8.

To calculate τD, we have chosen the cutoff value of the
logarithmic derivative of the MSD to be 0.97. Ideally, τD should
be calculated where this value actually goes to unity. This is
quite challenging as for low temperatures, the derivative does not
reach the value of unity in our simulation time scale. Even if the
derivative goes to unity within the simulation time scale, the noise
in its measurement makes it difficult to accurately determine
the time at which it first reaches this value. To check whether
the non-monotonic behavior of the temperature dependence of
τD/τα depends on howwe calculate τD, we have done a systematic
study of this ratio by changing the cutoff. Figure 3 shows the
cutoff dependent ratio for the 3dKA model systems. From the
plot, it is clear that the non-monotonic behavior is a feature that

FIGURE 2 | The ratio τD/τα is plotted as a function of T for the 3dR10 model.

The inset shows a comparison of this ratio with the ratio of τBB/τα for the

same model.

0.5 1 1.5 2 2.5 3
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20
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FIGURE 3 | Cutoff dependence of τD/τα for the 3dKA model. It is clear that

although the value of this ratio depends on the cutoff, the non-monotonic

temperature dependence is present for all values of the cutoff.

is independent of the choice of the cutoff: the non-monotonicity
increases systematically as the cutoff approaches unity.

4.2. Time Scale From the Distribution of
Single-Particle Displacements
Next, we estimate the time scale of the onset of Fickian diffusion
by following the procedure discussed in [15]. To study the onset
of Fickian diffusion, it is important to calculate the distribution
of single particle displacements, P(log10(δr), t) at time t. As
discussed in [15], this distribution is connected to the self part
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FIGURE 4 | (Top) Distribution of the logarithm of single particle displacements

at different times at T = 0.450 for the 3dKA model. For relatively short times,

the distribution shows signs of bimodality, whereas at longer times it tends to

be more Gaussian. (Bottom) Similar plot at T = 1.000.

of the van Hove correlation function as

P(log10(δr), t) = ln 10 4πδr3Gs(δr, t) . (7)

If the motion of the particles is governed by Fick’s law of
diffusion, the distribution of single particle displacements i.e.,
P[log10(δr, t)], should become Gaussian and remain so at longer
times. Moreover, the peak value of the distribution should reach
a value ≈ 2.13. Any deviation from this behavior would indicate
non-Fickian diffusion as well as dynamic heterogeneity [15, 40].
Figure 4 shows plots for P(log10(δr, t)) at different times for
two different temperatures T = 0.450 and 1.000 for the 3dKA
model. For the lower temperature (T = 0.450), deviations from
Gaussian behavior are clearly visible at smaller times, whereas the
distribution approaches a Gaussian shape for longer times and
the peak value of the distribution also approaches≈ 2.13.

At the higher temperature, T = 1.000, deviations from the
Gaussian shape are not very clear, but the peak value reaches the
value ∼ 2.13 only after a few τα . This suggests that even at high
temperatures, the dynamics are affected by the presence of spatial
heterogeneity at time scales larger than τα . We define the time
scale of onset of Fickian diffusion as the time at which the peak
value of the distribution goes to ≈ 1.92, similar to the criterion
adopted in [15] and refer to this time scale as τF . In the left panel
of Figure 5, we show plots of the peak value of P(log10(δr), t) with
increasing time for all the studied temperatures. In the right panel
we show the temperature dependence of the time scale τF . The
temperature dependence of this time scale can be fitted very well
to the VFT formula. The line passing through the data points in
the right panel shows the VFT fit with TVFT ≃ 0.289.

To see the mutual relationship between τα and τF , in Figure 6

we have plotted the ratio (τF/τα) for all the studied temperatures.
From the plot, one can see that τF increases much more rapidly
than τα when the temperature is decreased. The ratio changes
from 5 to 25 in the temperature window T ∈ [1.000 − 0.450]
as shown in Figure 6.

FIGURE 5 | (Left) Value of the maximum of P(log10(1r), t) is plotted against time t for different temperatures for the 3dKA model. The time where it reaches 1.92 is

defined as the Fickian time scale τF . (Right) Variation of the logarithm of the time scale τF with temperature T. The line passing through the data points is a fit to the

VFT form.
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FIGURE 6 | The ratio of τF/τα is plotted as a function of T for the 3dKA model.

Note that τF increases much faster than τα with decreasing temperature.

Ideally, one should use a cutoff at 2.13 in order to calculate
τF . We could not do that because reaching this value within our
simulation time scale is not possible. We have, however, checked
that the difference between τF and the other time scale τD related
to diffusion is not an artifact of using a cutoff lower than 2.13 in
the calculation of τF and a cutoff lower than 1.0 in the calculation
of τD. It is evident from the data that τF is larger than τD and
it increases faster than τD as the temperature is reduced. There
are indications that these two time scales approach each other at
temperatures higher than 3.0.

The vanHove function is expected to have a Gaussian form for
Fickian diffusion. In the top panel of Figure 7, we have plotted the
van Hove function for the 3dKAmodel at T = 0.450 for different
times. From the plots, one can see evidence for non-Gaussian
behavior for smaller times and an approach to a Gaussian form
for longer times. The bottom panel shows similar plots for
T = 1.000. To get a second measure of the degree of non-
Gaussianity, we have calculated the Binder cumulant of the van
Hove function for different times. The Binder cumulant, which
provides a measure of the excess kurtosis of the distribution, is
defined as

B(T, t) = 1−

〈

x4
〉

3
〈

x2
〉2 . (8)

If the van Hove function is perfectly Gaussian, the Binder
cumulant should be zero. For that to happen, one needs to run
the simulations for very long times. Here we have defined a
time scale τH as the time where the Binder cumulant of the van
Hove function becomes ≈ 0.07. In the top panel of Figure 8,
we show the Binder cumulant for all studied temperatures at
different times for the 3dKA model. The horizontal line in
the figure corresponds to the value of 0.07. The bottom panel
shows the ratio of τH and τα as a function of temperature. The
temperature dependence of τH/τα is similar to that of τF/τα .
This is not surprising because both τF and τH correspond to the

FIGURE 7 | (Top) The van Hove correlation function at different times at

T = 0.450 for the 3dKA model. (Bottom) Similar plot for T = 1.000.

time at which the distribution of particle displacements becomes
Gaussian. Note that τH is larger than τF for our choice of the
cutoffs used for measuring these time scales. The values of the
ratio τH/τα lie in the range ∼ 6 − 35 for temperatures in the
range T ∈ [1.000−0.450]. The characteristic temperatures, TVFT ,
Tc and Tg , obtained from the different time scales in the 3dKA
model are listed in Table 1. The values of TVFT and Tc obtained
from the α-relaxation time are found to be close to those obtained
from the other time scales. The value of Tg , which is sensitive to
the absolute value of the time scale, depends of the time scale used
to define it. At this point it is worth mentioning that another time
scale τ4, obtained from the four-point susceptibility χ4(t) [3] (τ4
is the time scale where the χ4(t) attains its maximum value), is
proportional to τα with proportionality constants close to one [3].
Therefore, this time scale does not provide any new information.

As suggested in [15], the time scales τF and τH may be thought
of as lower bounds of the lifetime of dynamic heterogeneity. As
reported in [41, 42], the distribution of diffusion constants is
a good measure of dynamic heterogeneity in the system. The
distribution of diffusion constants is obtained from the self-
part of the van Hove function using Lucy iteration [43]. We
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FIGURE 8 | (Top) The Binder Cumulant of the van Hove correlation function

for different times and all studied temperatures for the 3dKA model. The

horizontal line corresponds to B(T, t) = 0.07. The time scale τH is defined as

the time at which B(T, t) attains this value. (Bottom) The temperature

dependence of the ratio τH/τα .

TABLE 1 | The values of TVFT , Tc, and Tg for all the three time scales for 3dKA

model.

τα τD τF

TVFT 0.293 0.291 0.289

Tc 0.406 0.412 0.417

Tg 0.372 0.360 0.398

have followed the method described in [41, 42]. In the top and
bottom panels of Figure 9, we show the distribution of diffusion
constants for T = 0.450 and T = 1.000, respectively, for

FIGURE 9 | (Top) Distribution of diffusion constants for T = 0.450 for 3dKA

model. (Bottom) Similar plot for T = 1.000.

different times for the 3dKA model. For a high temperature
e.g., T = 1.000, the distribution does not have multiple peaks
but the broadness of the distribution reflects the underlying
heterogeneity. For T = 0.450, one can see that there are multiple
peaks in the distributions even at time scales longer than τF . It
approaches unimodal behavior at much longer time scales. So,
heterogeneity survives even after the system starts to follow Fick’s
law of diffusion, which is in agreement with the conclusion of
previous studies [15].

5. RELATION BETWEEN DIFFERENT TIME
SCALES

In the previous section, we found that the temperature
dependence of the different time scales (τα , τD, τF , and τH)
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can be well-fitted by the VFT form with very similar values
of the divergence temperature TVFT . This suggests that the
different time scales are related to one another via power
laws. In Figure 10, we have shown such a relationship between
different time scales. The linear dependence in a log-log plot
confirms that a power-law relation describes the data quite
well, especially at low temperatures. The exponent m that
describes the power-law relation between one of the time
scales of diffusion and the α-relaxation time is ≃ 0.83 for
τD, implying that τD increases more slowly than τα with
decreasing temperature. The values of m for τF and τH obtained
from the fits, m ≃ 1.21 and m ≃ 1.17, respectively, are
close to one another. This is consistent with the observation,
mentioned above, that these two time scales have a very similar
temperature dependence. The larger than unity values of m
for these time scales imply that their growth, with decreasing
temperature, is faster than the growth of τα . Since τF and τH
are believed to provide lower bounds to the lifetime of dynamic
heterogeneity, this result implies that dynamic heterogeneities
exist over time scales that are much longer than the α-relaxation
time at low temperatures. The values of m for τD, τF and
τH also imply that τF and τH increase faster than τD as the
temperature is decreased, indicating that at low temperatures,
there is a large time interval over which the MSD is linear
in time, but the distribution of particle displacements is not
Gaussian. Yet another consequence of the observed power-law
dependence of the diffusion-related time scales on τα is that
the transition temperature of mode-coupling theory obtained
by fitting the temperature dependence of τD, τF or τH to a
power law would be the same as that obtained from a power-
law fit to the temperature dependence of τα . However, the
exponent of the power-law would depend on which time scale
is considered.

FIGURE 10 | Different relaxation times, τD, τF , and τH, are plotted against the

α-relaxation time τα for 3dKA model. Reasonable linear dependence in a

log-log plot suggests that they are related to one another via power laws. The

lines passing through the data points are best fits to power laws.

6. STOKES-EINSTEIN RELATION AND
KINETIC FRAGILITY

The violation of the Stokes-Einstien relation [26–28] between the
diffusion coefficient D and the viscosity (or a suitable time scale
τ ) in deeply supercooled liquids [41, 42] is believed to be closely
related to dynamic heterogeneity. It is interesting to examine the
extent of violation of the SE relation when one of the time scales
studied above is considered to be the relevant time scale τ . It
is known from earlier work [41] that D ∝ 1/τα (i.e., the SE
relation is satisfied) at high temperatures, but a modified relation,
D ∝ τ−1+ω

α , where ω is called the fractional SE exponent, is
satisfied at lower temperatures. The value of the exponent (1−ω)
is 0.78 and 0.75 for 3dKA and 3dR10 models, respectively.

The power-law dependence of the time scales of diffusion on
τα implies that these time scales also satisfy amodified SE relation
with values of the fractional SE exponent given by (1 − ω)/m.
Sincem for τD for the 3dKAmodel is close to the value of (1−ω),
the SE relation is expected to be valid for this time scale (i.e.,D ∝
1/τD) at low temperatures. On the other hand, the fractional SE
exponent is expected to be small (close to 0.65) for the two other
time scales. The plots of the diffusion coefficient vs. different
time scales shown in Figure 11 illustrate this behavior. The SE
relation is found to be satisfied for τD, whereas the fractional SE
exponent for τF is 0.65. Similar behavior is found for the 3dR10
model, as illustrated in the bottom panel of Figure 11. The SE
relation between D and τD ≃ τBB was also reported in an earlier
study [44].

As noted above, τα satisfies the SE relation at temperatures
higher than the onset temperature. Since the temperature
dependence of the diffusion-related time scales is different from
that of τα , even at these higher temperatures, these time scales
do not satisfy the SE relation at temperatures near the onset
temperature. The SE relationmay be restored for these time scales
at temperatures substantially higher than the onset temperature.

The power-law dependence of the diffusion-related time scales
on τα also implies that the kinetic fragility parameter κ , obtained
from a fit of the temperature dependence of a time scale τ to the
VFT form, τ (T) = τ0 exp[1/(κ(T/TVFT − 1)], for these time
scales is different from that for τα . The value of κ for one of
these time scales would be 1/m times the value for τα , implying
that the fragility for τD is higher than that for τα , whereas the
temperature dependence of τF and τH corresponds to a smaller
value of the fragility.

7. SYSTEM-SIZE DEPENDENCE OF TIME
SCALES

In Figure 12, we show the system-size dependence of τD (left
panel) at different temperatures for the 3dKA model. Almost no
system-size dependence is observed at the higher temperatures,
and only a small dependence is found at the lowest temperature
for system sizes in the range N ∈ [500 − 10, 000]. We have
done simulations for smaller system sizes in the range N ∈
[100 − 1, 000] for the 3dR10 model. Note that for this model,
one can simulate systems with smaller sizes as the inter-particle
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FIGURE 11 | (Top) The diffusion constant D is plotted against different time

scales for the 3dKA model system. The lines passing through the data points

are power-law fits. (Bottom) Similar plot for the 3dR10 model.

potential has shorter range. The results are shown in the right
panel of Figure 12 where one can clearly see the evidence for
an initial increase of the time scale with system size at low
temperatures. Note that τα has a very different system size
dependence—its value decreases with increasing system size at
low temperatures [7]. This observation is puzzling and warrants
further investigation.

8. SUMMARY AND CONCLUSIONS

In summary, we have estimated different time scales related to
diffusion for two well-known glass-forming liquids. One of these
time scales, τD, is the time at which the dependence of the MSD
on time becomes linear. The other, τF or τH , represents the
time at which the distribution of particle displacements becomes
Gaussian. The actual values of these time scales depend on the
cutoff or tolerance factor used in their measurement from MD
simulations. However, our investigation of the dependence of the
time scales on the cutoff suggests that the qualitative behavior
we find is independent of the choice of the cutoff. The results
obtained for the two model systems are similar. We show that
both τD and τF are larger than the α-relaxation time τα in
the temperature range considered in our simulations. At low
temperatures (T lower than the onset temperature Ton), the
growth of τD with decreasing temperature is slower, whereas
the growth of τF is faster than that of τα . Between the two
diffusion-related time scales, τF is substantially larger than τD,
indicating that there is a long time interval over which the MSD
is linear in time, but the distribution of the displacements is
not Gaussian. If both linear dependence of the MSD on time
and Guassian distribution of displacements are considered to be
essential features of Fickian diffusion, then the longer time scale
τF should be identified as the time at which Fickian diffusion sets
in. Our results then imply that Fickian diffusion sets in at times

FIGURE 12 | (Left) System size dependence of τD at different temperatures for the 3dKA model system. The observed system size dependence for

N ∈ [500− 10, 000] is very weak and only small dependence is observed at the low temperature. (Right) Zoomed in version of similar plot but for small system sizes

N ∈ [100− 1, 000] for the lowest four temperatures for the 3dR10 model. Note for the 3dR10 model, one can simulate smaller sizes as the range of the inter particle

potential is small. See text for details.
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much longer than the α-relaxation time in deeply supercooled
liquids. This is in agreement with earlier results [15].

We find that the ratio τD/τα is a non-monotonic function
of temperature and it peaks at a temperature close to the onset
temperature Ton at which the dynamics starts being influenced
by the energy landscape. This observation suggests an intriguing
connection between the behavior of the MSD as a function of
time and the influence of the energy landscape on the dynamics.
Another interesting observation is that τD is close to the bond-
breakage time scale τBB for temperatures lower than Ton.

The diffusion-related time scales τD and τF and the α-
relaxation time τα are mutually correlated and the relation
between pairs of them is well-described by a power law at
low temperatures. This implies that if any one of them diverge
at some temperature, then the others also diverge at the
same temperature. Thus, the VFT temperature and the critical
temperature of mode-coupling theory are the same for all
these time scales. The power-law relation also implies that the
fractional SE exponent and the kinetic fragility associated with
the diffusion-related time scales are simply related to those
obtained for τα . An interesting result in this context is that the
time scale τD and the diffusion coefficientD satisfy the SE relation
at temperatures lower than Ton. Similar results, τD ≃ τBB ∝ 1/D,
have been found in simulations of supercooled water [45, 46] and
supercooled silica [47]. These results suggest that the observed
relations among τD, τBB, andD are probably universal in the sense
that they are satisfied in all supercooled liquids.

On the other hand, the Fickian time scale τF exhibits strong
violation on the SE relation, with a fractional SE exponent close
to 0.65. This is puzzling because one would naively expect the
SE relation to be valid when the diffusion is Fickian. However,
the violation of the SE relation is believed to be caused by
dynamic heterogeneity and the lifetime of dynamic heterogeneity
may be longer than τF . We have found some evidence for
this from a calculation of the distribution of local diffusion
constants (Figure 9) which exhibits multiple peaks for time scales
longer than τF , indicating that the lifetime of the heterogeneity
is longer than the Fickian time scale. This is consistent with
the suggestion [15] that τF is a lower bound to the lifetime of
dynamic heterogeneity.

At present, there is no clear understanding of the origin of
most of the observations described above. A few conclusions can
be drawn from these observations. The equality of the time scales
τD and τBB at temperatures lower than the onset temperature
indicates that the onset of linear diffusion (MSD proportional
to time) depends crucially on bond-breaking events that lead to
the escape of a particle from the “cage” formed by its neighbors.
The fact that the structural relaxation time τα increases faster
than τBB at low temperatures (the ratio τBB/τα decreases as the

temperature is reduced below the onset temperature) suggests
that structural relaxation involves additional processes that are
slower than bond-breaking. The observations that the time scale
τF of Fickian diffusion is much longer than τD and the lifetime
of dynamic heterogeneity obtained from the distribution of
local diffusion constants is even longer indicate that dynamic
heterogeneities persist in the system and continue to influence
diffusive behavior over time scales that are much longer than the
time scale of linear diffusion.

These observations suggest the following picture for the
dynamics over time scales longer than τD but shorter than
τF : the dynamically heterogeneous system consists of groups
of particles with the property that the particles belonging to a
particular group exhibit linear diffusion with diffusion constant
D, but the value of D is different for different groups. Under
these circumstances, the mean square displacement averaged
over all the particles will be linear in time with a diffusion
constant that is a properly weighted average of the diffusion
constants of individual groups. However, the distribution of the
displacements of all the particles will not be Gaussian, even if the
distribution is Gaussian for the particles in a particular group—
a Gaussian distribution will be obtained only after a longer time
scale τF at which the heterogeneity in the values of the diffusion
constants disappears. This time scale τF is clearly related to
the lifetime of dynamic heterogeneity, but as far as we know,
a theoretical understanding of the magnitude and temperature
dependence of τF is not yet available.

All these observations raise several interesting questions
about the characteristics of the dynamics of supercooled liquids.
Answers to these questions will be important in understanding
the role of dynamic heterogeneity in glassy relaxation.
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