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Complex global behavior patterns can emerge from very simple local interactions

between many agents. However, no local interaction rules have been identified that

generate some patterns observed in nature, for example the rotating balls, rotating

tornadoes and the full-core rotating mills observed in fish collectives. Here we show that

locally interacting agents modeled with a minimal cognitive system can produce these

collective patterns. We obtained this result by using recent advances in reinforcement

learning to systematically solve the inverse modeling problem: given an observed

collective behavior, we automatically find a policy generating it. Our agents are modeled

as processing the information from neighbor agents to choose actions with a neural

network and move in an environment of simulated physics. Even though every agent is

equipped with its own neural network, all agents have the same network architecture

and parameter values, ensuring in this way that a single policy is responsible for the

emergence of a given pattern. We find the final policies by tuning the neural network

weights until the produced collective behavior approaches the desired one. By using

modular neural networks with modules using a small number of inputs and outputs,

we built an interpretable model of collective motion. This enabled us to analyse the

policies obtained. We found a similar general structure for the four different collective

patterns, not dissimilar to the one we have previously inferred from experimental zebrafish

trajectories; but we also found consistent differences between policies generating the

different collective pattern, for example repulsion in the vertical direction for the more

three-dimensional structures of the sphere and tornado. Our results illustrate how new

advances in artificial intelligence, and specifically in reinforcement learning, allow new

approaches to analysis and modeling of collective behavior.

Keywords: collective behavior, multi agent reinforcement learning, deep learning, interpretable artificial

intelligence, explainable artificial intelligence

1. INTRODUCTION

Complex collective phenomena can emerge from simple local interactions of agents who lack the
ability to understand or directly control the collective [1–14]. Examples include cellular automata
for pattern generation [3, 6, 10], self-propelled particles (SPP) [2, 4, 5, 7, 11, 13], and ant colony
models for collective foraging and optimization [8, 12].

If in one of such systems we observe a particular collective configuration, how can we infer the
local rules that produced it? Researchers have relied on the heuristic known as the modeling cycle
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[15, 16]. The researcher first proposes a set of candidate local rules
based on some knowledge of the sensory and motor capabilities
of the agents. The rules are then numerically simulated and
the results compared with the desired outcome. This cycle is
repeated, subsequently changing the rules until an adequate
match between simulated trajectories and the target collective
configuration is found.

Studies in collective behavior might benefit from a more
systematic method to find local rules based on known global
behavior. Previous work has considered several approaches.
Several authors have started with simple parametric rules of local
interactions and then tuned the parameters of the interaction
rules via evolutionary algorithms based on task-specific cost
functions [17, 18]. When the state space for the agents is small, a
more general approach is to consider tabular rules, which specify
a motor command for every possible sensory state [19].

These approaches have limitations. Using simple parametric
rules based on a few basis functions producesmodels with limited
expressibility. Tabular mapping has limited generalization ability.
As an alternative not suffering from these problems, neural
networks have been used as the function approximator [20–
22]. Specifically, neural network based Q-learning has been used
to study flocking strategies [23] and optimal group swimming
strategies in turbulent plumes [24]. Q-learning can however run
into optimization problems when the number of agents is large
[25]. Learning is slow if we use Q-functions of collective states
(e.g., the location and orientation of all agents) and actions,
because the dimensionality scales with the number of agents.
When implementing a separate Q-function for the state and
action of each agent, the learning problem faced by each agent
is no longer stationary because other agents are also learning
and changing their policies simultaneously [26]. This violates
the assumptions of Q-learning and can lead to oscillations or
sub-optimal group level solutions [27].

Despite these difficulties, very recent work using inverse
reinforcement learning techniques has been applied to find
interaction rules in collectives [28, 29]. These approaches
approximate the internal reward function each agent is following,
and require experimental trajectories for all individuals in
the collective. Here, we follow a different approach in which
we aim at finding a single policy for all the agents in the
collective, and with the only requirement of producing a desired
collective configuration.

Our approach includes the following technical ingredients.
We encode the local rule as a sensorimotor transformation,
mathematically expressed as a parametric policy, which maps the
agent’s local state into a probability distribution over an agent’s
actions. As we are looking for a single policy, all agents have
the same parametric policy, with the same parameter values,
identically updated to maximize a group level objective function
(total reward during a simulated episode) representing the
desired collective configuration. A configuration of high reward
was searched for directly, without calculating a group-level value
function and thus circumventing the problem of an exploding
action space. For this search, we use a simple algorithm of the
class of Evolution Strategies (ES), which are biologically-inspired
algorithms for black-box optimization [30, 31]. We could have

chosen other black-box optimization algorithms instead, such as
particle swarm algorithms [32]. However, this ES algorithm has
recently been successful when solving Multi-Agent RL problems
[33], and when training neural-network policies for hard RL
problems [34].

We applied this approach to find local rules for various
experimentally observed schooling patterns in fish. Examples
include the rotating ball, the rotating tornado [35], the full-
core rotating mill [36], and the hollow-core mill [37]. To our
knowledge, with the exception of the hollow-core mill [38, 39],
these configurations have not yet been successfullymodeled using
SPP models [11].

2. METHODS

We placed the problem of obtaining local rules of motion
(policies) that generate the desired collective patterns in
the reinforcement learning framework [40]. As usual in
reinforcement learning, agents learn by maximizing a reward
signal obtained from their interaction with the environment in a
closed-loopmanner, i.e., the learning agents’s actions influence its
later inputs Figure 1. To describe this interaction, it is necessary
to specify a model of the agents and the environment, a reward
function, a policy representation and a method to find the
gradient of the reward function with respect to the parameters
of the policy. Both the environment update and the reward are
history-independent, and thus can be described in the framework
of multi-agent Markov decision processes [41]. We describe
the four components (agent and environment model, reward
function, policy parameterization, and learning algorithm) in the
following subsections.

2.1. A Model of the Agent and the
Environment
We model fish as point particles moving trough a viscous three-
dimensional environment. In this section, we explain how we
update the state of each and every fish agent.

Let us define a global reference frame, with Z axis parallel
to the vertical, and X and Y in a horizontal plane. Length is
expressed in an arbitrary unit, which we call body length (BL)
because it corresponds to the body length of agents in the retina
experiments that we describe in the Supplementary Text.

In this reference frame, we consider a fish agent moving with
a certain velocity. We describe this velocity as three numbers: the
speed V , elevation angle θ (i.e., its inclination angle is π

2 − θ) and
azimuth angle φ. In the next time step, we update the X, Y , and Z
coordinates of the fish as

X(t + 1) = X(t)+ δ V(t) cosφ(t) cos θ(t), (1)

Y(t + 1) = Y(t)+ δ V(t) sinφ(t) cos θ(t), (2)

Z(t + 1) = Z(t)+ δ V(t) sin θ(t), (3)

where δ corresponds to the duration of a time step (see Table 1
and Table S2 for parameter values).

The elevation angle, azimuth angle change, and speed change
are updated based on three outputs of the policy network, p1,
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FIGURE 1 | Framework to obtain an interaction model producing a desired collective behavior. Upper: The policy network is a neural network that transforms the

observation of an agent into its action. Its parameters are the same for all agents and chosen to produce a target collective behavior. For each focal fish (purple), the

observation used to generate actions is formed by: the horizontal and vertical components of the focal fish, plus the three components of the relative position and

three components of the absolute velocity of each of the neighbors. In the diagram, a single example neighbor fish is shown (green). From the observations of each

focal fish, the policy network generates an action for each fish, modifying their heading and speed in the next time step according to the physics imposed for the

environment. The new locations, velocities and orientations define a new state. Lower: Repeating the loop described above a number of times, we obtain a trajectory

for each fish. We compare the trajectories with the selected desired configuration (rotating sphere, rotating tornado, rotating hollow-core mill and rotating full-core mill)

producing a reward signal that it is used to change the parameters of the policy network.

TABLE 1 | Environment parameters described in the methods.

α (viscous drag) 1

1Vmax 6.75 BL s−1

1φmax
10π
16 rad s−1

θmax
π
3 rad

p2, and p3, each bounded between 0 and 1. The three outputs
of the policy network are independently sampled at time t from
a distribution determined by the observation at time step t (see
section 2.3).

The azimuth, φ, is updated using the first output of the
policy, p1:

φ(t + 1) = φ(t)+ δ 1φmax 2

(

p1 −
1

2

)

, (4)

with 1φmax the maximum change in orientation per unit time,
and δ is the time step duration.

The elevation angle, θ , is calculated based on the second
output of the policy network, p2, as

θ(t) = θmax 2

(

p2 −
1

2

)

. (5)

where the maximum elevation is θmax

Finally, the speed change is the sum of two components: a
linear viscous drag component (with parameter α) and an active
propulsive thrust determined by the third output of the policy
network, p3,

V(t + 1) = V(t)+ δ

(

1Vmax p3 − αV(t)

)

. (6)

The parameter 1Vmax is the maximum active change of speed
of a fish. This equation for the change in velocity captures that
deceleration in fish is achieved through the passive action of
viscous forces [42].

At the beginning of each simulation, we initialize the positions
and velocities of all fish randomly (see Supplementary Text for
details). The same state update Equations (1)–(6) are applied
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identically to all fish while taking into account that each one has
a different position, speed, orientation and neighbors.

2.2. Reward Function
In our simulations, the final behavior to which the group
converges is determined by the reward function. We
aim to model four different collective behaviors, all of
which have been observed in nature. These behaviors are
called the rotating ball [16], the rotating tornado [35], the
rotating hollow core mill [11, 37], and the rotating full core
mill [36].

At each time step, the configuration of agents allows
to compute an instantaneous group level reward r(t).
The objective of the reinforcement learning algorithm is
to find ways to maximize the reward R in the episode,
which is the sum of r(t) over the N steps of simulation
time. The instantaneous reward r(t) is composed of several
additive terms. In this section we will explain the terms
used in the instantaneous reward function for the rotating
ball, and in Supplementary Text we give mathematical
expressions for the terms corresponding to the four
collective structures.

The first term is composed of collision avoidance rewards, rc.
It provides an additive negative reward for every pair of fish (i, j)
based on their mutual distance di,j. Specifically, for each neighbor
we use a step function that is zero if di,j > Dc and −1 otherwise.
This term is meant to discourage the fish from moving too close
to one another.

The second term is an attraction reward, ra, which is negative
and proportional to the sum of the cubed distances of all fish
from the center of mass of the group. This attraction reward
will motivate the fish to stay as close to the center of mass as
possible while avoiding mutual collisions due to the influence of
the collision reward. Together with rc, it promotes the emergence
of a dense fish ball.

The third term in the instantaneous reward, rr , is added to
promote rotation. We calculate for each fish i its instantaneous
angular rotation about the center of mass in the X − Y plane,
�i. The rotation term, rr , is the sum of beta distributions of that
angular rotation across all fish.

The fourth and final term, rv, penalizes slow configurations. It
is a step function that is 0 if the mean speed is above Vmin and
−1 otherwise. Vmin is small enough to have a negligible effect
in the trained configuration, but large enough to prevent the
agents from not moving. As such, this last term encourages the
agents to explore the state-action space by preventing them from
remaining still.

The reward functions designed to encourage the emergence
of a rotating tornado and the rotating mills are described in the
Supplementary Text but they in general consist of similar terms.

Unlike previous work in which each agent is trying to
maximize an internal reward function [28, 29], we defined the
reward functions globally. Although each agent is observing and
taking actions independently, the collective behavior is achieved
by rewarding the coordination of all the agents, and not their
individual behaviors.

2.3. The Policy Network
We parameterize our policy as a modular neural network with
sigmoid activation functions, Figure 2. In our simulations, all fish
in the collective are equipped with an individual neural network.
Each network receives the state observed by the corresponding
agent and outputs an action that will update its own position
and velocity.

All the networks have the sameweight values, but variability in
the individual behaviors is still assured for two reasons. First, we
use stochastic policies, which makes sense biologically, because
the same animal can react differently to the same stimulus.
In addition, a stochastic policy enables a better exploration of
the state-action space [43]. Second, different fish will still act
following different stochastic distributions if they have different
surroundings. In the next section we will describe these networks
and the implementation of stochasticity in the policy.

2.3.1. Inputs and Outputs

At each time step, the input to the network is information about
the agent surroundings. For each focal fish, at every time step
we consider an instantaneous frame of reference centered on the
focal fish, with the z axis parallel to the global Z axis, and with
the y axis along the projection of the focal velocity in the X − Y
plane. For each neighbor, the variables considered are xi, yi, zi
(the components of the neighbor i position in the new frame
of reference) and vx,i, vy,i, vz,i (the components of the neighbor
velocity in the new frame of reference). In addition, we also use
vy and vz (the components of the focal fish velocity in the new
frame of reference). Please note that the frame is centered in the
focal fish, but it does not move nor rotate with it, so all speeds are
the same as in the global frame of reference.

The policy network outputs three numbers, p1, p2, and p3 (see
next section for details), that are then used to update the agent’s
azimuth, elevation angle and speed, respectively.

2.3.2. Modular Structure

To enable interpretability, we chose a modular structure for the
policy neural network. Similar to our previous work [44], we
chose a network architecture with two modules, Figure 2. Both
modules have the 8 inputs we detailed above and two hidden
layers of 100 and 30 neurons.

The first module, the pairwise-interaction module, contains 6
output neurons, Figure 2A. For each neighbor i, they produce
6 outputs {pµ

j,i, p
σ
j,i}j=1,2,3. The outputs are symmetrized with

respect to reflections in the x − y and y − z planes, with the
exception of p1,i (mean azimuth angle change, anti-symmetrized
with respect to the x − y plane) and p2,i (mean elevation change,
anti-symmetrized with respect to the y− z plane).

The previous values, {pµ
j,i, p

σ
j,i}j=1,2,3, encode the mean and the

scaled variance of three normal distributions (clipped between 0
and 1) used to sample three variables,

pj,i ∼ N(pµ
j,i, 0.48 p

σ
j,i + 0.02). (7)

For each neighbor, i, we sample values of p1,i, p2,i and p3,i
independently from the respective distributions, Figure 2B.
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FIGURE 2 | Modular structure of the policy network. (A) Pair-interaction module, receiving asocial variables, vy and vz, and social variables, xi , yi , zi , vx,i , vy,i , vz,i , from a

single neighbor i, and outputting 6 numbers (three mean values and three variance values). (B) Three numbers are sampled from three clipped Gaussian distributions

with mean and variances given by the output of the pair-interaction module. (C) Aggregation module. Same structure as A, but with a single output that is passed

through an exponential function to make it positive. (D) Complete structure of the modular network, showing how the outputs of the pair-interaction and aggregation

modules are integrated. The resulting output, p1,p2,p3, determines the heading and speed of the focal fish in the next time step.

The second module, the aggregation module, has a single
output, W (Figure 2C). It is symmetrized with respect to both
the x − y and y − z planes. It is clipped between −15 and 15
and there is an exponential non-linearity after the single-neuron
readout signal to make it positive.

The final output combines both modules, Figure 2D. It is
calculated by summing the outputs of the pairwise-interaction
modules applied to the set of all neighbors, I, using the outputs
of the aggregation module as normalized weights,

P =
∑

i∈I

Pi
Wi

∑

j∈I Wj
(8)

where we combined p1,i, p2,i, and p3,i as components of a vector
Pi. The final outputs used to update the dynamics of the agent,
p1, p2, p3 are the components of P.

Everywhere in this paper, the set of neighbors considered, I,
consists of all the other fish in the same environment as the
focal. Even if this is the case, note that the introduction of the
aggregation module acts as a simulated attention that selects
which neighbors are more relevant for a given state and policy.

2.4. Optimizing the Neural Network
Parameters
Following previous work [33, 34], we improved the local rule
using an “Evolution Strategies” algorithm [30, 31]. The text in this
section is an explanation of its main elements.

Let us denote by #»ω the neural network weights at every
iteration of the algorithm, and by R( #»ω) the reward obtained in
that iteration (sum during the episode). A change in parameters
that improves the reward can be obtained by following the
gradient with small steps (gradient ascent),

#»ω ← #»ω + λ
#»

∇R( #»ω), (9)

where λ is the learning rate (see Supplementary Text for the
values of hyper-parameters in our simulations). Repeating this
gradient ascent on the reward function, we approach the desired
collective behavior over time. As we explain below, we perform
this gradient while co-varying the parameters of all agents.
In contrast, the naive application of policy gradient would
be equivalent to performing the gradient with respect to the
parameters of one of the agents, keeping the parameters of
others constant. This could produce learning inefficiencies or
even failure to find the desired policy.
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We estimate the gradient numerically from the rewards of
many simulations using policy networks with slightly different
parameters. We first sample K vectors #»ǫi independently from a
spherical normal distribution of mean 0 and standard deviation
σ , with as many dimensions as parameters in the model. We
define #      »ǫi+K = −

#»ǫi , i = 1,...,K. We calculate 2K parameter
vectors #»ω i =

#»ω + #»ǫi . We then conduct a single simulation of
a fish collective —all agents in the same environment sharing
the same values #»ω i— and we record the reward Ri. Then, we
use 1

2σ 2K

∑

i
#»ǫ iRi as an approximation of

#»

∇R( #»ω) to perform
gradient ascent [34].

#»ω ← #»ω + λ
1

2σ 2K

2K
∑

i=1

#»ǫ iRi (10)

We refer to Figure 3 for four example training runs using the
algorithm, and to Figure 4 for the pseudo-code of the algorithm.

2.5. Measurements of XY-Plane Interaction
As in previous work [44], we described changes in the azimuth
angle using the approximate concepts of attraction, repulsion,
and alignment. We define the attraction-repulsion and the
alignment score as useful quantifications of these approximate
concepts. Please note that these scores are not related to reward.

We obtained the attraction-repulsion and alignment scores
from a centered and scaled version of pµ

1 :

p̂1,i(φi) = 2

(

p
µ
1,i(φi)−

1

2

)

(11)

where we chose to only explicitly highlight its dependence with
the relative neighbor orientation in the XY plane, φi. This relative
neighbor orientation can be calculated as the difference of the
azimuth angle of the neighbor and the azimuth angle of the
focal fish.

Attraction-repulsion score is defined by averaging p̂1,i over all
possible relative orientations of the neighbor in the XY plane.

sign(x)〈p̂1,i(φi)〉φi∈[−π ,π), (12)

We would say there is attraction (repulsion) when the score is
positive (negative).

The alignment score is defined as

max
φi∈[−π ,π)

{p̂1,i(φi) sign(φi)} − max
φi∈[−π ,π)

{−p̂1,i(φi) sign(φi)}. (13)

As in [44], we arbitrarily decided that alignment is dominant
(and thus that the point is in the alignment area) if p̂1,i changes
sign when changing the relative orientation of the neighbor in
the XY plane, φi. Otherwise, it is in an attraction or repulsion
area, depending on the sign of the attraction-repulsion score [44].
Under this definition, repulsion (attraction) areas are the set of
possible relative positions of the neighbor which would make a
focal fish turn away (toward) the neighbor, independently of the
neighbor orientation relative to the focal fish

3. RESULTS

To simulate collective swimming, we equipped all fish with an
identical neural network. At each time step, the neural network
analyzes the surroundings of each fish and produces an action
for that fish, dictating change in its speed and turning, Figure 1.
Under such conditions, the neural network encodes a local
rule and by varying the weights within the network, we can
modify the nature of the local rule and thus the resulting group
level dynamics.

As in previous work [44], we enabled interpretability by using
a neural network built from two modules with a few inputs
and few outputs each, Figure 2. A pairwise-interaction module
outputs turning and change of speed with information from a
single neighbor, i, at a time. It is composed of two parts. The first
part outputs in a deterministic way mean values and variances
for each of the three parameters encoding turning and change
of speed, Figure 2A. The second part consists in sampling each
parameter, p1,i, p2,i, p3,i, from a clipped Gaussian distribution
with the mean and variance given by the outputs of the first
part, Figure 2B.

An aggregation module outputs a single positive number
expressing the importance carried by the signal of each neighbor,
Figure 2C. The final outputs of the complete modular neural
network are obtained by summing the results of the pairwise-
interaction module, weighting them by the normalized outputs
of the aggregation module, Figure 2D. The final outputs,
p1, p2 and p3, determine the motor command. We perform
these computations for each agent, and use the outputs to
determine the position and speed of each agent in the next time
step (Equations 1–3).

We introduced a reward function, measuring how
similar are the produced trajectories to the desired group
behavior (see section 2 for details). We used one of four
different reward functions to encourage the emergence
of one of four different collective configurations, all of
which have been observed in natural groups of fish.
These patterns are the rotating ball, the rotating tornado,
the rotating hollow core mill and the rotating full
core mill.

We used evolutionary strategies to gradually improve the
performance of the neural network at the task of generating
the desired collective configurations. The value of the reward
function increased gradually during training for all four
patterns, Figure 3. After several thousand time steps, the reward
plateaued and the group collective motion was visually highly
similar to the desired one (see Supplementary Videos 1–4).
We tested that the agents learned to generate the desired
collective configurations by using independent quantitative
quality indexes (Supplementary Text and Figure S1). They
show that agents learn first to come together into a compact
formation, and then to move in the right way, eventually
producing the desired configurations. We also checked that
the configurations are formed also when the number of
agents is different to the number used in training (see
Supplementary Videos 5–8 for twice as many agents as those
used in training).
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FIGURE 3 | Training makes reward to increase and group behavior to converge to the desired configuration. Reward as a function of number of training epochs in an

example training cycle for each of the four configurations. In each of the examples, we show two frames (agents shown as blue dots) from the generated trajectories,

one early in the training process (100 epochs) and a second after the reward plateaus (8,000 epochs).

3.1. Description of Rotating Ball Policy
Here, we use the low dimensionality of each module in terms of
inputs and outputs to describe the policy with meaningful plots.
We describe here the policy of the rotating ball (Figure 5). The
equivalent plots for the other three configurations can be found
in Figures S2–S4.

The pairwise-interaction module outputs three parameters
for each focal fish, all bounded between 0 and 1. The first
one, p1, determines the change in azimuth, that is, rotations
in the XY plane (Figure 5, first column). To further reduce
dimensionality in the plots, we simplify the description of the
policy in this XY plane by computing attraction-repulsion and
orientation scores (see Equations 12, 13, section 2). These scores
quantify the approximate concepts of attraction, repulsion and
orientation. In Figure 5, we plot the alignment score in the
areas where alignment is dominant, and the attraction-repulsion
score otherwise.

The attraction areas give the neighbor positions in this XY
plane which make a focal fish (located at xi = yi = 0) swim

toward the neighbor, independently of the neighbor orientation
(Figure 5, first column, orange). The focal fish turns toward the
neighbor if the neighbor is far (> 1.5 BL). Repulsion areas are
the relative positions of the neighbor which make a focal fish
swim away from the neighbor (Figure 5, first column, purple).
If the neighbor is closer than 1 BL, but not immediately in front
or at the back of the focal, the focal tends to turn away from
the neighbor (purple). In the areas where alignment is dominant
(alignment areas), we plotted the alignment score (Figure 5, first
column, gray). If the neighbor is at an intermediate distance, or in
front or in the back of the focal fish, the focal fish tends to orient
with respect to the neighbor in the XY plane.

The second parameter, p2, determines the elevation angle
(Figure 5, second column). p2 is 0.5 on average, and thus
elevation angle is zero on average, when the neighbor is on the
same XY plane as the focal (Figure 5, second column, second
row).When the neighbor is above, the focal agent tends to choose
a negative elevation when the neighbor is close (Figure 5, second
column, blue), and a positive elevation if it is far (red). The
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#»ω0 ←Xavier initialization
for i = 1, ..., n epochs do
for j = 1, ...,K random perturbation do

sample ǫj← σ
#           »

N(0, I)
reset environment to random initialization Si,j

compute R+j , reward of simulation with parameter #»ω i−1 + ǫj

reset environment to previous initialization Si,j

compute R−j , reward of simulation with parameter #»ω i−1 − ǫj
end for

normalize {Rj}1,...K
#»ω i ← #»ω i−1 + λ 1

2σ 2K

∑

#»ǫ j(R
+
j − R−j )

anneal learning rate: λ← γλλ

anneal s.d. of perturbations: σ ← γσ σ

end for

FIGURE 4 | Evolution strategies algorithm.

FIGURE 5 | Policy producing a rotating ball, as a function of neighbor relative location. Each output (three from the pair-interaction, one from the aggregation) is

shown in a different column. All columns have three diagrams, with the neighbor 1 BL above (top row), in the same XY plane (middle row) and 1 BL below the focal

(bottom row). Speed of both the focal and neighbor has been fixed to the median in each configuration. In addition, in columns 2–4, we plot the average with respect

to an uniform distribution over all possible relative neighbor orientations (from −π to π ). First column: Interaction in the XY plane (change of azimuth). Instead of

plotting p1, we explain interaction using the approximate notions of alignment (gray), attraction (orange), and repulsion (purple) areas, as in [44]. Alignment score (gray)

measures how much the azimuth changes when changing the neighbor orientation angle, and it is computed only in the orientation areas (see Methods, Section 2.5).

Attraction (orange) and repulsion scores (purple) measure how much the azimuth change when averaging across all relative orientation angles, and we plot it only

outside orientation areas. Second column: Elevation angle, through the mean value of the p2 parameter. Blue areas indicate that the focal fish will move downwards

(p2 < 0.5), while red areas indicate that the focal fish will move upwards (p2 > 0.5). Third column: Active change in speed, through the mean value of the p3
parameter. Darker areas (large mean p3) indicate increase in speed, and lighter areas indicate passive coast. Fourth column: Output of the aggregation module.

Neighbors in the darker areas weight more in the aggregation.
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opposite happens when the neighbor is below: the focal agent
tends to choose a positive elevation when the neighbor is close,
and a negative elevation if it is far (Figure 5, second column,
third row).

The third parameter, p3, determines the active speed change
(Figure 5, third column). The active speed change is small, except
if the neighbor is in a localized area close and behind the focal.

The aggregation module outputs a single positive output,
determining the weight of each neighbor in the final aggregation.
In the rotating ball policy, the neighbors that are weighted the
most in the aggregation are the ones closer than 1 BL from
the focal (Figure 5, third column). Neighbors located in a wide
area behind the focal, but not exactly behind it, are assigned a
moderate weight.

Note that the aggregation module is not constrained to
produce a local spatial integration, since the network has access
to every neighboring fish. However, we can observe how an
aggregation module like the one shown for the rotating ball
(Figure 5, third column) would preferably select a subset of
closest neighbors—i.e., integration is local in space. This is also
true for the other configurations: for each desired collective
configuration we could always find policies with local integration
(e.g., Figures S2–S4).

3.2. Description of Policy Differences
Between Configurations
In the previous section, we described the policy we found to
best generate a rotating ball. The policies we found that generate
the other three configurations have many similarities and some
consistent differences, Figure 6. In this section, we will highlight
these differences.

The policy generating a tornado has an attraction-repulsion
pattern somewhere in between the rotating ball and the full core
milling (Figure 6, first row). The major feature that distinguishes
this policy from the others is a strong repulsion along the z-axis,
i.e., the area of the plot where the focal fish changes elevation to
move away from the neighbor is larger (Figure 6, second column,
second row, blue area). This was expected, as to form the tornado
the agents need to spread along the z-axis much more than they
do in the other configurations.

The policy generating a full-core mill has an increased
repulsion area, particularly in the frontal and frontal-lateral areas
(Figure 6, third column, first row, purple areas). The policy
generating a hollow-core mill has an increased alignment area,
weakening the repulsion area (Figure 6, fourth column, first row,
gray area). It also has an increased area with a high change in
velocity (Figure 6, fourth column, third row, red area). Both mill
policies have an extended aggregation area, especially the hollow
core (Figure 6, third and fourth column, fourth row), and lack
an area where the focal fish changes elevation to move away from
the neighbor (Figure 6, third and fourth column, second row, red
area). The almost absence of repulsion in the z-direction makes
both mills to be 2D structures, whereas repulsion in the sphere
and tornado makes them 3D.

The highlighted differences between policies are robust (see
Figure 5 and the Supplementary Material for Figures S2–S4 and

Figures S6–S13 to see the robustness of the results in different
runs). For instance, we have compared the policies by restricting
the fish to move at the median speed is each configuration. The
highlighted differences are still valid when the fish move with a
common median speed across configurations (Figure S5).

3.3. Adding a Retina to the Agents
In the preceding section, the observations made by each agent
were simple variables like position or velocities of neighbors. This
simplification aided analysis, but animals do not receive external
information in this way but by sensory organs.

We checked whether we could achieve the group
configuration we have studied when the input to the policy
for each agent is the activation of an artificial retina observing the
other agents. The retina is modeled using a three-dimensional
ray-tracing algorithm: from each agent, several equidistant rays
project until they encounter a neighbor, or up to a maximum
ray length r. The state, i.e., the input to the policy, is the list of
the ray lengths. Information about the relative velocity was also
given as input to the policy by repeating this computation with
the current position and orientation of the focal, but the previous
position of all the other agents. See Supplementary Text for a
detailed description.

We approximated the policy using a single fully-connected
network. Using the interaction and attention modules described
in section 2.3.2 would not have added interpretability in this
case, because the number of inputs is too large. By using the
same evolutionary strategy, we were able to obtain a decision
rule leading to the desired collective movement configurations
(Supplementary Videos 9–12).

Although these configurations were qualitatively similar to
the ones we obtained with the modular network (Figure S14),
the average inter-agent distance was greater. This resulted in less
compact configurations (Tables S3, S5). This effect might be the
result of the increased complexity and decreased accuracy of the
inputs given to the policy by the retina, which causes the agents
to avoid each other more than in simulations without retina.

4. DISCUSSION

We have applied evolutionary strategies (ES) to automatically
find local rules able to generate desired group level movement
patterns. Namely, we found local rules that generate four complex
collectivemotion patterns commonly observed in nature [35, 45].
Three of these four patterns have, to our knowledge, not yet been
generated using self-propelled particle models with local rules.

We used neural networks as approximators of the policy,
the function mapping the local state to actions. The naive
use of a neural network would produce a black-box model,
that can be then analyzed with different post-hoc explainability
strategies (inversion [46], saliency analysis [47], knowledge
distillation [48], etc.; see [49, 50] for reviews). Instead, as
we did in [44], we designed and trained a model that is
inherently transparent (interpretable). This alternative improves
our confidence in the model understandability: the model is its
own exact explanation [51].
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FIGURE 6 | Policies producing different configurations. Each column corresponds to one of the four desired configurations. Each panel is the equivalent of the middle

row in Figure 5, except in the case of the elevation (second column), that is equivalent to the panel in the top row. For each configuration, the speed of the focal and

neighbor has been fixed to the configuration median: 0.42, 0.32, 0.75, and 1.54 BL/s, respectively.

We used a modular policy network, composed by two
modules. Each module is an artificial neural network with
thousands of parameters, and therefore it is a flexible universal
function approximator. However, we can still obtain insight,
because each module implements a function with low number
of inputs and outputs that we can plot [44]. Similar to
what we obtained from experimental trajectories of zebrafish
[44], we found the XY-interaction to be organized in areas
of repulsion, orientation, and attraction, named in order of
increasing distance from the focal fish. We were also able to
describe differences between the policies generating each of the
configurations.

To find the local rules generating the desired configurations,
we used a systematic version of the collective behavior modeling
cycle [15]. The traditional collective behavior modeling cycle

begins with the researcher proposing a candidate rule and
tuning it through a simulation based feedback process. Here, we
parameterize the local rule as a neural network. Since neural
networks are highly expressive function approximators which
can capture a very diverse set of possible local rules, our method
automates the initial process of finding a set of candidate rules.
As in the case of the traditional modeling cycle, our method also
relies on a cost function (the reward function) and numerical
simulations to measure the quality of a proposed rule. The
process of rule adaptation is automated by following a gradient of
the reward function with respect to neural network weights. Just
like the modeling cycle, our method uses iterations that gradually
improve the policy until it converges to a satisfactory solution.

There are theoretical guarantees for convergence in tabular
RL, or when linear approximators are used for the value functions
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[40]. However, these theoretical guarantees do not normally
extend to the case where neural networks are used as function
approximators [52], nor to multi-agent RL [25]. Here we report
an application where the ES algorithm was able to optimize
policies parameterized by deep neural networks in multi-agent
environments. To our knowledge, there were no theoretical
guarantees for convergence for our particular setting.

The method we have proposed could have several other
interesting applications. In cases where it is possible to record
rich individual level data sets of collective behavior, it can be
possible to perform detailed comparisons between the rules
discovered by our method and the ones observed in experiments
[44, 53]. The method could also be applicable to answer
more hypothetical questions such as what information must be
available in order for a certain collective behavior to emerge.
Animals may interact in a variety of ways including visual
sensory networks [54], vocal communication [55], chemical
communication [56] and environment modification (stigmergy)
[57]. Animals also have a variety of cognitive abilities such
as memory and varying sensory thresholds. By removing or
incorporating such capabilities into the neural networks it is now
possible to theoretically study the effects these factors have on
collective behavior patterns.

Here we relied on an engineered reward function because
the behaviors we were modeling have not yet been recorded in
quantitative detail. In cases where trajectory data is available,
detailed measures of similarity with observed trajectories
can be used as a reward [33, 58]. Moreover, we can use
adversarial classifiers to automatically learn these measures of
similarity [19, 59]. Further interesting extensions could include
creating diversity within the group by incorporating several
different neural networks into the collective and studying the
emergence of behavioral specialization and division of labor
[60].

The present work may be used as a normative framework
when the rewards used represent important biological functions.
While prior work using analytic approaches has been successful
for simple scenarios [42, 61], the present approach can
extend them to situations in which no analytic solution can
be obtained.
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online at: https://www.frontiersin.org/articles/10.3389/fphy.
2020.00200/full#supplementary-material

Supplementary Video 1 | Simulation of the agents trained to adopt a Rotating

ball, with the modular deep networks. Here the number of agents is the same as

the number of agents used in the training.

Supplementary Video 2 | Simulation of the agents trained to adopt a Tornado,

with the modular deep networks. Here the number of agents is the same as the

number of agents used in the training.

Supplementary Video 3 | Simulation of the agents trained to adopt a Full core

milling, with the modular deep networks. Here the number of agents is the same

as the number of agents used in the training.

Supplementary Video 4 | Simulation of the agents trained to adopt a Hollow

core milling, with the modular deep networks. Here the number of agents is the

same as the number of agents used in the training.

Supplementary Video 5 | Simulation of the agents trained to adopt a Rotating

ball, with the modular deep networks. Here the number of agents is 70 while the

number of agents used in training is 35.

Supplementary Video 6 | Simulation of the agents trained to adopt a Tornado,

with the modular deep networks. Here the number of agents is 70 while the

number of agents used in training is 35.

Supplementary Video 7 | Simulation of the agents trained to adopt a Full core

milling, with the modular deep networks. Here the number of agents is 70 while

the number of agents used in training is 25.

Supplementary Video 8 | Simulation of the agents trained to adopt a Hollow

core milling, with the modular deep networks. Here the number of agents is 70

while the number of agents used in training is 35.

Supplementary Video 9 | Simulation of the agents trained to adopt a Rotating

ball, when the network received the activation of a simulated retina as input.

Supplementary Video 10 | Simulation of the agents trained to adopt a tornado,

when the network received the activation of a simulated retina as input.

Supplementary Video 11 | Simulation of the agents trained to adopt a full core

milling, when the network received the activation of a simulated retina as input.

Supplementary Video 12 | Simulation of the agents trained to adopt a hollow

core milling, when the network received the activation of a simulated retina

as input.
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