AUTHOR=Xia Zheng-Jiang , Hong Zhen-Mu TITLE=Generalization of the Cover Pebbling Number for Networks JOURNAL=Frontiers in Physics VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2020.00197 DOI=10.3389/fphy.2020.00197 ISSN=2296-424X ABSTRACT=

Pebbling can be viewed as a model of resource transportation for networks. We use a graph to denote the network. A pebbling move on a graph consists of the removal of two pebbles from a vertex and the placement of one pebble on an adjacent vertex. The t-pebbling number of a graph G is the minimum number of pebbles so that we can move t pebbles on each vertex of G regardless of the original distribution of pebbles. Let ω be a positive function on V(G); the ω-cover pebbling number of a graph G is the minimum number of pebbles so that we can reach a distribution with at least ω(v) pebbles on v for all vV(G). In this paper, we give the ω-cover pebbling number of trees for nonnegative function ω, which generalized the t-pebbling number and the traditional weighted cover pebbling number of trees.