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Pebbling can be viewed as a model of resource transportation for networks. We use a

graph to denote the network. A pebbling move on a graph consists of the removal of

two pebbles from a vertex and the placement of one pebble on an adjacent vertex. The

t-pebbling number of a graph G is the minimum number of pebbles so that we can move

t pebbles on each vertex of G regardless of the original distribution of pebbles. Let ω be

a positive function on V (G); the ω-cover pebbling number of a graph G is the minimum

number of pebbles so that we can reach a distribution with at least ω(v) pebbles on v for

all v ∈ V (G). In this paper, we give the ω-cover pebbling number of trees for nonnegative

function ω, which generalized the t-pebbling number and the traditional weighted cover

pebbling number of trees.
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1. INTRODUCTION

Pebbling in graphs was introduced by Chung [1]. It can also be viewed as a model of resource
transportation for networks. Let G be a simple connected graph; we use V(G) and E(G) to denote
the vertex set and edge set of G, respectively. d(u, v) is the distance of u and v, and we write u ∼ v
if they are adjacent. N(v) = {u|u ∼ v} is the neighbor of v, and d(v) = |N(v)| is the degree of v. Let
H be a subgraph of G; we use dH(v) to denote the degree of v in H.

A pebble distribution D on G is a function D :V(G) → N (N is the set of nonnegative integers),
where D(v) is the number of pebbles on v, |D| =

∑
v∈V(D) D(v) is the size of D.

A pebbling move consists of the removal of two pebbles from a vertex and the placement of one
pebble on an adjacent vertex. Let D and D′ be two pebble distributions of G. If so, we say that D
contains D′ if D(v) ≥ D′(v) for all v ∈ V(G), and D′ is reachable from D if there is some sequence
(probably empty) of pebbling moves (a pebbling sequence in short) starting from D and resulting
in a distribution, which contains D′. For a graph G and a vertex v, we call v a root (or target vertex)
if the goal is to place pebbles on v. If t pebbles can be moved to v from D by a sequence of pebbling
moves, then we say that D is t-fold v-solvable, and v is t-reachable from D. If D is t-fold v-solvable
for every vertex v, we say that D is t-solvable.

The t-pebbling number of a graph G, denoted by ft(G), is the smallest number m such that every
distribution with size m is t-solvable. While t = 1, we use f (G) instead of f1(G), which is called the
pebbling number of G.

For any two graphs G and H, we define the Cartesian product G × H to be the graph with
the vertex set V(G × H) and edge set the union of {((a, v), (b, v))|(a, b) ∈ E(G), v ∈ E(H)} and
{((u, x), (u, y))|u ∈ V(G), and(x, y) ∈ E(H)}.

To determine the pebbling number of a general graph G is difficult. The problem of whether a
distribution is v-solvable for some v ∈ V(G) was shown to be NP-complete [2, 3]. The problem of
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deciding whether the pebbling number of a graph G is less than
k was shown to be 5P

2 -complete [3]. The pebbling numbers of
trees [4], cycles [5], hypercubes [1], and so on are determined. A
conjecture called Graham’s Conjecture is given by Chung [1].

Conjecture 1.1. (Graham’s Conjecture) Let G and H be two
connected graphs; the pebbling number of the Cartesian product
of G and H satisfies:

f (G×H) ≤ f (G)f (H).

There are many results about Graham’s Conjecture [6–10], while
this conjecture is still open.

Definition 1.2. Let ω be a nonnegative function on V(G) and
D a distribution on V(G). We say D is ω-solvable (or D solves
ω) if we can reach a distribution D∗ from D, by a sequence of
pebbling moves, so that D∗(v) ≥ ω(v) for all v ∈ V(G). The ω-
cover pebbling number of G, denoted by γω(G), is the minimum
numberm so that every distribution D with sizem is ω-solvable.

Definition 1.3. Let ω be a positive function on V(G); define

sω(v) =
∑

u∈V(G)

ω(u)2d(u,v),

and

sω(G) = max
v∈V(G)

sω(v).

The ω-cover pebbling number of a graph G has been determined
for positive ω by [11].

Theorem 1.4. ([11]) Let ω be a positive weight function on V(G);
the ω-cover pebbling number of G is

γω(G) = sω(G).

From Theorem 1.4, we can get

Theorem 1.5. ([11]) Let ω1 be a positive function on G and ω2

be a positive function on H. The function ω on G × H is given by
ω((g, h)) = ω1(g)ω2(h), where g ∈ V(G) and h ∈ V(H), then
γω(G×H) = γω1 (G)γω2 (H).

Wefirst generalize the definition of sω(T) whileω is a nonnegative
function on a tree T. We will give the definition of path partition
in the next section.

Definition 1.6. Given a tree T and a nonnegative function ω for
each vertex v ∈ V(T), and let Tω(v) be the minimum subtree of
T containing v and W : = {u : ω(u) > 0}. We give each edge
in T\E(Tω(v)) a direction toward Tω(v) to get a directed graph,

which is denoted by
−→
T \E(Tω(v)), and (a1, . . . , an) is the size of

the maximum path partition of
−→
T \E(Tω(v)). We define

sω(v) =
∑

u∈W

ω(u)2d(u,v) +

n∑

i=1

2ai − n.

and

sω(T) = max
v∈V(T)

sω(v).

Note that whileω is positive, then the two definitions of sω(T) are
the same. Definition 1.6 is thus a generalization of Definition 1.3.
In this paper, we generalize Theorem 1.4 while T is a tree and ω

is nonnegative. Thus, our main result is as follows

Theorem 1.7. Let T be a tree with a nonnegative weight function
ω on V(T). The ω-cover pebbling number of T is

γω(T) = sω(T).

Theorem 1.8. Let T be a tree with a nonnegative weight function
ω on V(T). If |W| = 1, then Theorem 1.7 is equivalent to
Theorem 2.2.

Proof. If |W| = 1, assume that ω(v) = t, and ω(u) = 0 for u 6= v.
We will show that ft(T, v) = sω(T).

Assume the size of a maximum path partition of ETv is
(a0, a1, . . . , an), and d(v, v0) = a0, P0 is the longest directed path
from v0 to v. Then (a1, . . . , an) must be the size of a maximum
path partition in ETv\P0. So ft(T, v) = sω(v0) ≤ sω(T).

Assume sω(T) = sω(v1), and d(v1, v) = a0. Let P0 be the path
connected v1 and v, then Tω(v1) = P0; assume (a1, . . . , an) is the
size of the maximum path partition of T\E(Tω(v)) = T\E(P0),
so α = (a0, a1, . . . , an) is a path partition of ETv, and sα = sω(v1)
by Corollary 2.3 and ft(T, v) ≥ sω(v1) = sω(T).

Definition 1.9. ([12]) Given a sequence S of pebbling moves on
G, the transition digraph obtained from S is a directed multigraph
denoted T(G, S) that has V(G) as its vertex set. Each move s ∈ S
along edge uv (move off two pebbles from u and add one on v) is
represented by a directed edge uv.

The following lemma is useful in the following sections.

Lemma 1.10. ([12], No-Cycle Lemma) Let S be a sequence
of pebbling moves on G, reaching a distribution D. Then
there exists a sequence S∗ of pebbling moves, thus reaching a
distribution D∗ where

1. On each vertex v, D∗(v) ≥ D(v);
2. T(G, S∗) does not contain any directed cycles.

2. PRELIMINARIES

We first introduce the path partition and the pebbling number
of trees.

Definition 2.1. ([4]) Given a root v of a tree T, then we can

view T as a directed graph
−→
Tv with edges directed toward v. A

path partition is a set of nonoverlapping directed paths in which

the union is
−→
Tv . A path partition is said to majorize another if

the non-increasing sequence of the path size majorizes that of
the other (that is (a1, a2, . . . , ar) > (b1, b2, . . . , bt) if and only if
ai > bi, where i = min{j : aj 6= bj}). A path partition of a tree
−→
Tv is said to bemaximum if it majorizes all other path partitions.
Note that, in this paper, the sequence of the size of a path partition
is always non-increasing.
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Note: By the definition of the maximum path partition, we
can give a way to determine the size of the maximum path
partition. First, we choose the longest directed path P1 in
−→
Tv , with length a1. Then, we choose the longest directed

path P2 in
−→
Tv\E(P1), with length a2, and so on. Moreover,

it should be noted that the maximum path partition may not
be unique, but the size of the maximum path partition must
be unique.

Moews [4] found the t-pebbling number of trees by a
path partition.

Theorem 2.2. ([4]) Let T be a tree, v ∈ V(T), and (a1, . . . , an) be

the size of the maximum path partition of
−→
Tv . Then,

ft(T, v) = t2a1 +

n∑

i=2

2ai − n+ 1,

ft(T) = max
v∈V(T)

ft(T, v).

Corollary 2.3. Let T be a tree, v ∈ V(T), and α = (a1, . . . , an)

be the size of a path partition of
−→
Tv , sα : = t2a1 +

∑n
i=2 2

ai −
n+1. Then,

ft(T, v) = max
α

sα .

Proof. Let α0 be the size of the maximum path partition of
−→
Tv .

Then, ft(T, v) = sα0 ≤ maxα sα .

Assume P1, P2, . . . , Pn is a path partition of
−→
Tv , and the length

of Pi is ai for 1 ≤ i ≤ n. Note that for each Pi we should
assume the two endpoints vi and v′i satisfy d(vi, v) > d(v′i, v).
We put t2a1 − 1 pebbles on v1 and 2ai − 1 pebbles on vi for
2 ≤ i ≤ n; it is clear that t pebbles cannot be moved to v from this
distribution. Thus, for each α, sα−1 < ft(T, v), so sα ≤ ft(T, v) so
maxα sα ≤ ft(T, v).

Definition 2.4. Let C be a generalized distribution on G, where
C(v) is an integer (may be negative) for all v ∈ V(G). A pebbling
move on G consists of the removal of two pebbles from a vertex
v (with C(v) ≥ 2) and the placement of one pebble on an
adjacent vertex.

In the following, a distribution D means that D(v) ≥ 0, and a
generalized distribution C means C(v) is an integer for all v ∈
V(G).

Definition 2.5. A pebbling move from u to v under a
distribution D is executable if D(u) ≥ 2. A pebbling sequence S
is a finite set of pebbling moves, assuming S = (S1, ..., Sk), where
Si is a pebbling move for 1 ≤ i ≤ k, and the pebbling move Si is
in front of Sj if 1 ≤ i < j ≤ k. We say the pebbling sequence S
executable, if Si is executable for 1 ≤ i ≤ k.

Definition 2.6. Let ω be a nonnegative function on V(G) and C
be a generalized distribution on V(G). We say C is ω-solvable, if
we can reach a distribution C∗ from C, by a sequence of pebbling
moves so that C∗(v) ≥ ω(v). In particular, if ω(v) = 0 for all
v ∈ V(G), then we say that C is 0-solvable.

Lemma 2.7. Let D be a distribution on a graph G and ω be a
nonnegative function on V(G), C : = D−ω. Then, D is ω-solvable
if and only if C is 0-solvable.

Proof. If C is 0-solvable, let δ be an executable pebbling sequence
that reaches a distribution D∗ so that D∗ > 0 from C. It is then
clear that δ is also an executable pebbling sequence that can reach
a distribution D′ so that D′ = D∗ + ω > ω from D. Thus D is
ω-solvable.

On the other hand, if D is ω-solvable, by Lemma 1.10, there
exists a pebbling sequence S reaching a distribution D∗ with
D∗(v) ≥ ω(v), and T(G, S) does not contain any direct cycle. We
can thus give a sequence of the vertices of G, as (v1, v2, . . . , vn),
so that each directed edge vivj in T(G, S) satisfies i < j. We can
thus rearrange the sequence of pebbling moves S along the order
(v1, v2, . . . , vn). It means we first choose all pebbling moves in S
that remove pebbles from v1, choose all pebbling moves in S that
remove pebbles from v2, and so on, and we denote this sequence
of pebbling moves by S′. We will show that S′ is an executable
pebbling sequence that reach D∗ − ω from C.

In S′, for each vertex v ∈ V(G), the pebbling moves that
move pebbles to v are in front of the pebbling moves that remove
pebbles from v. We may thus assume that, for each vertex vi, we
first move αi pebbles from other vertices to vi and then remove βi

pebbles from vi.
We only need to show that, for each vi ∈ V(G), the sequence

of pebbling moves that removes βi pebbles from vi in S′, denoted
by σi, is executable. We use induction on i. If i = 1, and we can
then getD(v1)−β1 = D∗(v1) ≥ ω(v1) ⇒ D(v1)−ω(v1) ≥ β1 ⇒
C(v1) ≥ β1, and so σ1 is executable.

Assume σh is executable for h < i. By induction, the pebbling
sequence that moves αi pebbles to vi is executable. Moreover, we
can get D(vi) + αi − βi = D∗(vi) ⇒ D(vi) + αi − ω(vi) − βi =
D∗(vi)−ω(vi) ≥ 0 ⇒ D(vi)−ω(vi)+αi ≥ βi ⇒ C(vi)+αi ≥ βi.
Thus σi is executable.

So S′ is an executable pebbling sequence that reaching D∗ −
ω from C. Note that D∗ − ω ≥ 0, and this completes
the proof.

Definition 2.8. Let D be a distribution on a tree T and ω be a
nonnegative function on V(T). C : = D− ω is called the induced
generalized distribution fromD andω of T. Let v be a leaf of T and
u be its neighbor in T. The induced generalized distribution C′ on
T \ v is given: if C(v) ≥ 0, then C′(u) = C(u) +

⌊
C(v)/2

⌋
, and

if C(v) < 0, then C′(u) = C(u) + 2C(v), keeping C′(x) = C(x)
unchanged for all x 6= u.

Lemma 2.9. Let D be a distribution on a tree T and ω be a
nonnegative function on V(T). C : = D − ω, v is a leaf of T,
and C′ is the induced generalized distribution from D and ω of
T\v. Then, C is 0-solvable in T if and only if C′ is 0-solvable
in T\v.

Proof. Firstly, we assume C is 0-solvable in T, and there is a
pebbling sequence σ reaching a distribution C∗ from C with
C∗(x) ≥ 0 for each x ∈ V(T).

Case 1.1. C(v) ≥ 0. By Lemma 1.10, we may assume that no
pebble has been moved from u to v; at most, therefore,

⌊
C(v)/2

⌋
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pebbles can be moved from v to u. We may assume the first step
of σ is to move

⌊
C(v)/2

⌋
pebbles from v to u, so the left steps

makes C′ solve 0 on T\v.
Case 1.2. C(v) < 0. By Lemma 1.10, we may assume that no

pebble has been moved from v to u. So we may assume the last
step of σ is to move −C(v) pebbles from u to v, and so the steps
before it makes C′ solve 0 on T\v.

Secondly, we assume C′ is 0-solvable in T\v, and there is a
pebbling sequence δ reaching a distribution C∗ from C′ with
C∗(x) ≥ 0 for each x ∈ V(T\v).

Case 2.1. C(v) ≥ 0. First, we move
⌊
C(v)/2

⌋
pebbles

from v to u, and the left steps are just δ; this sequence makes
C solve 0.

Case 2.2. C(v) < 0. After the pebbling sequence δ,
we move −C(v) pebbles from u to v; this sequence makes
C solve 0.
Notations: Assume T∗ is a subtree of T, then T∗ can be obtained
from T by deleting the leaves of the subtree of T (the vertex with
degree one) one by one. For each subtree T∗ of T, therefore, we
can get an induced generalized distribution C∗. In particular, for
each vertex v ∈ V(T), let Tv be a subtree containing v and all
of its neighbors. We use Cv to denote the induced generalized
distribution from D and ω of Tv and Ĉ(v) to denote the induced
generalized distribution of {v}.

Corollary 2.10. Let D be a distribution on a tree T, ω be
a nonnegative function on V(T), and Ĉ(v) be the induced
generalized distribution from D and ω of {v}. D is not ω-solvable is
equivalent to Ĉ(v) < 0 for each v ∈ V(T).

Proof. From Lemma 2.7 and Lemma 2.9, the result follows
by induction.

Lemma 2.11. Let D be a distribution on a tree T, which is not ω-
solvable with |D| = γω(T)− 1. For each vertex x ∈ V(T), which is
not a leaf of T, there exists a vertex y ∈ N(x), so that Cx(y) ≥ 0.

Proof. If Cx(x
′) < 0, for all x′ ∈ N(x), assume y, z ∈ N(x)

with Cx(z) ≤ Cx(y) < 0. We delete all other vertices to the
left T1 = yxz and its induced generalized distribution C1. Then,
C1(y) = Cx(y), C1(z) = Cx(z) and Ĉ(x) = C1(x) + 2C1(y) +
2C1(z) ≤ −1 by Corollary 2.10. Note that C1(x) = D(x) −
w(x) +

∑
x′∈N(x),x′ /∈{y,z} 2Cx(x

′). Thus, C1(x) − D(x) ≤ 0 and

C1(x)+ 2C1(z)− D(x) ≤ 0. Now, we remove D(x) pebbles from
x and put D(x)+ 1 pebbles on y to get a new distribution D′ with
|D′| = |D|+1. The induced generalized distribution fromD′ and
ω of {y} is denoted by Ĉ′(y). Then, Ĉ′(y) = (C1(y)+D(x)+ 1)+
2(C1(x)+2C1(z)−D(x)) = (C1(x)+2C1(y)+2C1(z))+ (C1(z)−
C1(y))+C1(z)+ (C1(x)−D(x))+ 1 ≤ −1+ 0− 1+ 0+ 1 = −1,
and so D′ is not ω-solvable by Corollary 2.10, a contradiction to
|D′| = γω(T), and we are done.

Theorem 2.12. Let ω be a nonnegative function on V(T) and D
be a distribution that is not ω-solvable with |D| = γω(T) − 1. All
pebbles are then distributed on the leaves of T.

Proof. If D(x) > 0 for some vertex x ∈ V(T), which is not a leaf,
then N(x) has at least two vertices. By Lemma 2.11, there exists a

vertex y ∈ N(x) with Cx(y) ≥ 0. We first show that there exists a
vertex z ∈ N(x) with Cx(z) < 0.

If not, that means for all v ∈ N(x), Cx(v) ≥ 0. Note that
D(x) > 0, and thus Ĉ(x) = D(x) +

∑
v∈N(x)⌊Cx(v)/2⌋ > 0. By

Corollary 2.10,D isω-solvable, a contradiction. Thus, there exists
a vertex z ∈ N(x) with Cx(z) < 0.

Let T1 = yxz be the subtree of T, with induced generalized
distribution C1. Then, C1(z) = Cx(z), C1(y) = Cx(y), and
Ĉ(x) = C1(x)+ ⌊C1(y)/2⌋ + 2C1(z) < 0.

Now, consider the new distribution D∗, with D∗(y) = D(y)+
D(x) + 1, D∗(x) = 0, and D∗(v) = D(v); |D∗| = γω(T). The
induced generalized distribution from D∗ and ω of {x} is given
by Ĉ∗(x) = (C1(x)− D(x))+ ⌊(C1(y)+ D(x)+ 1)/2⌋ + 2C1(z).

If D(x) = 1, then Ĉ∗(x) = C1(x) + ⌊C1(y)/2⌋ + 2C1(z) =
Ĉ(x) < 0;

IfD(x) ≥ 2, then Ĉ∗(x) ≤ C1(x)−D(x)+⌊C1(y)/2⌋+D(x)/2+
1+ 2C1(z) = Ĉ(x)+ 1− D(x)/2 ≤ Ĉ(x) < 0.

By Corollary 2.10, D∗ is not ω-solvable, a contradiction to
|D∗| = γω(T). This completes the proof.
From Theorem 2.12, for a given integer p with p < γω(T),
there must exist a distribution D, which is not ω-solvable
with |D| = p, and all pebbles are distributed on the
leaves of T.

3. THE GENERALIZATION OF THE COVER

PEBBLING NUMBER ON TREES

Assume that sω(v0) = sω(T) for some v0 ∈ V(T); it should be

noted that
−→
T \E(Tω(v0)) is a directed graph.We define dω(u, l) to

be the length of the maximal path containing u in all maximum

path partitions of
−→
T \E(Tω(v0)). If ω is clear, then we use d(u, l)

for short (note that d(u, l) maybe 0). Let Pα be a maximal path

partition of
−→
T \E(Tω(v0)); then, dω(u, l) = maxPα

{|P| : u ∈
P, P ∈ Pα}.

Lemma 3.1. Assume that sω(v0) = sω(T) for some v0 ∈ V(T);
then for each vertex u ∈ V(T) and d(u, v0) ≥ d(u, l).

Proof. Assume u, v ∈ V(T). There is exactly one subpath of T
with endpoints u and v, and we denote this path by Puv. We thus
have Puv = Pvu.

If |W| = 1, we may assume that ω(v) = t, and ω(u) =
0 for u 6= v. By the proof of Theorem 1.8, we know that
ft(T, v) = sω(v0). Let (a1, a2, . . . , an) be the size of the maximum

path partition of
−→
Tv . Then d(v, v0) = maxu∈V(T) d(v, u) = a1.

Assume P1 is the maximal path containing u in
−→
Tv\Pv0 ,v, and

P1 ∩ Pv0v = v1. The length of Pv0v (P1) is thus a1 (d(u, l))
and d(v1, v0) ≤ d(u, v0). If d(u, v0) < d(u, l), then d(v1, v0) <

d(u, l), and we get a path P1 ∪ Pv1v with length a1 − d(v1, v0) +
d(u, l) > a1, a contradiction to the maximum of a1, and
thus d(u, v0) ≥ d(u, l).

If |W| ≥ 2, we only need to show it while u ∈ V(Tω(v0)).
If d(u, v0) < d(u, l) for some u ∈ V(Tω(v0)), there exists a leaf

v1 in
−→
T \E(Tω(v0)) so that d(u, l) = d(u, v1), and we will show

that sω(v1) > sω(v0).
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Let TC(v) be the component of T\u containing the vertex v.
We thus have TC(v1) ∩W = ∅.

Case 1. TC(v0) ∩W 6= ∅.
Assume w1 ∈ TC(v0) ∩W, then d(w1, v1) ≥ d(u, v1)+ 1 and

d(w1, v1)− d(w1, v0) ≥ d(u, v1)− d(u, v0)+ 2 ≥ 3.

Note that
−→
T \E(Tω(v0) ∪ Pv1u) ⊆

−→
T \E(Tω(v1)). So

sω(v1)− sω(v0)

≥
∑

x∈W

ω(x)(2d(x,v1) − 2d(x,v0))− 2d(u,v1)

≥ ω(w1)(2
d(w1 ,v1) − 2d(w1 ,v0))− 2d(u,v1)

≥ 2d(w1 ,v1) − 2d(w1 ,v0) − 2d(u,v1)

≥ 2d(w1 ,v1) −
2d(w1 ,v1)

8
−

2d(w1 ,v1)

2

=
3 · 2d(w1 ,v1)

8
> 0.

Hence, sω(v1) > sω(v0), which is a contradiction to sω(v0) =
sω(T).

Case 2. TC(v0) ∩W = ∅.
Let τω(v) =

∑
x∈W ω(x)2d(x,v). If so, then τω(v0) =

2d(u,v0)τω(u), and τω(v1) = 2d(u,v1)τω(u). For |W| ≥ 2, τω(u) ≥
20 + 21 = 3.

Note that
−→
T \E(Tω(v0) ∪ Pv1u) ⊆

−→
T \E(Tω(v1)). So

sω(v1)− sω(v0)

≥ 2d(u,v1)τω(u)− 2d(u,v0)τω(u)− 2d(u,v1)

= τω(u)(2
d(u,v1) − 2d(u,v0))− 2d(u,v1)

≥ 3(2d(u,v1) − 2d(u,v0))− 2d(u,v1)

≥ 3(2d(u,v1) −
2d(u,v1)

2
)− 2d(u,v1)

=
2d(u,v1)

2
> 0.

Hence, sω(v1) > sω(v0), which is a contradiction to sω(v0) =
sω(T), and this completes the proof.

Corollary 3.2. Let ω be a nonnegative function in V(T), for
some v ∈ W, and ω′ be a nonnegative function satisfying
ω′(v) = ω(v) − 1, ω′(u) = ω(u) for other vertices in T. If
so, then

sω(T) ≥ sω′ (T)+ 2dω(v,l).

Proof. Assume that there exist v1 and v2, so that sω(v1) = sω(T)
and sω′ (v2) = sω′ (T).

By the definition of sω(v), if ω(v) ≥ 2, then dω(v, l) = dω′ (v, l),
we have

sω(T) = sω(v1) ≥ sω(v2)

= sω′ (v2)+ 2d(v,v2)

≥ sω′ (v2)+ 2dω′ (v,l) (by Lemma 3.1)

= sω′ (T)+ 2dω(v,l).

If ω(v) = 1, the difference between
−→
T \Tω(v1) and

−→
T \Tω′ (v2) is

just the length of the maximal path containing v, we have

sω(T) = sω(v1) ≥ sω(v2)

= sω′ (v2)+ 2d(v,v2) + 2dω(v,l) − 2dω′ (v,l)

≥ sω′ (v2)+ 2dω(v,l) (by Lemma 3.1)

= sω′ (T)+ 2dω(v,l).

The proof of Theorem 1.7:

The lower bound holds clearly, as we put 2ai − 1 pebbles on
the leaf of each path for 1 ≤ i ≤ n (no pebble can then be moved
to Tω(v)), and

∑
u∈S w(u)2

d(u,v) − 1 pebbles on v, obviously it is
not ω-solvable.

For the upper bound, it holds if |ω| = 1 or |W| = 1 by the
proof of Theorem 1.8. It also holds for |T| ≤ 2 by Theorem 2.2
and Theorem 1.4. We may thus assume that |ω| ≥ 2, |W| ≥ 2,
and |T| ≥ 3.

If the result is false for some T and ω, then we choose one
counterexample T and its weight ω so that |T| and |ω| are both
minimal. It means the upper bound holds for T′ and its weight ω′

if |T′| < |T| or |ω′| < |ω|.
Let D be a distribution on T, which is not ω-solvable with

size sω(T). By Theorem 2.12, we may assume that all pebbles are
distributed on the leaves of T.

Assume sω(v0) = sω(T). There exists x ∈ W\v0 satisfying
dTω(v0)(x) = 1. If dT(x) 6= 1, we can get d(x, l) > 0, and
there exists a nonempty component in T\E(Tω(v0)), which is
connected with x. Say T1 and b1 ≥ b2 ≥ . . . ≥ bm is the size
of the maximum path partition of T1.

Case 1. D(T1) cannot move a pebble to x. |D(T1)| ≤∑m
i=1 2

bi − m, and we consider D on T\T1, |D(T\T1)| ≥
sω(T) − D(T1) ≥ sω(T\T1), and D(T\T1) is not ω-solvable, a
contradiction to the minimum of |T|.

Case 2. D(T1) can move one pebble to x. It costs us at most
2b1 = 2dω(x,l) pebbles on T1. The left pebbles on T is not ω′-
solvable (ω′ satisfies ω′(x) = ω(x) − 1, and it is unchanged for
other vertices in T). From the minimum of |ω| and Corollary 3.2,
we thus have |D| < sω′ (T) + 2dω(x,l) ≤ sω(T), a contradiction to
|D| = sω(T).

We may therefore assume dT(x) = 1.
We claim that D(x) = 0. Otherwise, let ω′ satisfy ω′(x) =

ω(x) − 1 and ω′(v) = ω(v) for v 6= x. Regardless of one pebble
being on x, we know that |D| − 1 other pebbles cannot solve
ω′. From the minimum of |ω|, we have |D| − 1 ≤ sω′ (T) − 1.
By Corollary 3.2, sω′ (T) + 1 ≤ sω(T), so |D| ≤ sω(T) − 1, a
contradiction to |D| = sω(T), so D(x) = 0.

Assuming that x′ ∼ x in T, we then delete x. Let C′(x′) =
C(x′) + 2C(x) and C′(v) = C(v) otherwise. Note that all pebbles
are distributed on the leaves of T, so C′(x) = D(x′) − ω(x′) −
2(D(x) − ω(x)) = −ω(x′) − 2ω(x). By Lemma 2.9, D is not ω-
solvable in T is equivalent to D is not ω′-solvable in T\x, where
ω′(x′) = ω(x′) + 2ω(x) and ω′(v) = ω(v) for v 6= x. By the
minimum of |T|, we have |D| ≤ sω′ (T\x) − 1, note that x 6= v0,
we have sω′ (T\x) = sω(T), a contradiction to |D| = sω(T). This
completes the proof.
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Moreover, by Theorem 1.7, we can immediately get

Corollary 3.3. Let T be a tree, and letω be a nonnegative function
on V(T), W = {v ∈ V(T) : ω(v) > 0}, L = {v ∈ V(T) : d(v) = 1},
then if L ⊆ W,

γω(T) = max
v∈V(T)

∑

u∈V(T)

ω(u)2d(u,v).

Theorem 1.4 gives a sufficient condition of a nonnegative weight
function ω on V(G) for a graph G so that the ω-cover pebbling
number of G is

γω(G) = max
v∈V(G)

∑

u∈V(G)

ω(u)2d(u,v).

Corollary 3.3 gives a weaker sufficient condition of a nonnegative
weight function ω on V(T) for a tree T so that the ω-cover
pebbling number of T is

γw(T) = max
v∈V(T)

∑

u∈V(T)

ω(u)2d(u,v).

Here, we explore some problems.

Problem 3.4. Give a weaker sufficient condition of a nonnegative
function ω on V(G) for a graph G so that the ω-cover pebbling
number of G is

γω(G) = max
v∈V(G)

∑

u∈V(G)

ω(u)2d(u,v).

Problem 3.5. For a nonnegative function ω, determine the ω-
cover pebbling number of more graphs, such as cycles, hypercubes,
and so on.

We also give a conjecture which is similar to
Graham’s Conjecture.

Conjecture 3.6. Let ω1 be a nonnegative function on G and ω2 be
a nonnegative function on H. The function ω on G × H is given
by ω((g, h)) = ω1(g)ω2(h), where g ∈ V(G) and h ∈ V(H), then
γω(G×H) ≤ γω1 (G)γω2 (H).
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