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In this study, an adaptive neural network (NN) command filtered control (CFC) method

is proposed for a permanent magnet synchronous motor (PMSM) system with system

uncertainties and external disturbance by means of a backstepping technique. At every

backstepping step, a novel command filter is proposed, and the complicated virtual

input and its derivative together can be approximated by this filter. The “explosion of

complexity” problem in conventional backstepping design can be avoided because we

do not need to calculate the derivative of the virtual input repeatedly. NNs are used to

model system uncertainties and disturbances. Finally, an adaptive NN CFC is designed,

and the convergence of the tracking error and the boundedness of all signals involved

can be guaranteed. Finally, a simulation study is presented to verify the theoretical results.

Keywords: adaptive neural network control, command filtered control, backstepping, permanent magnet

synchronous motor, chaos control

1. INTRODUCTION

In the past several decades, adaptive backstepping control (ABC) has been used by more and more
scholars due to its powerful ability in controlling non-linear systems. The ABC approach has some
interesting properties. For example, it can achieve global ability and does not need a large amount
of control energy. To increase the robustness of ABC, some other control methods, such as adaptive
fuzzy control (AFC), adaptive neural network (NN) control, sliding mode control (SMC), etc., have
been developed; the research results can be seen in references [1–10], and the references therein.
However, the ABC approach has a drawback: the “explosion of complexity” problem, which is
generated by differentiating the immediate virtual input repeatedly. Some efforts have been made
to solve this problem, for example, in Liu et al. [6], virtual inputs were approximated by fuzzy
systems, and in Ahn et al. [2], a sliding surface was used to avert the repeated calculation of the
derivatives. Another approach, more powerful than these methods, is command filtered control
(CFC), which was introduced by Farrell et al. [11] and Dong et al. [12], where several interesting
results were presented to show that errors are of ◦

(

1
W

)

, with W being the frequency. To drive the
tracking error toward a sufficiently small value, one can use largeW. However, too large aW value
usually means that too much control energy is used. Thus, some other control methods based on
CFC have been developed, for example, in references [13–18], noting that the dimensions of the
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virtual signal should be enlarged to involve the desired signal and
its derivative. Yet, the above-mentioned literature only studied
the estimation of some command derivatives, i.e., the results do
not correspond to the ABC design. Thus, it is meaningful to
develop more approaches to solve the above problem.

For more than 30 years, the control of chaotic systems
has been paid increasing attention as an important field in
non-linear scientific research and has gradually become widely
used in engineering and other fields. The permanent magnet
synchronous motor (PMSM) has attracted widespread attention
due to its rapid dynamics, wide speed range, and simple structure.
However, because the PMSM is a multivariate non-linear system
and the system exhibits phenomena, such as Hope bifurcation,
limit cycles, and chaotic attractors when the system parameters
are in some ranges, the control of PMSM systems is still a
challenging problem. Chaos in the PMSM system can destroy the
stability of the system and even crash it, so it is very important
to control this chaos. At present, there are many methods to
control chaos in PMSM, such as the OGY method, delayed
feedback control method, sliding mode control method, ABC,
AFC, and so on [19–23]. In the actual application process,
the OGY method requires certain system parameters, some of
which cannot be achieved in actual control, whereas the delayed
feedback control method has achieved good results in the PMSM
chaos control, but the delay is very difficult. In Yu et al. [23], the
AFC method was used, and in each step, fuzzy systems were used
to model system uncertainties to avoid the repeated calculation
of the virtual signal and its derivative. In Sun et al. [24], an
internal motion model was used to control PMSM systems with
uncertainties. In Yang et al. [25], an AFC CFC method was used
where the system uncertainties are not considered. In Niu et al.
[26], an output feedback CFC method was proposed for PMSM.
In Zou et al. [27], command filtering-based AFC was introduced
for PMSM where input saturation is considered. Some related
work can be seen in references [28–32]. However, in these studies,
fully unknown system models are not considered.

Based on the above discussion, we will introduce an NN
CFC method for PMSM systems with fully unknown system
models. We combine ABC with CFC and propose a one-order
filter to approximate the virtual signal and its derivative at each
backstepping step. As the last step, a robust controller is designed,
and adaptation laws are also presented. Compared with related
works, our contributions are as follows. (1) A one-order filter is
introduced. In each step, it can be used to approximate the virtual
signal together with its derivative. In addition, the proposed filter
has very good approximation ability, and the error can be made
as small as possible. By doing this, the “explosion of complexity”
problem is avoided. Compared with some related methods, for
example, in references [23, 28, 31], our methods are simpler and
can be implemented earlier. (2) The proposed control signals
with adaptation laws have a very concise form relative to some
related methods, for example, dynamic surface control.

This paper is arranged as follows. The description of the
PMSM, the controller design, and the stability analysis are
presented in section 2. Section 3 gives the simulation results of
the proposed method. Finally, section 4 gives the conclusions of
this paper.

2. MAIN RESULTS

2.1. Problem Description
The mathematical model of a PMSM with a smooth air gap can
be expressed as [23]















dω
dt

= σ (iq − ω)− T̃L,

diq
dt

= −iq − idω + δω + ũq,
did
dt

= −id + iqω + ũd,

(1)

where ω, id, iq are system variables representing the angular

velocity and shaft current of the motor, respectively, and T̃L, ũq,
and ũd represent load torque and shaft voltage. When there are
no external inputs, denoting x = ω, y = iq, z = id, and putting
an input u(t) to the third equation, the PMSM system (1) can be
written as







ẋ = σ (y− x),
ẏ = −y− xz + δx,
ż = −z + xy+ u.

(2)

Let the tracking error be ǫ1 = x − xc, with xc ∈ R being a
referenced signal. Our purpose is to implement a suitable control
signal u such that ǫ1(t) becomes as small as possible.

2.2. Backstepping Control Signal Design
The backstepping control procedures can be divided into the
following three steps.

Step 1. It follows from (2) that:

ẋ = σy+ 1g1(x), (3)

where 1g1(x) = −σx is assumed to be unknown. Then, 1g1(x)
is estimated by using NN as

1g1 =WWWT
1ϑϑϑ1 =WWW∗T

1 ϑϑϑ1 + ε1 (4)

withWWWT
1 being the adjustable parameter of the NN,WWW∗T

1 being
the optimal parameter, and ε1 being the optimal estimation error
[33, 34]. Then, we can use the following virtual input

ρ1 = − 1

σ

[

k1ǫ1 +WWWT
1ϑϑϑ1(x)+ ε̂1 arctan

(

ǫ̃1

α1

)

− ẋc
]

(5)

with ε̂1 being the estimation of ε1, k1,α1 > 0, and ǫ̃1 being a
compensated tracking error. Thus, (3), (4), and (5) imply

ǫ̇1 = σy+ 1g1 − ẋc

= −k1ǫ1 + σ
(

y− ρ1
)

+WWW∗T
1 ϑϑϑ1(x)+ ε1 −WWWT

1ϑϑϑ1(x)

− ε̂1arctan

(

ǫ̃1

α1

)

= −k1ǫ1 + σ
(

yc − ρ1
)

− W̃̃W̃WT
1ϑϑϑ1(x)+ ε1

− ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2,

(6)
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with W̃̃W̃WT
1 = WWWT

1 − WWW∗T
1 being the NN approximation error

and ǫ2 = y − yc being filtered error. We can define the
following signal:

ǫ̃1 = ǫ1 − ζ1 (7)

where ζ1 can be obtained by solving:

ζ̇1 = −k1ζ1 + σ
(

yc − ρ1
)

+ σζ2 (8)

with ζ2 being defined in the next step and yc being the solution of
the following equation:

ẏc = −̟2(y
c − ρ1) (9)

with ̟2 > 0. To solve (9), we can set yc(0) = 0. We can use the
following adaptation law:

ẆWW1 = a11ǫ̃1ϑϑϑ1(x)− a11a12WWW1 (10)

and

˙̂ε1 = a41ǫ̃1 tanh

(

ǫ̃1

α1

)

− a41a42ε̂1 (11)

respectively, with a11, a12, a41, a42 > 0.
Step 2. According to the second equation of (2), we have

ẏ = −xz + 1g2 (12)

where 1g2 = −y + δx is unknown. We can use the NN to
approximate it as

1g2 =WWWT
2ϑϑϑ2 =WWW∗T

2 ϑϑϑ2 + ε2. (13)

Define
{

ǫ2 = y− yc,

ǫ̃2 = ǫ2 − ζ2,
(14)

with

ζ̇2 = −k2ζ2 + zc − ρ2 + ζ3 (15)

with ζ2(0) = 0,

żc = −̟3(z
c − ρ2), (16)

ρ2 = −k2ǫ2 −WWWT
2ϑϑϑ2 − ε̂2arctan

(

ǫ̃2

α2

)

+ ẏc − σ ǫ̃1, (17)

where k2,α2 > 0.WWW2 and ε̂2 are updated by

ẆWW2 = a21ǫ̃2ϑϑϑ2(x̄̄x̄x2)− a21a22WWW2 (18)

and

˙̂ε2 = a51ǫ̃2 tanh

(

ǫ̃2

α1

)

− a51a52ε̂2 (19)

with a21, a22, a51, a52 > 0. Then we know

ǫ̇2 = z + 1g2 − ẏc

= −k2ǫ2 + z − ρ2 +WWW∗T
2 ϑϑϑ2 + ε2 −WWWT

2ϑϑϑ2

− ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1

= −k2ǫ2 + zc − ρ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3.

(20)

Step 3. According to the last equation of (2), we have

ż = 1g3 + u (21)

with 1g3(xxx) = −z + xy being unknown. It can be
approximated by

1g3 =WWWT
3ϑϑϑ3 =WWW∗T

3 ϑϑϑ3 + ε3. (22)

We can implement the controller as

u = −k3ǫ3 −WWWT
3ϑϑϑ3 − ε̂2arctan

(

ǫ̃3

α3

)

+ żc − ǫ2 (23)

with k3,α3 > 0. Define

{

ǫ3 = z − zc,

ǫ̃3 = ǫ3 − ζ3,
(24)

with

ζ̇3 = −k3ζ3 − ζ2. (25)

The parameters are updated by

ẆWW3 = a31ǫ̃3ϑϑϑ2 − a31a32WWW3, (26)

˙̂ε3 = a61ǫ̃3 tanh

(

ǫ̃3

α3

)

− a61a62ε̂3 (27)

with c31, c32, c61, c62 > 0. As a result,

ǫ̇3 = 1g3 − żc + u

= −k3ǫ3 +WWW∗T
3 ϑϑϑ3(x̄̄x̄x)+ ε3 −WWWT

3ϑϑϑ3(x̄̄x̄x)− ε̂3arctan
(

ǫ̃3

α3

)

− ǫ2

= −k3ǫ3 − W̃̃W̃WT
3ϑϑϑ3(x̄̄x̄x)+ ε3 − ε̂3arctan

(

ǫ̃3

α3

)

− ǫ2.

(28)

Let us give the following reasonable assumption and lemma.

Assumption 1. The NN approximate error is bounded, i.e., there
exists ε∗i such that εi ≤ ε∗i .

Lemma 1. [15] If α > 0 and κ = 0.27846, then we have

|y| − y tanh
( y

α

)

≤ κα.
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Then, we have

˙̃ǫ1 = −k1ǫ1 + σ
(

yc − ρ1
)

− W̃̃W̃WT
1ϑϑϑ1 + ε1 − ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2 − ζ̇1

= −k1ǫ1 − W̃̃W̃WT
1ϑϑϑ1 + ε1 − k1ζ1 − ε̂1arctan

(

ǫ̃1

α1

)

+ σǫ2 − σζ2

= −k1ǫ̃1 + σ ǫ̃2 − W̃̃W̃WT
1ϑϑϑ1 + ε1 − ε̂1arctan

(

ǫ̃1

α1

)

,

(29)

˙̃ǫ2 = −k2ǫ2 + zc − ρ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3 − ζ̇2

= −k2ǫ2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 − ζ3 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1 + ǫ3 − k2ζ2

= −k2ǫ̃2 − W̃̃W̃WT
2ϑϑϑ2 + ε2 + ǫ̃3 − ε̂2arctan

(

ǫ̃2

α2

)

− σ ǫ̃1,

(30)

˙̃e3 = −k3ǫ3 − W̃̃W̃WT
3ϑϑϑ3 + ε3 − ζ̇3 − ǫ2 − ε̂3arctan

(

ǫ̃3

α3

)

= −k3ǫ̃3 − W̃̃W̃WT
3ϑϑϑ3(x̄̄x̄x)+ ε3 − ǫ̃2 − ε̂3arctan

(

ǫ̃3

α3

)

.

(31)

Theorem 1. When |xci − zi| ≤ b with b > 0, then (8), (15), and
(25) imply

‖ζζζ‖ ≤ c

2k̂

(

1− e−2k̂t
)

(32)

with ζζζ = [ζ1, ζ2, ζ3]
T ∈ R

3, k̂ = 1
2 min{k1, k2, k3}, and c = b+σ .

Proof. LetV1 = 1
2‖ζζζ‖2. It follows from (8), (15), and (25) that

V̇1 = −
3

∑

i=1

kiζ
2
i + σζ1

(

yc − ρ1
)

+ ζ2
(

zc − ρ2
)

≤ −2k̂‖ζζζ‖2 + A‖ζζζ‖
≤ −4k̂V1 +

√
2a

√

V1.

(33)

As a result, it follows from (33) that (32) satisfies. ���

Theorem 2. Consider (2) satisfying Assumption 1. Virtual inputs
are given by (5) and (17) under the filters (8), (9), (15), (16), and
(25). The adaptation laws are (10), (18), (26), (11), (19), and (27).
Then, the controller (23) ensures the convergences of ǫ̃1, ǫ̃2 and ǫ̃3
to a small region.

Proof. Define

V = 1

2

3
∑

i=1

ǫ̃2i +
3

∑

i=1

1

2ci1
W̃̃W̃WT

i W̃̃W̃Wi +
3

∑

i=1

1

2ci+3,1
ε̃2i (34)

with ε̃i = ε̂i − ε∗i . Then, (29), (30), (31), Assumption 1, and
Lemma 1 imply

3
∑

i=1

ǫ̃i ˙̃ǫi =
3

∑

i=1

ẽi

[

εi − ε̂iarctan

(

ẽi

αi

)]

− ǫ̃1W̃̃W̃W
T
1ϑϑϑ1 − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 −

3
∑

i=1

kiẽ
2
i

≤
3

∑

i=1

[

|ẽi|ε∗i − ẽiε̂iarctan

(

ẽi

αi

)]

− ǫ̃1W̃̃W̃W
T
1ϑϑϑ1

− ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 − ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 −

3
∑

i=1

kiẽ
2
i

=
3

∑

i=1

[

|ẽi|ε∗i − ẽiε̂iarctan

(

ẽi

αi

)

− ẽiε
∗
i arctan

(

ẽi

αi

)]

− ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

+
3

∑

i=1

ẽiε
∗
i arctan

(

ẽi

αi

)

−
3

∑

i=1

kiẽ
2
i − ǫ̃3d

∗arctan

(

ǫ̃3

α3

)

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3

≤
3

∑

i=1

[

−ẽiε̂iarctan

(

ẽi

αi

)

+ ẽiε
∗
i arctan

(

ẽi

αi

)]

−
3

∑

i=1

kiẽ
2
i − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1 + κ

3
∑

i=1

αiε
∗
i

= −
3

∑

i=1

ẽiε̃iarctan

(

ẽi

αi

)

−
3

∑

i=1

kiẽ
2
i − ǫ̃2W̃̃W̃W

T
2ϑϑϑ2

− ǫ̃3W̃̃W̃W
T
3ϑϑϑ3 − ǫ̃1W̃̃W̃W

T
1ϑϑϑ1 + κ

3
∑

i=1

αiε
∗
i .

(35)
It follows from (10), (11), (18), (19), (26), and (27) that

3
∑

i=1

1

ai1
W̃̃W̃WT

i
˙̃W̃̇W̃̇Wi = ǫ̃2W̃̃W̃W

T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−
3

∑

i=1

ai2W̃̃W̃W
T
i WWWi

= ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−
3

∑

i=1

ai2W̃̃W̃W
T
i

(

W̃̃W̃Wi +WWW∗
i

)

≤ ǫ̃2W̃̃W̃W
T
2ϑϑϑ2 + ǫ̃3W̃̃W̃W

T
3ϑϑϑ3 + ǫ̃1W̃̃W̃W

T
1ϑϑϑ1

−
3

∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi +
3

∑

i=1

ai2

2
WWW∗T

i WWW∗
i ,

(36)
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3
∑

i=1

1

2ai+3,1
ε̃i ˙̃εi =

3
∑

i=1

ε̃i

[

ẽi tanh

(

ẽi

αi

)

− ai+3,2ε̂i

]

=
3

∑

i=1

ε̃iẽi tanh

(

ẽi

αi

)

−
3

∑

i=1

ai+3,2ε̃i
(

ε̃i + ε∗i
)

≤
3

∑

i=1

ε̃iẽi tanh

(

ẽi

αi

)

−
3

∑

i=1

ai+3,2

2
ε̃2i

+
3

∑

i=1

ai+3,2

2
ε∗2i .

(37)
As a result, (35), (36), and (37) imply

V̇ ≤ −
3

∑

i=1

kiǫ̃
2
i + κ

3
∑

i=1

αiε
∗
i −

3
∑

i=1

ai+3,2

2
ε̃2i +

3
∑

i=1

ai+3,2

2
ε∗2i

−
3

∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi +
3

∑

i=1

ai2

2
WWW∗T

i WWW∗
i

= −
3

∑

i=1

kiẽ
2
i −

3
∑

i=1

ai+3,2

2
ε̃2i −

3
∑

i=1

ai2

2
W̃̃W̃WT

i W̃̃W̃Wi + κ

3
∑

i=1

αiε
∗
i

+
3

∑

i=1

ai+3,2

2
ε∗2i +

3
∑

i=1

ai2

2
WWW∗T

i WWW∗
i

≤ −d1

2

3
∑

i=1

ẽ2i − d2

3
∑

i=1

1

2ai1
W̃̃W̃WT

i W̃̃W̃Wi − d3

3
∑

i=1

1

2ai+3,1
ε̃2i + d4

(38)
with d1 = 2min{k1, k2, k3}, d2 = min{a11a12, a21a22, a31a32},
d3 = min{a41a42, a51a52, a61a62}, d4 = κ

∑3
i=1 αiε

∗
i +

∑3
i=1

ai+3,2

2 ε∗2i +
∑3

i=1
ai2
2 WWW

∗T
i WWW∗

i being non-negative constants.
Apparently, the constants d1, d2, d3, d4 are determined by design

parameters and some unknown constant variable (see, the

optimal NN parameter). Thus, (38) implies 1
2

∑3
i=1 ẽ

2
i ≤ d4

d1
,

∑3
i=1

1
2ai1

W̃̃W̃WT
i W̃̃W̃Wi ≤ d4

d2
,
∑3

i=1
1

2ai+3,1
ε̃2i ≤ d4

d3
. As a result, all

variables are indeed bounded, and ǫ̃1, ǫ̃2 and ǫ̃3 tend to a small
region determined by design parameters. �

Remark 1. It should be emphasized that the conclusion of
Theorem 1 is very representative, and it can be widely used in
the field of automatic control, finite-time control, and backstepping
control. However, the proposed method can only guarantee the that
tracking error tends to a very small region.

Remark 2. In the controller design, the proposed method is
different from some related methods, for example, those detailed
in references [4, 33, 34]. We introduce an auxiliary signal to
approximate the virtual input, and the approximation error can
be made as small as possible.

3. SIMULATION STUDY

In system (2), let σ = 5.45, δ = 20.0, x(0) = 0.5, y(0) =
−1, z(0) = 0. When u(t) ≡ 0, the chaotic behavior of (2) can
be seen in Figure 1.

Let the desired signal be xc, defined by

xc =
{

0 t ∈ [0, 8],

2 t > 8.

With respect to the NNs, the basic functions are chosen on
interval [-8 8], and five functions are used for each state. Their
initial conditions are WWW1(0) = 0001×2, WWW2(0) = 0001×25, and
WWW3(0) = 0001×125. The design parameters are k1 = k2 = k3 =
1.5, ai1 = 6, ai2 = 0.05, i = 1, 2, 3, 4, 5, 6, α1 = α2 = α3 = 1.

The simulation results are presented in Figure 2. It can be seen
in Figure 2 that the tracking error has rapid convergence and the

FIGURE 1 | Chaotic phenomenon of (2) in (A) x − y − z space, (B) x(t), (C) y(t), and (D) z(t).
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FIGURE 2 | Simulation results in (A) tracking performance, (B) control input, (C) compensated errors, (D) W1(t), (E) W2(t), and (F) W3(t).

FIGURE 3 | Simulation results with external disturbance in (A) tracking performance, (B) control input, (C) compensated errors, (D) ‖W1(t)‖, ‖W2(t)‖ and ‖W3(t)‖.
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signal x(t) tracks xc(t) tightly; the control input u(t) has a small
amplitude, and it fluctuates very gently; the compensated error ǫ3
converges to zero very quickly, but ǫ2 does not converge to zero
(in fact, in our method, it is not necessary for the compensated
error to converge to zero); the parameters of the NNs also
fluctuate gently.

To show the robustness of the proposed method, let us add
an external term 0.95 sin t into the third equation of the system
(2). The simulation results are presented in Figure 3. Comparing
Figures 2, 3, we can see that under the external disturbance, the
proposed method has very good robustness.

4. CONCLUSIONS

This paper presents an NN CFC method for PMSMs with fully
unknown systemmodels. To avoid the “explosion of complexity”
problem, we propose a one-order command filter. It has been
proven that the virtual input and its derivative can together
be approximated by the proposed filter, and the approximation
error can be made as small as possible. The proposed method is
performed by using a backstepping technique. It is also shown
that the proposed NN CFC can guarantee the boundedness of all

signals. Investigating CFC for PMSMs with input constraints will
be our future research direction.
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