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For different nonlinear time-conformable derivative models, a versatile built-in gadget,

namely the generalized exp(−ϕ(ξ ))-expansion (GEE) method, is devoted to retrieving

different categories of new explicit solutions. These models include the time-fractional

approximate long-wave equations, the time-fractional variant-Boussinesq equations, and

the time-fractional Wu-Zhang system of equations. The GEE technique is investigated

with the help of fractional complex transform and conformable derivative. As a result,

we found four types of exact solutions involving hyperbolic function, periodic function,

rational functional, and exponential function solutions. The physical significance of the

explored solutions depends on the choice of arbitrary parameter values. Finally, we

conclude that the GEE method is more effective in establishing the explicit new exact

solutions than the exp(−ϕ(ξ ))-expansion method.

Keywords: time-fractional approximate long-wave equations, time-fractional variant-Boussinesq equations,

time-fractional Wu-Zhang system of equations, the GEE method, exact solutions

INTRODUCTION

Analytical solutions of the non-linear partial differential equation (NPDEs) are significantly
more important for describing the physical meaning for any real-world problems. Due to the
rapid expansion of computer technologies and computer-based symbolic tools, researchers have
concentrated increasingly on the analytical and numerical solutions for the NPDEs, including
integer and fractional orders. During recent decades, several analytical and semi-analytical
methods, such as the improved fractional sub-equation [1], the exp function method [2, 3], the
G′/G-expansion [4–7], the tan (8(ξ) /2)-expansion [8], the modified Kudryashov [9, 10], the new
extended direct algebraic [11], the extended exp(−ϕ(ξ ))-expansion [12], the RB sub-ODE [13], the
sine-Gordon expansion [14–16], the unified [17, 18], and the generalized unified [19, 20] methods,
have been investigated and also employed for acquiring the new exact solutions of the well-known
NPDEs that arise in applied sciences. Presenting new exact solution of PDEs provides a better
understanding of the phenomena, which are governed by three special form of time-fractional
WKB equations.
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The time-fractional Whitham-Broer-Kaup (WBK) equation
has the following structure [21]

Dα
t u+ uux + vx + βuxx = 0

Dα
t v+ (uv)x − βvxx + γuxxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (1)

Eq. (1) describes the dispersive long wave in shallow water
[22] where u = u(x, t) is the velocity field in the horizontal
direction, v = v(x, t) is he height which deviates from the liquid
balance position, and β and γ are real parameters [23]. Dα

t (.) is
conformable derivative of order α. In the past, many researchers
studied the WBK equation via different analytical approaches
according to their field, particularly within mathematical physics
and ocean engineering. For instance, Guo et al. [24] employed
the improved sub-equationmethod to extract analytical solutions
for space- and time-fractional WBK equations. El-Borai et al.
[25] applied the exp-function method under the sense of the
modified Riemann-Liouville derivative for solving the time-
fractional coupled WBK equations.

If we choose the free parameters as β = 1
2 and γ = 0, Eq.

(1) is converted to the time-fractional approximate long-wave
equations [21]:

Dα
t u+ uux + vx + 1

2uxx = 0

Dα
t v+ (uv)x − 1

2vxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (2)

In past, Eq. (2) have been solved by the fractional sub-

equation method [26], the G
′
/G-expansion method [24], and the

generalized Kudryashov method [27] for establishing different
wave solutions.

Again, we substitute β = 0 and γ = 1 in Eq. (1), and Eq. (1)
is converted to the following time-fractional variant Boussinesq
equations [21]:

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + uxxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (3)

Equation (3) was solved by Yan [26] by using fractional
sub-equation method. The improved fractional sub-
equation method [24] was applied for producing the new
generalized exact solutions of the space–time-fractional variant
Boussinesq equations.

Finally, if we choose the free parameter values β = 0 and
γ = 1

3 in Eq. (1), Eq. (1) is the converted to the following
time-fractional Wu-Zhang system of equations [27]:

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + 1

3uxxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (4)

Eslami et al. [27] solved the time-fractional Wu-Zhang system
of equations using the first integral method by considering
conformable fractional sense.

If we consider α = 1in Eq. (1), then it is converted to the
classical coupled WBK equation, which was first introduced by
Whitham [28], Broer [29], and Kaup [30]. When α = 1, β 6= 0,
and γ = 1, Eq. (1) is the classical long-wave equation that
describes the shallow water wave with diffusion. When α =

1, β = 0, and γ = 1, Eq. (1) reduces the classical variant
Boussinesq equations [31], and when α = 1, β = 0 and γ =
1/3, Eq. (1) reduces the classical Wu-Zhang system of equations
[32]. Sometimes, the classical Wu-Zhang system of equations
are introduced by the (1+1) dimensional dispersive long-wave
equations [33–35].

For the simplicity of the solutions, we did not consider
solving the time-fractional WKB equations by the generalized
exp (−ϕ(ξ))-expansion method. The main aim of this work is
to construct the new exact traveling wave solutions of the three-
special form of time-fractional WKB equations, such as the time-
fractional approximate long-wave equations, the time-fractional
variant Boussinesq equations, and the time-fractional Wu-
Zhang system of equations using the generalized exp (−ϕ(ξ))-
expansion method with a conformable derivative sense. The
generalized exp (−ϕ(ξ))-expansion method is an effectual and
easily applicable technique that is used to investigate the new
exact solution for different integer- and fractional-order PDEs.
Very recently, Lu et al. [36] used the generalized exp (−ϕ(ξ))-
expansion method and construct the exact solutions of space–
time-fractional generalized fifth-order KdV equation with
Jumarie’s modified Riemann-Liouville derivatives.

The rest of the paper is arranged as follows. In section
Conformable derivative and the generalized exp (−ϕ(ξ))-
expansion method, some basic definitions of conformable
derivative and the main steps of the generalized exp (−ϕ(ξ))-
expansion method are given. In section Application of the
generalized exp (−ϕ(ξ))-expansionmethod, we look for the exact
solutions of Eq. (2) to Eq. (4) via the generalized exp (−ϕ(ξ))-
expansion method. Finally, a brief conclusion is provided in the
last section.

THE CONFORMABLE DERIVATIVE AND
THE GENERALIZED
exp(−ϕ(ξ))-EXPANSION METHOD

Khalil et al. [37] started to give us the first definition of the
conformable derivative (CD) with a limit operator as follows.

Definition 1. If f :(0,∞) → R, then the CFD of f order α is
defined as

Dα
t f (t) = lim

ε→0

f
(

t + εt1−α
)

− f (t)

ε
, for all t > 0, 0 < α ≤ 1.

The CD satisfies some workable features that are demonstrated
in the following theorems [37–41].

Theorem 1. Let α ∈ (0, 1] and f = f (t) , g = g(t) be
α-conformable differentiable at a point t > 0, then

(i) Dα
t

(

af + bg
)

= aDα
t f + bDα

t g, for all a, b ∈ R,

(ii) Dα
t

(

tµ
)

= µtµ−α , for all µ ∈ R,

(iii) Dα
t

(

fg
)

= gDα
t

(

f
)

+ fDα
t

(

g
)

,

(iv) Dα
t

(

f

g

)

=
gDα

t

(

f
)

− fDα
t

(

g
)

g2
.

Furthermore, if f is differentiable, then Dα
t

(

f (t)
)

= t1− α df
dt
.
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Theorem 2. Let f :(0,∝) → R be a function such that f is
differentiable and α-conformable differentiable. Also, let g be a
differentiable function defined in the range of f . Then

Dα
t

(

fog
)

(t) = t1−αg(t)α−1g′(t)Dα
t

(

f (t)
)

t=g(t)

where prime denotes the classical derivatives with respect to t.
Now, we impose the generalized exp (−ϕ(ξ))-expansion

method for solving some fractional differential equations. In
this respect, we described the essential steps of the generalized
exp (−ϕ(ξ))- expansion method [36] as follows.

Step-1: Suppose that a general form of the non-linear FDEs,
say in two independent variables x and t, is given by

P1
(

u, v,Dα
t u,D

α
t v,D

2α
t u,D2α

t v, ux, vx, uxx, vxx, . . . . . .
)

= 0

P2
(

u, v,Dα
t u,D

α
t v,D

2α
t u,D2α

t v, ux, vx, uxx, vxx, . . . . . .
)

= 0

}

, 0 < α ≤ 1, t > 0,(5)

where Dα
t u and Dα

t v are conformable derivatives of u and v,
respectively, u = u(x, t) and v = v(x, t) are an unknown
functions, and P1 and P2 are a polynomial in their arguments.

Step-2: To construct the exact solution of Eq. (5), we
introduce the variable transformation, combine the real variables
x and t by a compound variable ξ

u = U (ξ) and v = V (ξ) , ξ = x−
( c

α

)

tα , (6)

where, c is a constant which is determined later. The traveling
wave transformation of Eq. (6) converts Eq. (5) into an ordinary
differential equation (ODE) for u = U (ξ) and v = V (ξ ):

Q1

(

U, V ,U ′, V ′,U ′′,V ′′, . . . . . .
)

= 0

Q1

(

U, V ,U ′, V ′,U ′′,V ′′, . . . . . .
)

= 0

}

, (7)

whereQ1andQ2 are a polynomial ofU, V, and its derivatives with
respect to ξ.

Step 3: Suppose that the traveling wave solution of system Eq.
(7) can be presented as follows

U (ξ) = a0 +
∑m

i=1 ai
(

exp (−ϕ (ξ))
)i

V (ξ) = b0 +
∑n

i=1 bi
(

exp (−ϕ (ξ))
)i

}

, (8)

where the arbitrary constants ai(i = 1, 2 . . . ,m) and bi(i =
1, 2 . . . , n) are determined latter, but am 6= 0 and bn 6= 0 and
also m and n are a positive integer, which can be determined by
using homogeneous balance principle on Eq. (7), and ϕ = ϕ(ξ )
satisfies the following new ansatz equation

ϕ′ (ξ) = p exp (−ϕ (ξ)) + q exp (ϕ (ξ)) + r (9)

where p, q, and r are constant. The general solutions of the
equation are the following.

Case-I:When p = 1 and 1 = r2 − 4q, one obtains 8.510.5

ϕ (ξ) = ln

(

−
√

1 tanh
(

1
2

√
1 (ξ+E)

)

−r

2q

)

, q 6= 0,

1 = r2 − 4q > 0

ϕ (ξ) = ln

(

−
√

1 coth
(

1
2

√
1 (ξ+E)

)

−r

2q

)

, q 6= 0,

1 = r2 − 4q > 0







































, (10)

ϕ (ξ) = ln

(√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

2q

)

, q 6= 0,

1 = r2 − 4q < 0

ϕ (ξ) = ln

(√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

2q

)

, q 6= 0,

1 = r2 − 4q < 0































, (11)

ϕ (ξ) = − ln

(

r

exp (r (ξ + E)) − 1

)

,

q = 0, r 6= 0, = r2 − 4q > 0, (12)

and

ϕ (ξ) = ln

(

−
2 (r (ξ + E) + 2)

r2 (ξ + E)

)

,

q 6= 0, r 6= 0, 1 = r2 − 4q = 0. (13)

Case-II:When r = 0, one obtains

ϕ (ξ) = ln

(√

p

q
tan

(√
pq (ξ + E)

)

)

, p > 0, q > 0. (14)

ϕ (ξ) = ln

(

−
√

p

q
cot
(√

pq (ξ + E)
)

)

, p < 0, q < 0. (15)

ϕ (ξ) = ln

(√

−
p

q
tanh

(√

−pq (ξ + E)
)

)

,

p > 0, q < 0. (16)

ϕ (ξ) = ln

(

−
√

−
p

q
coth

(√

−pq (ξ + E)
)

)

,

p < 0, q > 0. (17)

Case-III:When q = 0 and r = 0, one obtains

ϕ (ξ) = ln
(

p (ξ + E)
)

. (18)

For all cases, E is the integrating constant.
Step 4: Inserting Eq. (9) in Eq. (8) and compiling the terms

in the resulting equation yields a set of algebraic non-linear
equations. Finally, by solving this set we reach the exact solutions
of the non-linear fractional PDEs.

APPLICATION OF THE GENERALIZED
exp(−ϕ(ξ ))-EXPANSION METHOD

In this part, we will execute the generalized exp(−ϕ(ξ ))-
expansion method to solve three well-known non-linear
fractional partial differential equations in shallow water, namely,
the time-fractional approximate long wave (ALW) equations,
the time-fractional variant-Boussinesq equations, and the time-
fractional Wu-Zhang system of equations. All the above
mentioned equations are the special-form WBK equations that
describe the physical phenomena arising in fluid mechanics.

The Time-Fractional ALW Equations
Let us consider the time-fractional ALW equations

Dα
t u+ uux + vx + 1

2uxx = 0

Dα
t v+ (uv)x − 1

2vxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (19)
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Now, applying under the traveling wave transformation of Eq.
(6), Eq. (19) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ + 1
2U

′′ = 0

−cV ′ + (UV)′ − 1
2V

′′ = 0

}

. (20)

This integrates with respect to ξ of Eq. (20) and considers that the
integration constant is zero. Eq. (20) then yields

−cU + 1
2U

2 + V + 1
2U

′ = 0

−cV + UV − 1
2V

′ = 0

}

. (21)

The balancing rule in Eq. (21) yieldsm = 1 and n = 2, assuming
the general solution Eq. (21) in the presence Eq. (8) is given by

U (ξ) = a0 + a1exp(−ϕ(ξ))

V (ξ) = b0 + b1exp(−ϕ(ξ)) + b2exp(−2ϕ(ξ))

}

, (22)

where a1 6= 0 and b2 6= 0.
Plugging Eq. (22) into Eq. (21), we obtain a set of an algebraic

non-linear equations that solve to
Set-1: a0 = − 1

2 r +
1
2

√

−4pq+ r2, a1 = −p, b0 =
−pq, b1 = −pr, b2 = −p2

and c = 1
2

√

−4pq+ r2, −4pq+ r2 > 0.
By putting the values of Set-1 into Eq. (22) along with the Eq. (10)
to Eq. (18), we obtain the following traveling wave solutions for
the time-fractional ALW equations.
For p= 1:

u1 (x, t) = − 1
2 r +

1
2

√

r2 − 4q

+ 2q
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

v1 (x, t) = −q+ 2rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 4q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (23)

u2 (x, t) = − 1
2 r +

1
2

√

r2 − 4q

+ 2q
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

v2 (x, t) = −q+ 2rq
√

1 cot h
(

1
2
√

(ξ+E)

)

+r

− 4q2
(√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (24)

u3 (x, t) = − 1
2 r +

1
2

√

r2 − 4q

− 2q√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

v3 (x, t) = −q− 2rq√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

− 4q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (25)

u4 (x, t) = − 1
2 r +

1
2

√

r2 − 4q

− 2q√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

v4 (x, t) = −q− 2rq√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

− 4q2
(√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (26)

u5 (x, t) = − 1
2 r +

1
2

√

r2 − 4q− r
er(ξ+E)−1

v5 (x, t) = −q− r2

er(ξ+E)−1
− r2

(er(ξ+E)−1)
2







, (27)

and

u6 (x, t) = − 1
2 r +

1
2

√

r2 − 4q+ 1
2

r2(ξ+E)
r(ξ+E)+2

v6 (x, t) = −q+ 1
2

r3(ξ+E)
r(ξ+E)+2 −

1
4

(

r2(ξ+E)
r(ξ+E)+2

)2







, (28)

where, ξ = x−
(

1
2

√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u7 (x, t) = 1
2

√
−4pq+

√
pq

tan(
√
pq(ξ+E))

v7 (x, t) = −pq−
( √

pq

tan(
√
pq(ξ+E))

)2







, (29)

u8 (x, t) = 1
2

√
−4pq+

√
pq

cot(
√
pq(ξ+E))

v8 (x, t) = −pq−
( √

pq

cot(
√
pq(ξ+E))

)2







, (30)

u9 (x, t) = 1
2

√
−4pq−

√
−pq

tanh(
√
−pq(ξ+E))

v9 (x, t) = −pq+
( √

pq

tanh(
√
pq(ξ+E))

)2







, (31)

and

u10 (x, t) = 1
2

√
−4pq+

√
−pq

coth(
√
−pq(ξ+E))

v10 (x, t) = −pq+
( √

pq

coth(
√
−pq(ξ+E))

)2







, (32)

where, ξ = x−
(

1
2

√
−4pq

)

tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = − 1
x+E

v11 (x, t) = −
(

1
x+E

)2

}

, (33)

Set-2: a0 = − 1
2 r −

1
2

√

−4pq+ r2, a1 = −p, b0 = −pq, b1 =
−pr, b2 = − p2

and c = − 1
2

√

−4pq+ r2, −4pq+ r2 > 0.
Consequently, by substituting the values of Set-2 into Eq. (22)
along with the Eq. (10) to Eq. (18), we produce the following
traveling wave solutions for the time-fractional ALW equations.

For p= 1:

u12 (x, t) = − 1
2 r −

1
2

√

r2 − 4q

+ 2q
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

v12 (x, t) = −q+ 2rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 4q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (34)

u13 (x, t) = − 1
2 r −

1
2

√

r2 − 4q

+ 2q
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

v13 (x, t) = −q+ 2rq
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

− 4q2
(√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (35)
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u14 (x, t) = − 1
2 r −

1
2

√

r2 − 4q

− 2q√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

v14 (x, t) = −q− 2rq√
−1 tan

(

1
2

√
− (ξ+E)

)

−r

− 4q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (36)

u15 (x, t) = − 1
2 r −

1
2

√

r2 − 4q

− 2q√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

v15 (x, t) = −q− 2rq√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

− 4q2
(√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (37)

u16 (x, t) = − 1
2 r −

1
2

√

r2 − 4q− r
er(ξ+E)−1

v16 (x, t) = −q− r2

er(ξ+E)−1
− r2

(er(ξ+E)−1)
2







, (38)

and

u17 (x, t) = − 1
2 r −

1
2

√

r2 − 4q+ 1
2

r2(ξ+E)
r(ξ+E)+2

v17 (x, t) = −q+ 1
2

r3(ξ+E)
r(ξ+E)+2 −

1
4

(

r2(ξ+E)
r(ξ+E)+2

)2







, (39)

where, ξ = x+
(

1
2

√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u18 (x, t) = − 1
2

√
−4pq−

√
pq

tan(
√
pq(ξ+E))

v18 (x, t) = −pq−
( √

pq

tan(
√
pq(ξ+E))

)2







, (40)

u19 (x, t) = − 1
2

√
−4pq+

√
pq

cot(
√
pq(ξ+E))

v19 (x, t) = −pq−
( √

pq

cot(
√
pq(ξ+E))

)2







, (41)

u20 (x, t) = − 1
2

√
−4pq−

√
pq

tanh(
√
−pq(ξ+E))

v20 (x, t) = −pq+
( √

pq

tanh(
√
−pq(ξ+E))

)2







, (42)

and

u21 (x, t) = − 1
2

√
−4pq+

√
−pq

coth(
√
−pq(ξ+E))

v21 (x, t) = −pq+
( √

pq

coth(
√
−pq(ξ+E))

)2







, (43)

where, ξ = x+
(

1
2

√
−4pq

)

tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = − 1
x+E

v22 (x, t) = −
(

1
x+E

)2

}

, (44)

Figures 1, 2 represent the solutions given by Eq. (23) for different
values of α when r = 3, q = 2, and E = 0.

The Time-Fractional Variant-Boussinesq Equations
Let us consider the time-fractional variant-Boussinesq equations

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + uxxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (45)

Now, applying under the traveling wave transformation of Eq.
(6), Eq. (45) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ = 0
−cV ′ + (UV) ′ + U ′′′ = 0

}

. (46)

This integrates with respect to ξ of Eq. (46) and considers the
integration constant to be zero. Eq. (46) then yields

−cU + 1
2U

2 + V = 0
−cV + UV + U ′′ = 0

}

. (47)

From the balancing condition in Eq. (47), we have m = 1 and
n = 2. Now, the formal solution of (47) in the existence of (8)
will be

U (ξ) = a0 + a1 exp (−ϕ (ξ))

V (ξ) = b0 + b1 exp (−ϕ (ξ)) + b2 exp (−2ϕ (ξ))

}

(48)

where a1 6= 0 and b2 6= 0.
By inserting Eq. (48) into Eq. (47) along with Eq. (9) and using

the same techniques investigated in the previous section we get
Set-1: a0 = −r±

√

−4pq+ r2, a1 = −2p, b0 = −2pq, b1 =
−2pr, b2 = −2p2

and c = ±
√

−4pq+ r2, −4pq+ r2 > 0.
Therefore, by substituting the values of Set-1 into Eq. (48),
along with the Eq. (10) to Eq. (18), we generate the
following traveling wave solutions for the time-fractional variant-
Boussinesq equations.

For p= 1:

u1 (x, t) = −r ±
√

r2 − 4q

+ 4q
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

v1 (x, t) = −2q+ 4rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 8q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (49)

u2 (x, t) = −r ±
√

r2 − 4q

+ 4q
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

v2 (x, t) = −2q+ 4rq
√

1 cot h
(

1
2
√

(ξ+E)

)

+r

− 8q2
(√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (50)

u3 (x, t) = −r ±
√

r2 − 4q

− 4q√
−1 tan

(

1
2

√
− (ξ+E)

)

−r

v3 (x, t) = −2q− 4rq√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

− 8q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (51)

u4 (x, t) = −r ±
√

r2 − 4q

− 4q√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

v4 (x, t) = −2q− 4rq√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

− 8q2
(√

−1 cot
(

1
2

√
− (ξ+E)

)

−r
)2



























, (52)

u5 (x, t) = −r ±
√

r2 − 4q− 2r
er(ξ+E)−1

v5 (x, t) = −2q− 2r2

er(ξ+E)−1
− 2r2

(er(ξ+E)−1)
2







, (53)

and

u6 (x, t) = −r ±
√

r2 − 4q+ r2(ξ+E)
r(ξ+E)+2

v6 (x, t) = −2q+ r3(ξ+E)
r(ξ+E)+2 −

1
2

(

r2(ξ+E)
r(ξ+E)+2

)2







(54)
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FIGURE 1 | (A–D) The Solution u_1 (x,t) given by Eq. (23).

where ξ = x∓
(

√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u7 (x, t) = ±
√
−4pq− 2

√
pq

tan(
√
pq(ξ+E))

v7 (x, t) = −2pq−
( √

2pq

tan(
√
pq(ξ+E))

)2







, (55)

u8 (x, t) = ±
√
−4pq+ 2

√
pq

cot(
√
pq(ξ+E))

v8 (x, t) = −2pq−
( √

2pq

cot(
√
pq(ξ+E))

)2







, (56)

u9 (x, t) = ±
√
−4pq− 2

√
−pq

tanh(
√
−pq(ξ+E))

v9 (x, t) = −2pq+
( √

2pq

tanh(
√
−pq(ξ+E))

)2







, (57)

u10 (x, t) = ±
√
−4pq+ 2

√
−pq

coth(
√
−pq(ξ+E))

v10 (x, t) = −2pq+
( √

2pq

coth(
√
−pq(ξ+E))

)2







, (58)

where, ξ = x∓
(√

−4pq
)

tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = − 2
x+E

v11 (x, t) = −2
(

1
x+E

)2

}

, (59)

Set-2: a0 = r ±
√

−4pq+ r2, a1 = 2p, b0 = −2pq, b1 =
−2pr, b2 = −2p2

and c = ±
√

−4pq+ r2, −4pq+ r2 > 0.
Consequently, by substituting the values of Set-2 into Eq.
(48) along with the Eq. (10) to Eq. (18), we generate the
following traveling wave solutions for the time-fractional variant-
Boussinesq equations:

For p= 1:

u12 (x, t) = r ±
√

r2 − 4q

− 4q
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

v12 (x, t) = −2q+ 4rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 8q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (60)

u13 (x, t) = r ±
√

r2 − 4q

− 4q
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

v13 (x, t) = −2q+ 4rq
√

1 cot h
(

1
2
√

(ξ+E)

)

+r

− 8q2
(√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r
)2



































, (61)
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FIGURE 2 | (A–D) The Solution v_1 (x,t) given by Eq. (23).

u14 (x, t) = r ±
√

r2 − 4q

+ 4q√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

v14 (x, t) = −2q− 4rq√
−1 tan

(

1
2

√
−1 (ξ+E)

)

−r

− 8q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (62)

u15 (x, t) = r ±
√

r2 − 4q

+ 4q√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

v15 (x, t) = −2q− 4rq√
−1 cot

(

1
2

√
−1 (ξ+E)

)

−r

− 8q2
(√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r
)2



























, (63)

u16 (x, t) = r ±
√

r2 − 4q+ 2r
er(ξ+E)−1

v16 (x, t) = −2q− 2r2

er(ξ+E)−1
− 2r2

(er(ξ+E)−1)
2







, (64)

u17 (x, t) = r ±
√

r2 − 4q− r2(ξ+E)
r(ξ+E)+2

and

v17 (x, t) = −2q+ r3(ξ+E)
r(ξ+E)+2 −

1
2

(

r2(ξ+E)
r(ξ+E)+2

)2















,

where, ξ = x∓
(

√

r2 − 4q
)

tα

α
and= r2 − 4q > 0.

For r= 0:

u18 (x, t) = ±
√
−4pq+ 2

√
pq

tan((ξ+E))

v18 (x, t) = −2pq−
( √

2pq
tan((ξ+E))

)2







, (65)

u19 (x, t) = ±
√
−4pq− 2

√
pq

cot((ξ+E))

v19 (x, t) = −2pq−
( √

2pq
cot((ξ+E))

)2







, (66)

u20 (x, t) = ±
√
−4pq+ 2

√
−pq

tanh((ξ+E))

v20 (x, t) = −2pq+
( √

2pq
tanh((ξ+E))

)2







, (67)

and

u21 (x, t) = ±
√
−4pq− 2

√
−pq

coth((ξ+E))

v21 (x, t) = −2pq+
( √

2pq
coth((ξ+E))

)2







, (68)

where, ξ = x∓
(√

−4pq
)

tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = 2
x+E

v22 (x, t) = −2
(

1
x+E

)2

}

. (69)

Figures 3, 4 represent the solutions given by Eq. (50) for different
values of α when r = 3, q = 2 and E = 0.

The Time-Fractional Wu-Zhang System of Equations
Let us consider the time-fractional Wu-Zhang system
of equations

Dα
t u+ uux + vx = 0

Dα
t v+ (uv)x + 1

3uxxx = 0

}

, t ≥ 0, 0 < α ≤ 1. (70)
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FIGURE 3 | (A–D) The Solution u_2 (x,t) given by Eq. (50).

Now, applying under the traveling wave transformation of Eq.
(6), Eq. (71) reduces to a non-linear ODE as

−cU ′ + UU ′ + V ′ = 0

−cV ′ + (UV) ′ + 1
3U

′′′ = 0

}

. (71)

Integrating with respect to ξ of Eq. (71) and considering the
integration constant is zero. Then Eq. (72) yields

−cU + 1
2U

2 + V = 0

−cV + UV + 1
3U

′′ = 0

}

, (72)

Following the steps given in the last two sections we reach to
m = 1 and n = 2. Consequently, the general solution will take
the form

U (ξ) = a0 + a1 exp (−ϕ (ξ))

V (ξ) = b0 + b1 exp (−ϕ (ξ)) + b2 exp (−2ϕ (ξ))

}

, (73)

where a1 6= 0 and b2 6= 0.
Put Eq. (74) into Eq. (73) along with Eq. (9), and we get a new

system of algebraic equations that solve to

Set-1: a0 = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4pq
)

, a1 = 2
3

√
3p, b0 =

− 2
3pq, b1 = − 2

3pr, b2 = − 2
3p

2

and c = ± 1
3

√

3
(

r2 − 4pq
)

, −4pq+ r2 > 0.

Therefore, by substituting the values of Set-1 into Eq. (74)
along with the Eq. (10) to Eq. (18), we generate the following

traveling wave solutions for the time-fractional Wu-Zhang
system of equations.

For p= 1:

u1 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 4
3

√
3 q

√
1 tan h

(

1
2

√
1 (ξ+E)

)

+r

v1 (x, t) = − 2
3q+

4
3

rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 8
3

q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2







































, (74)

u2 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 4
3

√
3 q

√
1 cot h

(

1
2

√
1 (ξ+E)

)

+r

v2 (x, t) = − 2
3q+

4
3

rq
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

− 8
3

q2
(√

cot h
(

1
2

√
1 (ξ+E)

)

+r
)2







































, (75)

u3 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 4
3

√
3 q√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r

v3 (x, t) = − 2
3q−

4
3

rq√
−1 tan

(

1
2

√
−1 (ξ+E)

)

+r

− 8
3

q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2































, (76)
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FIGURE 4 | (A–D) The Solution v_2 (x,t) given by Eq. (50).

u4 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 4
3

√
3 q√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r

v4 (x, t) = − 2
3q−

4
3

rq√
−1 cot

(

1
2

√
−1 (ξ+E)

)

+r

− 8
3

q2
(√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r
)2































, (77)

u5 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 2
3

√
3 r

er(ξ+E)−1

v5 (x, t) = − 2
3q−

2
3

r2

er(ξ+E)−1
− 2

3
r2

(er(ξ+E)−1)
2







, (78)

and

u6 (x, t) = 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 1
3

√
3 r2(ξ+E)
r(ξ+E)+2

v6 (x, t) = − 2
3q+

1
3

r3(ξ+E)
r(ξ+E)+2 −

1
6

(

r2(ξ+E)
r(ξ+E)+2

)2







, (79)

where, ξ = x∓
(

1
3

√

3
(

r2 − 4q
)

)

tα

α
and 1 = r2 − 4q > 0.

For r= 0:

u7 (x, t) = ± 2
3

√
−3pq+ 2

3

√
3pq

tan(
√
pq(ξ+E))

v7 (x, t) = − 2
3pq−

2
3

( √
pq

tan(
√
pq(ξ+E))

)2







, (80)

u8 (x, t) = ± 2
3

√
−3pq− 2

3

√
3pq

cot(
√
pq(ξ+E))

v8 (x, t) = − 2
3pq−

2
3

( √
pq

cot(
√
pq(ξ+E))

)2







, (81)

u9 (x, t) = ± 2
3

√
−3pq+ 2

3

√
−3pq

tanh(
√
−pq(ξ+E))

v9 (x, t) = − 2
3pq+

2
3

( √
pq

tanh(
√
−pq(ξ+E))

)2







, (82)

and

u10 (x, t) = ± 2
3

√
−3pq− 2

3

√
−3pq

coth(
√
−pq(ξ+E))

v10 (x, t) = − 2
3pq+

2
3

( √
pq

coth(
√
−pq(ξ+E))

)2







, (83)

where, ξ = x∓
(

2
3

√
−3pq

)

tα

α
, pq < 0.

For q = 0 and r = 0:

u11 (x, t) = 2
3

√
3

x+E

v11 (x, t) = − 2
3

(

1
x+E

)2







. (84)

Set-2: a0 = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4pq
)

, a1 = − 2
3

√
3p, b0 =

− 2
3pq, b1 = − 2

3pr, b2 = − 2
3p

2

and c = ± 1
3

√

3
(

r2 − 4pq
)

, −4pq+ r2 > 0.

Consequently, by substituting the values of Set-2 into Eq. (74)
along with the Eq. (10) to Eq. (18), we generate the following
traveling wave solutions for the time-fractional Wu-Zhang
system of equations.
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FIGURE 5 | (A–D) The Solution u_5 (x,t) given by Eq. (79).

For p= 1:

u12 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 4
3

√
3 q

√
1 tan h

(

1
2

√
1 (ξ+E)

)

+r

v12 (x, t) = − 2
3q+

4
3

rq
√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r

− 8
3

q2
(√

1 tan h
(

1
2

√
1 (ξ+E)

)

+r
)2







































, (85)

u13 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 4
3

√
3 q

√
1 cot h

(

1
2

√
1 (ξ+E)

)

+r

v13 (x, t) = − 2
3q+

4
3

rq
√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r

− 8
3

q2
(√

1 cot h
(

1
2

√
1 (ξ+E)

)

+r
)2







































(86)

u14 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 4
3

√
3 q√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r

v14 (x, t) = − 2
3q+

4
3

rq√
−1 tan

(

1
2

√
−1 (ξ+E)

)

+r

− 8
3

q2
(√

−1 tan
(

1
2

√
−1 (ξ+E)

)

−r
)2































, (87)

u15 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 4
3

√
3 q√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r

v15 (x, t) = − 2
3q−

4
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rq√
−1 cot

(

1
2

√
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)

+r

− 8
3

q2
(√

−1 cot
(

1
2

√
−1 (ξ+E)

)

−r
)2































, (88)

u16 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

− 2
3

√
3 r

er(ξ+E)−1

v16 (x, t) = − 2
3q−

2
3

r2

er(ξ+E)−1
− 2

3
r2

(er(ξ+E)−1)
2







, (89)

and

u17 (x, t) = − 1
3

√
3 r ± 1

3

√

3
(

r2 − 4q
)

+ 1
3

√
3 r2(ξ+E)
r(ξ+E)+2

v17 (x, t) = − 2
3q+

1
3

r3(ξ+E)
r(ξ+E)+2 −

1
6

(

r2(ξ+E)
r(ξ+E)+2

)2







,(90)

where, ξ = x∓
(

1
3

√

3
(

r2 − 4q
)

)

tα

α
and 1 = r2 − 4q > 0.

For r= 0:

u18 (x, t) = ± 2
3

√
−3pq− 2

3

√
3pq

tan((ξ+E))

v18 (x, t) = − 2
3pq−

2
3

( √
pq

tan(
√
pq(ξ+E))

)2







, (91)

u19 (x, t) = ± 2
3

√
−3pq+ 2

3

√
3pq

cot(
√
pq(ξ+E))

v19 (x, t) = − 2
3pq−

2
3

( √
pq

cot(
√
pq(ξ+E))

)2







, (92)
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FIGURE 6 | (A–D) The Solution v_5 (x,t) given by Eq. (79).

u20 (x, t) = ± 2
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−3pq− 2
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√
−3pq

tanh(
√
−pq(ξ+E))

v20 (x, t) = − 2
3pq+
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−pq

tanh(
√
pq(ξ+E))

)2







, (93)

and

u21 (x, t) = ± 2
3

√
−3pq+ 2

3

√
−3pq

coth(
√
−pq(ξ+E))

v21 (x, t) = − 2
3pq+

2
3

( √
pq

coth(
√
−pq(ξ+E))

)2







, (94)

where, ξ = x∓
(

2
3

√
−3pq

)

tα

α
, pq < 0.

For q = 0 and r = 0:

u22 (x, t) = 2
3

√
3

x+E

v22 (x, t) = − 2
3

(

1
x+E

)2







. (95)

Figures 5, 6 represent the solutions given by Eq. (79) for different
values of α when r = 3, q = 2 and E = 0.

CONCLUSION

This research successfully applied the generalized exp(−ϕ(ξ ))-
expansion method combined with the complex fractional
transformation and conformable derivative to exactly solve

a special class of time-fractional WBK equations in shallow
water, such as the time-fractional ALW equations, the time-
fractional variant-Boussinesq equations, and the time fractional
Wu-Zhang system of equations. Afterwards, a sequence of new
analytical wave solutions for these models were established.
Finally, some 3D and 2D plots were added for some of the
gained solutions for every model to illustrate the effect of the
parameter α on the behaviors of these solutions. In conclusion,
we found that the method mentioned here—with the aid of
symbolic computations—is aspiring and efficient, and it is a
superior mathematical construction with which to deal with
the NPDEs.
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