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This paper discusses the synchronization problem for a class of unknown fractional-order

chaotic systems (FOCSs) with indeterminate external disturbances and non-symmetrical

control gain. A paralleled adaptive fuzzy synchronization controller is constructed

in which indeterminate non-linear functions are approximated by the fuzzy logic

systems depending on fractional-order Lyapunov stability criteria and the fractional-order

parameter adaptive law is designed to regulate corresponding parameters of the fuzzy

systems. The proposed method guarantees the boundedness of all of the signals in

the closed-loop system, and at the same time, it ensures the convergence of the

synchronization error between the master and slave FOCSs. Finally, the feasibility is

demonstrated by simulation studies.

Keywords: adaptive fuzzy control, fractional-order chaotic system, fractional-order adaptation, chaos

synchronization, fuzzy logic system

1. INTRODUCTION

The fractional calculus appeared in the same era as the classical integer-order calculus, but due
to the facts that the fractional-order calculus lacks actual background and its theory is complex,
the fractional calculus has rarely been investigated by scholars. Recently, it has been shown
that fractional calculus not only provides new mathematical methods for practical systems but
also is especially well-suited for describing some dynamical behaviors of physical systems [1–5].
Consequently, the fractional-order calculus has been employed to describe phonology and thermal
systems, signal processing and system identification [6, 7], control and robotics [8–11], and many
other real-world systems. Since the fractional-order calculus has memory ability, in the description
of complex dynamic systems, a model built depending on fractional-order calculus is more accurate
than an integer-order one. The study for the fractional-order chaotic system (FOCS) has thus slowly
become a hot research topic.

It is well-known that chaotic systems (integer-order or fractional-order) are sensitive to initial
state values, i.e., the stability of systems will change obviously with small changes in initial values;
thus, the synchronization control of FOCSs is challenging work. Somemethods, such as PD control
[12], PID control [13–15], adaptive fuzzy backstepping control [16–20], sliding mode control
[21–25], and Lyapunov direct [26–28] and adaptive neural network control [29–32] have been
used to control or synchronize fractional chaotic systems. Chen et al. [21] investigated the adaptive
synchronization of FOCSs, where different structures of the master and slave FOCSs and the
existence of external disturbances are ignored. In Wang et al. [33], the synchronization of FOCSs
accompanied by external disturbances was studied. To handle the unmatched disturbances, in
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He et al. [30], a robust synchronization method with non-linear
input was proposed, but its control cost was very high. It should
be mentioned that, in the above literature, the stability analysis of
the synchronization of FOCSs still uses the ideal of linear systems.
Generally speaking, the synchronization of FOCS systems with
some unknown factors and external disturbances needs to be
further researched.

Motivated by the above discussion, this paper aims to design
a synchronization controller for a master and slave fractional-
order chaotic system (FOCS) subject to different structures
and external disturbances. The control gain matrix is assumed
to be unknown. Fuzzy logic systems are used to approximate
the unknown non-linear functions. Fractional-order parameter
adaptive laws are designed to update the fuzzy parameters. The
main contributions of this work are summarized as follows.
(1) The non-symmetrical control gain matrix and external
disturbances in FOCSs are considered. Besides, unlike some prior
works, such as Liu et al. [16] and Pan et al. [31], the sequence-
leading minor in the control gain matrix is not assumed to be
zero. (2) Based on the Lyapunov stability theorem, fractional-
order fuzzy parameter adaptive laws are designed.

2. PRELIMINARIES

The ν-th fractional-order integral is defined as:

C
0D

−ν
k

f (k) = 1

Ŵ(ν)

∫ k

0
(k− τ )ν−1f (τ )dτ , (1)

where Ŵ(·) function can be defined as

Ŵ(z) =
∫ ∞

0
kz−1e−kdk. (2)

The ν-th Caputo’s derivative can be defined as:

C
0D

ν
k f (k) =

1

Ŵ(n− ν)

∫ k

0
(k− τ )n−ν−1f (n)(τ )dτ , (3)

clearly, where n is an integer satisfying n− 1 ≤ ν < n.
The Laplace transform of Caputo’s fractional-order derivative

(3) can be expressed by Li et al. [2]

L(C0D
ν
k f (k)) =

∫ ∞

0
e−skC

0D
ν
k f (k)dk

= sνF(s)−
n−1
∑

t=0

sν−t−1f (t)(0). (4)

When 0 < ν < 1, L(C0D
ν
k
f (k)) = sνF(s)− sν−1f (0).

For simplicity, we suppose that ν ∈ (0, 1) in the rest of this
paper. The following conclusions will be given in advance.

Definition 1. Pudlubny [3] The Mittag-Leffler function can be
given by

Eν,ξ (z) =
∞
∑

t=0

zt

Ŵ(νt + ξ )
, (5)

where ν, ξ > 0, and z ∈ C, the Laplace transform of which is

L{kξ−1Eν,ξ (−bkν)} = sν−ξ

sν + b
. (6)

Lemma 1. Pudlubny [3] If m(k) ∈ C1[0,T](T > 0) (the
symbol C1 means that a function has a continuous derivative),
the following equation satisfies:

C
0D

−ν
k

C
0D

ν
km(k) = m(k)−m(0), (7)

C
0D

ν
k
C
0D

−ν
k

m(k) = m(k). (8)

Lemma 2. (Lyapunov’s second fractional-order method [34])
Suppose that eee(k) = 0 is an equilibrium point of the
following FOCS:

C
0D

ν
keee(k) = hhh(k, eee(k)), (9)

where eee(k) ∈ Rn is a system variable, and hhh(eee(k)) ∈ Rn is a non-
linear function that has a Lipschitz local condition. If there exists
a Lyapunov function V(k, eee(k)) and positive parameters a1, a2, a3
such that

a1||eee(k)|| ≤ V(k, eee(k)) ≤ a2||eee(k)||, (10)

C
0D

ν
kV(k, eee(k)) ≤ −a3||eee(k)||, (11)

then system (9) is asymptotically stable.

Lemma 3. Aguila-Camacho et al. [35] Suppose that eee(k) ∈ Rn is
a continuous and derivable function, then

1

2
C
0D

ν
keee

T(k)eee(k) ≤ eeeT(k)C0D
ν
keee(k). (12)

Lemma 4. Costa et al. [36] and Liu et al. [37] Let matrix GGG ∈
Rn×n be the non-zero sequence-leading minor, then GGG can be
factorized asGGG = GGG1AAAgTTTg , whereGGG1 ∈ Rn×n is a positive matrix,
AAAg ∈ Rn×n is a diagonal matrix whose diagonal line is +1 or −1
(signal of each of its elements is determined by corresponding the
sequence-leading minor signal of GGG), and TTTg ∈ Rn×n is a upper
triangular matrix.

3. PROBLEM DESCRIPTION

3.1. System Dynamics
Suppose that the slave and respond FOCSs are separately
defined as

C
0D

ν
kxxx(k) = hhh(xxx(k)), (13)

C
0D

ν
kyyy(k) = ppp(yyy(k))+GGGuuu(k)+DDD(k), (14)

where xxx(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ Rn and yyy(k) =
[y1(k), y2(k), · · · , yn(k)]T ∈ Rn are separately system measurable
state variables of the drive system and respond system,
hhh,ppp :Rn → Rn are uncertain non-linear continuous functions,
GGG ∈ Rn×n is an unknown constant matrix, DDD(k) ∈ Rn×n is
an indeterminate external disturbance, and uuu(k) ∈ Rn is the
control input.
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3.2. Introduction of a Fuzzy System
A fuzzy logic system includes the knowledge base, fuzzier, fuzzy
inference engine based on the fuzzy rules and defuzzier [38–41].
The form of the j-th fuzzy rule is

R
(j): If x1 is E

j
1, x2 is E

j
2, · · · , xn is E

j
n, then ĥ(xxx(k)) is Cj

(j = 1, 2, · · · ,N),

where xxx(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ R
n and ĥ(xxx(k)) ∈ R

are respectively the input and the output of fuzzy logic systems.
The output is

ĥ(xxx(k)) =

N
∑

j=1
θj(k)

[

n
∏

i=1
µ
E
j
i
(xi(k))

]

N
∑

j=1

[

n
∏

i=1
µ
E
j
i
(xi(k))

]
, (15)

where θj(k) is a value where the fuzzy membership function µCj

is maximum. Generally, we can consider that µCj (θj(k)) = 1, and

the fuzzy basic function is ϕj(xxx(k)) =

n
∏

i=1
µ
E
j
i
(xi(k))

N
∑

j=1

[

n
∏

i=1
µ
E
j
i
(xi(k))

]
. Let

ϕϕϕ(xxx(k)) = [ϕ1(xxx(k)),ϕ2(xxx(k)), · · · , ϕN(xxx(k))]
T , θθθ(k) = [θ1(k),

θ2(k), · · · , θN(k)]T , then the output of fuzzy logic systems is
written as

ĥ(xxx(k)) = θθθT(k)ϕϕϕ(xxx(k)). (16)

Theorem 1. Suppose that p(xxx) is a continuous function defined
on compact set �. For any constants ε > 0, there exists a fuzzy

logic system approximating function ĥ(xxx) forming (16) such that

sup
�

|p(xxx)− θ̂θθ
T
ϕϕϕ(xxx)| ≤ ε, (17)

where θ̂θθ is an estimator of optimal vector θθθ∗.

3.3. Control Objective
The synchronization error can be defined as eee(k) = yyy(k) − xxx(k).
Our control objective is to design an adaptive controller such
that the synchronization error tends to zero asymptotically (i.e.,
lim
k→∞

||eee(k)|| = 0).

4. CONTROLLER DESIGN AND STABILITY
ANALYSIS

Assumption 1. The control gain matric GGG has a non-zero
sequence-leading minor whose signal is known.

Remark 1. Assumption 1 is not strict. In fact, the gain
matrix of some actual systems (such as a visual servo and
vehicle thermal management system [42]) is non-symmetrical.
According to Lemma 4, one can factorizeGGG asGGG = GGG1AAATTT, where
GGG1 is an unknown positive definite matrix, AAA is a known matrix
whose diagonal line is +1 or -1, AAAAAA = IIIn×n (IIIn×n is a n-order
unitary matrix), and TTT is an uncertain upper triangle matrix.

Assumption 2. The product of the external disturbance DDD(k) and
the positive definite matrix GGG−1

1 is a function that is bounded, i.e.,
there exists an uncertain constant Mi > 0 so that

|(GGG−1
1 DDD(k))i| ≤ Mi (∀k > 0). (18)

Remark 2. Assumption 2 is not restrictive, and it is used in some
similar literature, for example, in Liu et al. [9], Rahmani et al. [10],
and Ferdaus et al. [11]. In fact, most commonly used disturbances
satisfy Assumption 2.

The dynamic equation of synchronization error is expressed
as

C
0D

ν
keee(k) =

C
0D

ν
k

(

yyy(k)− xxx(k)
)

= C
0D

ν
kyyy(k)−

C
0D

ν
kxxx(k)

= ppp(yyy(k))− hhh(xxx(k))+GGGuuu(k)+DDD(k)

= ppp(yyy(k))− hhh(xxx(k))+GGG1AAATTTuuu(k)+DDD(k). (19)

LetQQQ = GGG−1
1 , then

QQQC
0D

ν
keee(k) = QQQppp(yyy(k))−QQQhhh(xxx(k))+ (AAATTT −AAA)uuu(k)

+AAAuuu(k)+QQQDDD(k). (20)

Denote γγγ (zzz(k)) = γγγ (xxx(k),yyy(k),uuu(k)) = QQQppp(yyy(k)) − QQQhhh(xxx(k)) +
(AAATTT − AAA)uuu(k) = [γ1(zzz(k)), γ2(zzz(k)), · · · , γn(zzz(k))]T as an
indeterminate non-linear function; then, Equation (20) is
expressed as

QQQC
0D

µ

k
eee(k) = γγγ (zzz(k))+AAAuuu(k)+QQQDDD(k). (21)

The indeterminate function γγγ (zzz(k)) can be approximated by the
fuzzy logic system (16) as

γ̂i(θi(k),zzz(k)) = θi(k)
Tϕi(zzz(k)), i = 1, 2, · · · , n. (22)

Assume that the errors of the optimal parameter and the optimal
estimated errors be respectively

θ̃i(k) = θi(k)− θ∗i , (23)

εi(zzz(k)) = γi(zzz(k))− γ̂i(θ
∗
i ,zzz(k)). (24)

From Boulkroune et al. [42] and Tong et al. [43] and Theorem 1,
we assume that |εi(zzz(k))| ≤ ε∗i (ε

∗
i > 0 is an uncertain constant).

If we denote εεε(zzz(k)) = [ε1(zzz(k)), ε2(zzz(k)), · · · , εn(zzz(k))]T and
εεε∗ = [ε∗1 , ε

∗
2 , · · · , ε∗n]T , the estimated error of the indeterminate

non-linear function can be written as

γγγ (zzz(k))− γ̂γγ (θθθ(k),zzz(k)) = γγγ (zzz(k))− γ̂γγ (θθθ∗,zzz(k))+ γ̂γγ (θθθ∗,zzz(k))

− γ̂γγ (θθθ(k),zzz(k))

= εεε(zzz(k))+ γ̂γγ (θθθ∗,zzz(k))− γ̂γγ (θθθ(k),zzz(k))

= εεε(zzz(k))− (θθθ(k)− θθθ∗)Tϕϕϕ(zzz(k))

= εεε(zzz(k))− θ̃θθ(k)Tϕϕϕ(zzz(k)). (25)
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From the above discussion, the controller uuu(k) can be designed as

uuu(k) = −AAA
[

LLLeee(k)+ θθθ(k)Tϕϕϕ(zzz(k))+HHHsign(eee(k))+ M̂̂M̂Msign(eee(k))

]

,

(26)

where LLL = diag[l1, l2, · · · , ln] ∈ Rn×n, l1, l2, · · · , ln > 0
are parameters that need to be designed, HHH =diag[ε̂∗1 (k),
ε̂∗2 (k), · · · , ε̂∗n(k)], ε̂∗i (k)(i = 1, 2, · · · , n) are estimated values of

uncertain constants ε∗i , and M̂MM =diag[M̂1(k), M̂2(k), · · · , M̂n(k)],

M̂i(k)(i = 1, 2, · · · , n) are estimated values of unknown constants
Mi. For the sake of achieving the synchronization objective,
this paper designs the following fractional-order parameter
adaptive laws:

C
0D

ν
kθi(k) = λiei(k)ϕi(zzz(k)), (27)

C
0D

ν
k ε̂

∗
i (k) = ξi|ei(k)|, (28)

C
0D

ν
kM̂i(k) = µi|ei(k)|, (29)

where λi, ξi,µi > 0, i = 1, 2, · · · , n are designed parameters.
To facilitate the coming stability analysis, let us display some

results in advance.

Lemma 5. Suppose that C0D
ν
k
e(k) ≤ 0, then we have e(k) ≤ e(0)

on [0,+∞). On the contrary, C0D
ν
k
e(k) ≥ 0 implies that e(k) ≥

e(0) on [0,+∞).

Proof. We only verify the first condition (the second
condition is the same). Because C

0D
ν
k
e(k) ≤ 0, there exists a

non-negative function h(k) = −[C0D
ν
k
e](k) satisfying

C
0D

ν
ke(k)+ h(k) = 0. (31)

Taking the Laplace transform on both sides of equation (31), we
get sνE(s)−sν−1e(0)+F(s) = 0, where E(s) and F(s) are separately
the Laplace transform of e(k) and h(k). It is simplified to

E(s) = e(0)

s
− F(s)

sν
. (32)

Taking the inverse Laplace transform on both sides of equation
(32), we obtain

e(k) = e(0)− [D−νh](k). (33)

By the fractional-order integral (1), we have [D−νh](k) ≥ 0.
Further, we have e(k) ≤ e(0) on [0,+∞).

Remark 3. Lemma 5 shows the difference between a fractional-
order derivative and an integer-order derivative, but it cannot
be described as: if C

0D
ν
k
e(k) ≤ 0, then e(k) is monotonically

decreasing on the interval [0,+∞); if C
0D

ν
k
e(k) ≥ 0, then e(k)

is monotonically increasing on the interval [0,+∞). To explain
this, a counterexample is given as follows.

Example 1. Consider that x(0) ≥ 0 is an initial value of the
differential equation: C0D

ν
k
x(k) = h(k, x) = µkµ−1, where 0 <

µ < 1, 0 < ν < 1, and k > 0. Obviously, h(k, x) ≥ 0,
and the solution of the differential equation is x(k) = x(0) +
µŴ(µ)kµ−1+ν

Ŵ(µ + ν)
. It is clear that lim

k→+∞
x(k) = x(0) when 0 < µ ≤

1−ν. Therefore, x(k) is not monotonically increasing, defined on
k ∈ [0,+∞).

Lemma 6. Suppose that eee(k) ∈ Rn be a continuous one-order
derivative, then

1

2
C
0D

ν
keee

T(k)QQQeee(k) ≤ eeeT(k)QQQC
0D

ν
keee(k), (34)

whereQQQ is an arbitrary n-order positive definite matrix.

Proof. SinceQQQ is a positive definite matrix, there exists an n-
order non-singular symmetric matrix BBB = BBBT so that QQQ = BBBTBBB.
From Lemmas 1, 2, and 3, we obtain

1

2
C
0D

ν
keee

T(k)QQQeee(k) = 1

2
C
0D

ν
keee

T(k)BBBTBBBeee(k)

= 1

2
C
0D

ν
k

(

BBBeee(k)
)T

BBBeee(k)

≤
(

BBBeee(k)
)T C

0D
ν
kBBBeee(k)

=
(

BBBeee(k)
)T

BBBC0D
ν
keee(k)

= eeeT(k)QQQC
0D

ν
keee(k). (35)

Lemma 7. Suppose that V(k) = 1
2xxx

T(k)xxx(k)+ 1
2yyy

T(k)yyy(k), where
xxx(k) and yyy(k) ∈ Rn are continuous one-order derivatives. If there
exists a constant q > 0 satisfying the following inequality

C
0D

ν
kV(k) ≤ −qxxxT(k)xxx(k), (36)

then ||xxx(k)|| and ||yyy(k)|| are both bounded, and xxx(k) tends to zero
asymptotically, where || · || represents the Euclidian norm.

Proof. According to inequality (36), the following
inequality holds:

C
0D

ν
kV(k) ≤ −qxxxT(k)xxx(k) ≤ 0. (37)

From Lemma 5, we know that V(k) ≤ V(0)(∀t ≥ 0) when
V(k) defines on [0,∞). So, ||xxx(k)|| ≤

√
2V(k) ≤

√
2V(0) and

||yyy(k)|| ≤
√
2V(k) ≤

√
2V(0). Thereby, ||xxx(k)|| and ||yyy(k)||

are bounded.
Taking the ν-th integral on both sides of inequality

C
0D

ν
k
V(k) ≤ −qxxxT(k)xxx(k), we have

V(k)− V(0) ≤ −qC0D
−ν
k

xxxT(k)xxx(k). (38)

From the structure of V(k), we have xxxT(k)xxx(k) ≤ 2V(k),
and furthermore,

xxxT(k)xxx(k) ≤ 2V(0)− 2qC0D
−ν
k

xxxT(k)xxx(k). (39)
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FIGURE 1 | Synchronization results of Case 1.

It follows from (39) that there exists a non-negative function
M(k) such that

xxxT(k)xxx(k)+M(k) = 2V(0)− 2qC0D
−ν
k

xxxT(k)xxx(k). (40)

Taking the Laplace transform on (40), we obtain:

XXXT(s)XXX(s) = 2V(0)
sν−1

sν + 2q
− sν

sν + 2b
MMM(s), (41)

where XXX(s) and MMM(s) are respectively the Laplace transforms of
xxx(k) and M(k). Taking the inverse Laplace transform on both
sides of equation (41), the solution is

xxxT(k)xxx(k) = 2V(0)Eν,1(−2qkν)−M(k) ∗
[

k−1Eν,0(−2qkν)
]

,
(42)

where * is the convolution. Since k−1 and Eν,0(−2qkν) are both
non-negative functions, xxxT(k)xxx(k) ≤ 2V(0)Eν,1(−2qkν). From Li
et al. [2], we know that xxx(k) is M-L stable and xxx(k) tends to zero
asymptotically, i.e., lim

k→∞
||xxx(k)|| = 0.

Lemma 8. Suppose that V0(k) = 1
2zzz

T(k)QQQ1zzz(k)+ 1
2ddd

T(k)QQQ2ddd(k),
where zzz(k),ddd(k) ∈ Rn and QQQ1,QQQ2 ∈ Rn×n are both positive
definite matrixes. If there exists a positive definite matrixQQQ3 and
a constant q0 > 0 satisfying

C
0D

ν
kV0(k) ≤ −q0zzz

T(k)QQQ3zzz(k), (43)

then ||zzz(k)|| and ||ddd(k)|| are bounded, and zzz(k) tends to zero
asymptotically (i.e., lim

k→∞
||zzz(k)|| = 0).

The main results of the paper are given as follows.

Theorem 2. Under Assumption 1 and Assumption 2, the
synchronization between the drive system (13) and the respond
system (14) can be achieved on the work of the adaptive fuzzy
controller (26) and fractional-order adaptive laws (27), (28),
and (29). In addition, all the signals of the closed-loop system
are bounded.

Proof. Since AAA = IIIn×n, substituting the controller (26) into the
error dynamic equation (21) gives

QQQC
0D

ν
keee(k) = −LLLeee(k)+ γγγ (zzz(k))− θθθT(k)ϕϕϕ(zzz(k))

−HHHsign(eee(k))− M̂MMsign(eee(k))+QQQDDD(k). (44)

It is simplified as

QQQC
0D

ν
keee(k) = −LLLeee(k)+ εεε(zzz(k))− θ̃θθ(k)Tϕϕϕ(zzz(k))

−HHHsign(eee(k))− M̂MMsign(eee(k))+QQQDDD(k). (45)

Let ε̃∗i (k) = ε̂∗i (k)− ε∗i and M̃i(k) = M̂i(k)−Mi, i = 1, 2, · · · , n.
Multiplying both sides of equation (45) by eeeT(k) yields

eeeT(k)QQQC
0D

ν
keee(k) = −eeeT(k)LLLeee(k)+ eeeT(k)εεε(zzz(k))+ eeeT(k)QQQDDD(k)
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FIGURE 2 | Synchronization results of Case 2.

− eeeT(k)θ̃θθ(k)Tϕϕϕ(zzz(k))− eeeT(k)HHHsign(eee(k))− eeeT(k)M̂̂M̂Msign(eee(k))

≤ −eeeT(k)LLLeee(k)+
n

∑

i=1

|ei(k)|ε∗i −
n

∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

n
∑

i=1

|ei(k)|ε̂∗i (k)−
n

∑

i=1

|ei(k)|M̂i(k)+
n

∑

i=1

|ei(k)|Mi

= −eeeT(k)LLLeee(k)−
n

∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

n
∑

i=1

|ei(k)|M̃i(k)

−
n

∑

i=1

|ei(k)|ε̃∗i (zzz(k)). (46)

Then, we have

V(k) = 1

2
eeeT(k)QQQeee(k)+ 1

2

n
∑

i=1

1

λi
θ̃i(k)

T θ̃i(k)+

1

2

n
∑

i=1

1

ξi

(

ε̃∗i (k)
)T

ε̃∗i (k)+
1

2

n
∑

i=1

1

µi
(M̃i(k))

TM̃i(k). (47)

Because the ν-order Caputo derivative of a constant is zero,
we have C

0D
ν
k
θi(k) = C

0D
ν
k
θ̃i(k),

C
0D

ν
k
ε̂∗i (k) = C

0D
ν
k
ε̃∗i (k), and

C
0D

ν
k
M̂i(k) = C

0D
ν
k
M̃i(k), i = 1, 2, · · · , n. By Lemma 3 and Lemma

6, taking the ν-order derivative of V(k) in equality (47) yields

C
0D

ν
kV(k) ≤ eT(k)QQQC

0D
ν
ke(k)+

n
∑

i=1

1

λi
θ̃i(k)

TC
0D

ν
k θ̃i(k)+

n
∑

i=1

1

ξi

(

ε̃∗i (k)
)T C

0D
ν
k ε̃

∗
i (k)+

n
∑

i=1

1

µi
(M̃i(k))

TC
0D

ν
kM̃i(k)

≤ −
n

∑

i=1

|ei(k)|ε̃∗i (k)−
n

∑

i=1

ei(k)θ̃i(k)
Tϕi(zzz(k))−

eeeT(k)LLLeee(k)−
n

∑

i=1

|ei(k)|M̃i(k)+
n

∑

i=1

1

λi
θ̃i(k)

TC
0D

ν
k θ̃i(k)

+
n

∑

i=1

1

ξi

(

ε̃∗i (k)
)T C

0D
ν
k ε̃

∗
i (k)+

n
∑

i=1

1

µi
(M̃i(k))

TC
0D

ν
kM̃i(k). (48)

Substituting (27), (28), and (29) into (48) gives

C
0D

ν
kV(k) ≤ −eeeT(k)LLLeee(k) ≤ − l0

λmax
eeeT(k)QQQeee(k), (49)

where l0 = min{l1, l2, · · · , ln} and λmax is a maximal eigenvalue
in positive definite matrixQQQ. From Lemma 8 and inequality (49),
we know that the synchronization error satisfies lim

k→∞
||eee(k)|| =

0, and if C
0D

ν
k
θ̃i(k),

C
0D

ν
k
ε̃∗i (k), and

C
0D

ν
k
M̃i(k) are bounded, then

C
0D

ν
k
θi(k),

C
0D

ν
k
ε̂∗i (k), and

C
0D

ν
k
M̂i(k) are both bounded. Since

Frontiers in Physics | www.frontiersin.org 6 May 2020 | Volume 8 | Article 155

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Xu et al. Fuzzy Synchronization for FOCSs

FIGURE 3 | Control variables and fuzzy logic system parameters of Case 3.

FIGURE 4 | Control variables and fuzzy logic system parameters of Case 4.
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system (13) is a chaotic system, we know that xxx(k) is also
bounded. Thus, eee(k) is also bounded, which implies that yyy(k)
is bounded, too. Consequently, by using (26), we get that uuu(k)
is bounded. Thereby, all the signals in the closed-loop system
are bounded.

Remark 4. For respond system (14), when GGG = EEE, the
synchronization between the uncertain FOCSs was solved
in Liu et al. [44]. However, this solution cannot solve the
synchronization question for systems with uncertain non-
symmetrical control gain; when DDD(k) = 000, Ha et al. [45]
researched the synchronization of FOCSs with indeterminate
non-symmetrical control gain but also did not solve
the synchronization question of systems with unknown
disturbances. In contrast, by considering the above two
conditions, this paper addresses the synchronization question
for systems with uncertain non-symmetrical control gain and
unknown disturbances.

5. NUMERICAL SIMULATION

In the simulation, the effectiveness of the controller is tested
by researching the synchronization between the fractional-order
Newton-Leipnik system [46, 47] and the fractional-order Lü
system [48, 49].

The fractional-order Newton-Leipnik system is
given as follows.

hhh(xxx(k)) =





−0.4x1(k)+ x2(k)+ 10x2(k)x3(k)
−x1(k)− 0.4x2(k)+ 5x1(k)x3(k)

0.175x3(k)− 5x1(k)x2(k)



 . (50)

The fractional-order Lü system can be written as:

ppp(yyy(k)) =





−36y1(k)+ 36y2(k)
20y2(k)− y1(k)y3(k)
−3y3(k)+ y1(k)y2(k)



 . (51)

The gain matrixGGG (which is non-symmetric) and its factorization
(by Lemma 4) are as follows.

GGG =





1 a 0.3
0 −0.4 0.2
0 0 b



 = GGG1AAATTT

=





1 0 0
0 −0.2 0
0 0 −0.3









1 0 0
0 −1 0
0 0 1









1 −0.2 0.3
0 2 1
0 0 −3



 , (52)

where parameters a and b are separately a = −0.2 and b = 0.9.
The external disturbance is

DDD(t) =





0.15 sin(k)
0.05 cos(k)
0.1 cos(k)



 . (53)

It is easy to gather that the following inequality holds:

|GGG−1
1 DDD(k)| ≤





1
0.5
0.8



 . (54)

The initial values of the drive system and respond system can
be respectively xxx(0) = [−0.3, 1,−0.4]T and yyy(0) = [2,−2, 3]T .
When uuu(k) ≡ 000,DDD(k) = 000 and µ = 0.95, the above two systems
exhibit chaotic phenomena.

In the numerical simulation, the input variables of the
fuzzy system are xxx(k),yyy(k), and uuu(k). For inducing calculation
of the fuzzy logic system, we will replace xxx(k) and yyy(k) by
eee(k). For e1(k), e2(k), and e3(k), we can select five Gaussian
membership functions whose mathematical expectations are
respectively −4,−2, 0, 2, and 4 and whose parameters are
([1.2],[-4, -2, 0, 2, 4]), uniformly distributed in the interval
[−4, 4] for each input. Therefore, the number of the rules
that are produced by the fuzzy logic system approximating
function is 53 = 125. In order to better test the effectiveness
of the controller, we can chose adjustable parameters, which
are represented by θ1(0), θ2(0), and θ3(0), as random vectors in
125 dimensions.

The other parameters of the controller are defined as li =
5, λi = 500, ξi = 0.5, and µi = 0.5, and the estimated values of
the fuzzy logic system approximating error are ε̂∗1 (0) = ε̂∗3 (0) =
1.8 and ε̂∗2 (0) = 1.5. Estimators of the product between the
uncertain external disturbance and unknown constant matrix
are M̂1(0) = 1, M̂2(0) = 0.4, and M̂3(0) = 0.3. For the
sake of better showing the simulation results, the initial value
of the respond system is chosen as yyy(0) = [0.2,−2, 0.3]T ,
which is compared to yyy(0) = [2,−2, 3]T . The simulation results
are shown separately in Figures 1–4, detailed explanations of
which follow.

Case 1, in Figure 1, synchronization result: x(0) =
[−0.3, 1,−0.4]T and y(0) = [2,−2, 3]T . (Figure 1A) x1(k) (solid
line) and y1(k) (dotted line); (Figure 1B) x2(k) (solid line) and
y2(k) (dotted line); (Figure 1C) x3(k) (solid line) and y3(k)
(dotted line); (Figure 1D) synchronization error e1(k) (dotted
line), e2(k) (dashed line), and e3(k) (solid line).

Case 2, in Figure 2, synchronization result: x(0) =
[−0.3, 1,−0.4]T and y(0) = [0.2,−2, 0.3]T . (Figure 2A) x1(k)
(solid line) and y1(k) (dotted line); (Figure 2B) x2(k) (solid line)
and y2(k) (dotted line); (Figure 2C) x3(k) (solid line) and y3(k)
(dotted line); (Figure 2D) synchronization error e1(k) (dotted
line), e2(k) (dashed line), and e3(k) (solid line).

Case 3, in Figure 3, control variables and fuzzy logic
system parameters: x(0) = [−0.3, 1,−0.4]T and y(0) =
[2,−2, 3]T . (Figure 3A) u1(t); (Figure 3B) u2(k); (Figure 3C)
u3(k); (Figure 3D) ||θ1(k)|| (dotted line), ||θ2(k)|| (dashed line),
and ||θ3(k)|| (solid line).

Case 4, in Figure 4, control variables and fuzzy logic
system parameters: x(0) = [−0.3, 1,−0.4]T and y(0) =
[0.2,−2, 0.3]T . (Figure 4A) u1(k); (Figure 4B) u2(k); (Figure 4C)
u3(k); (Figure 4D) ||θ1(k)|| (dotted line), ||θ2(k)|| (dashed line),
and ||θ3(k)|| (solid line).

The simulation results clearly show that the convergence rate
of synchronization error is fast when li is reasonable. Figures 1,
4 give the error change trend that the error is large at first and
then gets smaller and smaller after a time, finally tending to
zero asymptotically. Furthermore, from case 1 and case 2, we
know that a minimal change in initial values can have obvious
effects on the error but cannot affect the eventual convergence of
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error. This implies that the fuzzy system proposed in this paper
has good approximation performance. Figures 3, 4 display the
changing situation of control variables and fuzzy logic system
parameters, and it conforms to our expectations. In addition,
from the above simulation results, we can see a chattering
phenomenon because a discontinuous sign function is used in
the synchronization controller.

6. CONCLUSION

In this paper, a robust adaptive fuzzy controller for indeterminate
FOCSs with uncertain external disturbances and non-
symmetrical control gain is proposed. The proposed
method has good ability on the condition that each
sequence-leading minor of the uncertain non-symmetrical
gain matrix is non-zero, and the upper bound of the
product of the positive definite matrix factorized by gain
matrix and external disturbance is known. The stability
of the closed-loop system is successfully discussed by
using a fractional-order Lyapunov method and quadratic
Lyapunov functions.
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