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In optical testing, the well-known peak valley detection ambiguity exhibited by degenerate

interference intensity patterns is due to phase. The interplay between phase and

polarization is evident in coherence theory. So the theme of intensity degeneracy arising

due to polarization is taken up in this article for discussion. Fringes with high contrast

(visibility) occur when the interfering beams are in same state of polarization (SOP). But

when multiple beams are involved in interference, high contrast fringes are possible even

if the SOP of each of the interfering beams is different. We show the superposition

of multiple beams in different SOPs form lattice patterns consisting of polarization

singularities and the intensity distribution in the interference patterns exhibit high contrast.

By changing the SOPs of the individual beams, same intensity distributions can be

produced. These intensity patterns are termed as degenerate intensity patterns, but have

different polarization distributions. The SOP changes must follow certain rules to achieve

degenerate intensity patterns. We also demonstrate intensity degeneracies in Fraunhoffer

diffraction patterns of apertures illuminated by beams having polarization singularities.

This study therefore illustrates the limitations on intensity based measurements in

identifying polarization singularities as these singularities are expected to play a major

role in future in diverse areas of optics.

Keywords: phase singularities, polarization singularities, interference, diffraction, singular optics

1. INTRODUCTION

Linear, circular, and elliptical are fundamental polarization states that have homogeneous
spatial polarization distributions. In 1892, Poincaré proposed a geometric representation of
the polarization of light, known as Poincaré sphere [1–4]. In this representation, any general
polarization state of light is represented as a point on the surface of a Poincaré sphere. The
coordinates of a point on the surface of the Poincaré sphere is given as (S1, S2, S3) where S1, S2, and
S3 are normalized Stokes parameters. TheNorth and South Poles of the Poincaré sphere denote spin
eigen states namely, right and left circularly polarized light, respectively, such that any point on the
Poincaré sphere can be described as superposition of these spin states. The use of Poincaré sphere
has greatly simplified the understanding of geometric phase in polarization optics. Pancharatanam
found that when the polarization of light is subjected to changes and brought back to the initial
state, there is an additional phase that purely depends on the way the changes in the state of
polarization (SOP) are carried out [5, 6]. These SOP changes can bemapped on the Poincaré sphere
as trajectories. The extra phase acquired in this process is called Pancharatnam phase and this phase
is equal to half the solid angle at the center of the Poincaré sphere subtended by area enclosed by the
closed trajectories on the Poincaré sphere. Similarly, the trajectories can be drawn on a sphere that
is constructed in a parameter space, for example, on a momentum sphere [7]. In this case, a light
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is transported through a closed trajectory in the momentum
space and is seen to acquire a Berry phase [8]. In this experiment
[7], light propagation through a coiled optical fiber is studied.
Phase control by Pancharatnam phase in coherent optical circuits
is also possible [9]. There are many basic papers explaining
the Pancharatnam phase [10–14]. Berry-Pancharatnam phase in
beams carrying orbital angular momentum (OAM) were also
investigated in detail by many authors [15–21]. For light beams
carrying OAM, a Modal sphere (orbital sphere) [22] equivalent
to Poincaré sphere was introduced recently. Analogous to
Poincaré sphere, the North and South poles of the Modal sphere
correspond to the OAM eigen states with opposite topological
charges. These OAM eigen states are Laguerre-Gaussian (LG)
modes with an azimuthal phase terms of exp{±imφ}, where m
is the topological charge. The equatorial points on the Modal
sphere correspond to Hermite-Gaussian (HG) modes. The HG
modes are superposition states of LG modes carrying OAM.
Each point on the surface of the Poincaré sphere can be used
to represent a beam with homogeneous polarization. Beams with
homogeneous polarization can also be treated as scalar beams.
From this view point, one can see that both Poincaré sphere
and Modal sphere are useful in representing non-singular and
singular scalar beams, respectively.

In recent years, singular optical beams with homogeneous [23,
24] and inhomogeneous polarization distributions have attracted
immense attention [25–31]. These inhomogeneously polarized
beams may contain polarization singularities [32–34]. In three
dimensional fields these polarization singularities form optical
Mobius strips [35]. Beams with polarization singularities are
gaining interest due to wide range of their applications [36–
42]. To describe such beams different geometric representations
have been introduced by combining the concepts of Poincaré
and Modal spheres. Such geometric representations introduced
in recent years are Higher order Poincaré sphere (HOPS)

FIGURE 1 | (a) Fundamental Poincaré sphere, (b) Higher order Poincaré sphere (HOPS). (c) Hybrid order Poincaré sphere (HyOPS). In each sphere, the superscripts

in the coordinate axes S1, S2, and S3 denote the content of orbital angular momentum in the right (R) and left circular polarization (LCP) eigen states, respectively.

Beam with constant ellipticity and varying azimuth across the beam cross-section can be represented by a point on the HOPS. HyOPS is used to represent beams

with varying azimuth and ellipticity. In a Poincaré sphere Poles represent plane waves in RCP and LCP whereas in HOPS the Poles represent vortex beams of same

magnitude with opposite sign. In a HyOPS, Poles denote vortex beams of different charges. All the non-polar points are obtained by superposition in the

corresponding circular basis states.

[18, 43], Hybrid order Poincaré sphere (HyOPS) [44, 45], and
Generalized Poincaré sphere (GPS) [46]. In HOPS, North and
South Poles denote right and left circularly polarized vortex
beams of topological chargesm and−m, respectively. Each point
on the HOPS except the polar points, represents a vector vortex
beam (VVB) with constant ellipticity and varying azimuth. Thus
HOPS is a geometric representation for VVBs as these beams are
superpositions of left and right circularly polarized vortex beams.
Similarly every C-point polarization singularity distribution can
be represented by a non-polar point on the HyOPS. In a
HyOPS, North and South Poles denote right and left circularly
polarized vortex beams of different topological charges m and n,
respectively. In the earlier classification of polarization singular
beams by Freund [27] and Dennis [47], the SOP distributions
in ellipse field singularities are predominantly ellipses and in
vector field singularities the SOP distributions are predominantly
linear. The nomenclature of VVB however does not mean that
the wavefront of these inhomogeneous polarization distributions
are helical. They are actually plane waves with spatially varying
SOPs. Since the beam represented by a non-polar point on a
HOPS or on a HyOPS is made of vortex superpositions and the
resulting field has inhomogeneous polarization, it is termed as
VVB. Therefore, according to Freund [27] and Dennis [47] the
V-point singularities are represented by equatorial points on the
HOPS whereas the C-point singularities are represented by non-
polar points of HyOPS. The non-equatorial and non-polar points
on HOPS are new class of VVBs that were not covered by the
classification by Freund and Dennis. However these beams have
SOP distributions in which the ellipticity is constant (non-zero),
like a V-point singularity (where the constant value of ellipticity
is zero), but have same polarization singularity index.

Figure 1 shows a fundamental Poincaré sphere, a HOPS
and a HyOPS. The two superscripts (m, n) in Figure 1, on
the coordinate axes S1, S2,and S3 denote the OAM content
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in the right and left circular polarization eigen states. The
points marked on these spheres denote beams in some
polarization states (or distributions in case of HOPS and HyOPs)
with the corresponding amplitude distributions. A polarization
singularity represented by a point on the HOPS or HyOPS, has
SOP distribution in which the azimuth of the polarization states
around the singularity undergoes a rotation. The total amount
of rotation the azimuth undergoes is given by 1γ =

∮
∇γ · dl,

where ∇γ is the azimuth gradient and dl is the line element.
For any polarization distribution represented by a point on a
HOPS, 1γ is integral multiples of 2π and this integral value
is known as Poincaré-Hopf index η. But for any polarization
distribution represented by a point on a HyOPS, 1γ can be half-
integral multiples of 2π and this value is called C-point index
Ic. All the non-equatorial points on a HOPS or HyOPS have
same polarization singularity index. This means that for every
index value η there is a unique HOPS and for every Ic index
there is a HyOPS which need not be unique. Say for example,
for (m, n) = (1, 2), (2, 3),..., the index Ic is same but for each (m, n)
combination there exists a separate HyOPS.

Any SOP can be decomposed into its orthogonal
polarization components and the phase difference between
the orthogonal component states is called Stokes phase. In
circular decomposition, this Stokes phase is proportional to
the azimuth of SOP and is given by φ12. All the polarization
singularities represented by points on a given HOPS or HyOPS
have same polarization singularity index as the φ12 Stokes
phase distribution is same for all the SOP distributions. The
SOP distribution described by a non-polar point on HOPS is a
constant ellipticity field whereas the SOP distribution described
by a non-polar point on the HyOPS has both spatially varying
ellipticity and azimuth. This is similar to vector field singularities
(that are constant ellipticity fields) and ellipse field singularities
(where both ellipticity and azimuth are spatially varying),
respectively. The non-polar point of a HyOPS represents a
singularity whose SOPs can be mapped on to a region on
the Poincaré sphere whereas the non-polar point on a HOPS
represents a singularity whose SOPs can be mapped on to a
latitude of the Poincaré sphere. Therefore a Poincaré beam can
be represented by a point on the HyOPS, whereas none of the
points on the HOPS represents a Poincaré beam.

In this article, the intensity degeneracies exhibited by
polarization singularities in the interference and diffraction
patterns are discussed. Many of the intensity detectors, therefore
fail to classify these singularities as they do not capture the
polarization distribution. In the first part, interference of multiple
plane waves each in different states of polarization and with
different tilts (k vector of each beam having different direction)
is discussed. These interference patterns are polarization lattice
fields. We report that the resultant fringe patterns exhibit
degeneracy in intensity distributions when plane of polarization
of the interfering beams are derived from a particular index
polarization singular beam. In particular, we consider the V-point
singular beams that are represented by the equatorial points of a
HOPS for η = ±1. The points in this equatorial plane represent
radially polarized, azimuthally polarized and spirally polarized
SOP distributions. These inhomogeneously polarized states are

known to contain V-points of Poincaré-Hopf index η = ±1.
We have also presented simulated intensity patterns of three-
plane wave interference in which each of the beam is elliptically
polarized and derived from a C-point beam represented by a
point on a HyOPS.

In the second part, diffraction of polarization singularities
through triangular aperture is shown to exhibit intensity
degeneracy in the diffraction patterns. Here again we consider
all states in the equatorial plane on the HOPS. The concept
of intensity degeneracy in interference and in diffraction is
demonstrated through some experimental interference and
diffraction patterns.

2. DEGENERATE INTENSITY IN
INTERFERENCE

In two beam interference, high contrast fringes can be ensured
by maintaining same SOP of the interfering beams. However, in
multiple beam interference of non-coplanar plane waves, high
contrast fringes can be obtained by modulating the SOPs of the
interfering beams. Such an interference of plane waves generates
periodic structures of electromagnetic fields known as optical
lattices. Optical lattices can exist in various parameters of an
electromagnetic field such as intensity [48], phase [49, 50], or in
polarization. In this section, we present lattices in intensity and
polarization, obtained by interference of multiple plane waves
whose propagation vectors are non-coplanar. The propagation
vector of themth plane wave is given by

→

k m= k0(sin θm cosφmx̂+ sin θm sinφmŷ+ cos θmẑ) (1)

The symbols θm and φm are spherical polar coordinate system
angles and k0 is the propagation constant. As an example, the
orientation of the propagation vectors of the three plane waves,
their individual SOPs and the schematic explaining the overlap
of these beams are depicted in Figure 2. The resultant amplitude
is given by

→
AR=

N∑

m=1

R̂m exp(i{
→

k m ·
→
r }) (2)

where plane of polarization of each beam is denoted by R̂m
derived from the SOP distribution of the radial polarization
as shown in Figure 2. In Equation (2) radial polarization is
considered but other polarization states can also be assigned
to plane waves by appropriate arrangement. These SOPs are
assigned to the N plane waves in the Fourier plane in which
an S-waveplate is inserted. Each plane wave will appear as
a dot (point) at this plane and pick up the required SOP.
Such experimental arrangements have been earlier employed in
polarization singularity lattice generation [51–57]. Therefore, the
SOPs and the tilts of each plane waves can be represented in the
k-space as arrows and dots respectively placed on a ring as in
Figure 2, where the case of three beam interference is presented.
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FIGURE 2 | (a) Schematic showing three non-coplanar plane wave interference. (b) The SOPs of the three interfering beams are different and are chosen from a SOP

distribution of that of a radially polarized beam. (c) In the region where the three beams overlap polarization singularity lattice is produced. The intensity pattern is

same (degenerate) if the SOPs of the three interfering beams are chosen from any one of the depicted sets. In fact, the set can be chosen from any polarization

distribution that has same magnitude of η to produce degenerate intensity distribution.

2.1. Three Beam Interference
The degenerate intensity patterns with different polarization
distributions are shown in Figures 3, 4. These patterns arise
due to interference of three beams and the SOP of these three
interfering plane waves are indicated by arrows in the respective
interference patterns. All the four interference patterns have same
intensity distribution as given at the center. The SOP distribution
in each of them in Figure 3, consists lattice of star patterns and
in Figure 4 lattice of lemon patterns. Lattice patterns generated
by simulation are shown in left side whereas, experimentally
obtained lattices structures are depicted in right side. It can
be noticed that the intensity patterns in both the figures are
same. From Figures 3, 4 it can be seen that polarity of the
Poincaré-Hopf index of the V-point fromwhich the SOPs of three
interference beams are chosen is immaterial.

To understand the intensity degeneracy, let us consider
the case of three plane wave interference. The SOPs of the
three linearly polarized plane waves are given in Figure 5a.
Each of the beam is decomposed into its respective x and
y components and the component-wise resultant amplitudes
are presented in Figures 5a1,a2, respectively. In Figure 5a3 the
intensity distribution due to three beam interference is shown.
This is obtained by simply adding the intensities due to x and
y component fields as there is no interference between beams
in orthogonal states. Now consider that the SOPs of the three
plane waves are changed from the one shown in Figure 5a to
Figure 5b or Figure 5c or Figure 5d. In Figures 5b,c the SOPs

are derived from positive index η beam, whereas in Figure 5d

the SOPs are derived from negative index η beam. Since a
beam with a given index η has a spatial structure, the changes
(from Figures 5a–d) that happen to the components for one
particular linear polarization state is compensated by appropriate
changes that occurs to the other two linear states in a three
beam interference. As a result the intensity distribution remains
the same. At the hindsight one can intuitively see that by
rotating each of the SOP by a fixed angle, the resultant intensity
remains invariant. But a comparison between a positive and
negative η beams shows that such an intuitive understanding
becomes difficult.

2.2. Four- and Six- Beam Interferences
When the number of interfering beams are even and are
symmetrically placed on the ring in k-space, V-point polarization
singularity lattices are produced [53]. In Figure 6, four-beam
interference patterns and in Figures 7, 8 six-beam interference
patterns are shown. All the interference patterns contain V-point
singularity lattices. In Figure 6, the SOPs of the interfering plane
waves are selected from radial, azimuthal, and spiral polarization
distributions. All the patterns have same intensity distribution.
For six-beam interference the interfering plane waves are derived
from positive (Figure 7) and negative (Figure 8) Poincaré-Hopf
index SOP distributions, but all produce same intensity
distributions in the interference pattern.
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FIGURE 3 | Three-Beam Interference of plane polarized plane waves producing lattice of stars. (a–d) Simulation; (a′–d′) Experimental results. This and in the following

figures the intensity distribution shown at the center is same for different SOP distributions shown around it. The SOPs of the interfering plane waves are shown on a

ring in k-space, with the positions of the dots indicating the transverse components of the propagation vectors. The SOPs of the plane waves in all the interference

patterns are chosen from the polarization distributions of V-point singularities having same Poincaré-Hopf index, in this case η = +1.

FIGURE 4 | Three Beam Interference producing lattice of lemons. The SOPs of the three plane waves are derived from a V-point with η = −1. Simulated results in

(a–d) and experimental results in (a′–d′).
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FIGURE 5 | Intensity degeneracy in the interference of three non-coplanar plane waves. The SOPs of the three plane waves in four different cases are presented in

(a–d). In each case, the SOPs of the three plane waves are segregated in x and y components and components wise interference patterns are analyzed. By adding

the component wise intensity patterns, the total intensity pattern is obtained. Note that in each case the component wise interference patterns are different but at the

end the total intensity remains the same. This means the spatial arrangement of polarization states leads to readjustment in their components without any change in

final intensity distribution. (a1 − d1), resultant x− component complex amplitudes; (a2 − d2), resultant y− component complex amplitude; (a3 − d3), total intensities;

Insets show the respective phases.

FIGURE 6 | Four Beam Interference producing lattice of V-points. The SOPs of the four plane waves are derived from a V-point with η = +1. having radial, spiral, and

azimuthal SOP distributions. (a–d) Simulation; (a′–d′) Experimental results.

In all these interference patterns (Figures 3–8) one can
observe that the intensity distribution is degenerate for a given
|η|, eventhough each of them have different SOP distributions.
The SOPs of the plane waves for interference are derived from
equatorial points on a HOPS of order 1 or −1 in Figures 3–
8. Simulation shows that another set of degenerate intensity
patterns are produced, if the SOPs are derived from equatorial
points of HOPS of order |η| > 1. One such case is shown in
Figure 9, where the SOP of the plane waves are selected from
V-points represented by equatorial points of HOPS (η = 2)

for six-beam interference. If the SOPs of the interfering beams
are derived from beams represented by points on any latitude
of the HOPS, they produce different degenerate interference
intensity distributions.

2.3. Three Beam Interference-SOPs
Derived From a C-Point
So far we have shown that the SOPs of the plane waves
that take part in the interference are derived from a beam
having vector field singularity, namely V-points. For the case
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FIGURE 7 | Six Beam Interference producing lattice of V-points. The SOPs of the six plane waves are derived from a V-point with η = +1. having radial, spiral, and

azimuthal SOP distributions. Simulated results in (a–d) and experimental results in (a′–d′).

FIGURE 8 | Six Beam Interference producing lattice of V-points. The SOPs of the six plane waves are derived from a V-point with η = −1. (a–d) Simulation; (a′–d′)

Experimental results.

of interference of three plane waves whose SOPs are chosen
from a C-point we present the simulation patterns in Figure 10.
Each C-point is represented by a point on the surface of

HyOPS. Experimental realization is comparatively difficult as
we do not have a single element that can directly produce a
C-point. Note for V-point generation a single element namely
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FIGURE 9 | Six Beam Interference: SOPs of the interfering beams are selected from V-points represented by the equatorial points of HOPS (η = 2). (a–d) Simulation;

(a′–d′) Experimental results.

FIGURE 10 | Intensity degeneracy in the interference of three non-coplanar plane waves-SOPs derived from a C-point. Arrangement of SOPs for a positive (a1) and

negative ( a2) index C-point; (b1, b2) resultant intensity patterns; (c1, c2) Resultant SOP distribution. Note the degeneracy in the resultant intensity distributions in

(b1, b2).

S-waveplate was used. Since in a C-point the ellipticity varies as
a function of radial coordinate, the selection of three different
SOPs for three plane waves is also difficult and depends on
the choice of the r-coordinate. The SOPs of three plane waves
are shown in Figure 10a1, the resulting interference intensity
pattern is shown in Figure 10b1, and the SOP distribution of
the lattice is shown in Figure 10c1. It can be seen that if the
SOPs of the three plane waves are chosen from a negative
index C-point as shown in Figure 10a2, the interference would

produce an intensity pattern as shown in Figure 10b2 with
the SOP distribution as depicted in Figure 10c2. Note that
the intensity patterns shown in Figures 10b1,b2 are degenerate.

2.4. Experimental Description
For interference experiments, the resultant phase distribution
due to the interference of multiple beams is computed and
a mirror is deformed to produce a wavefront structure
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FIGURE 11 | Schematic of setup for multiple beam interference. SLM, spatial

light modulator; BS, beam splitter; L1, L2, lenses; FT, Fourier transform plane;

PC, polarization convertor; Camera plane.

corresponding to the computed resultant phase distribution. This
is normally done by using a reflective spatial light modulator
(SLM). A schematic of the experimental setup is shown in
Figure 11. Any plane wave incident on SLM will acquire the
shape of the complicated wavefront structure. This wavefront
is Fourier transformed (FT) by using a lens. At the FT plane,
corresponding to each plane wave a bright spot appears. This
means, for the multiple beam interference there are multiple
bright spots in the Fourier plane. By placing a S-waveplate, at the
FT plane, each spot is made to assume different SOPs. A second
lens converts these spots back into plane waves. In the overlap
region interference pattern is observed and corresponding Stokes
parameters are captured by using a high resolution Stokes camera
(Salsa full Stokes polarization imaging camera, 1,040 × 1,040
pixels, Bossa Nova, USA).

3. INTENSITY DEGENERACY IN
DIFFRACTION

Diffraction patterns produced by singular beams can be used
to find the charge of the scalar vortex [58, 59]. But for
polarization singularities, diffraction methods are not effective
for identification of OAM and spin angular momentum (SAM)
content in the beam. The diffraction patterns of polarization
singularities show degenerate intensity distributions. Therefore,
for intensity based detection of such singularities, apart from
diffraction, polarization transformations are also used in tandem
to determine the polarization singularity index. In this section,
diffraction patterns of polarization singular beams diffracted
through triangular aperture are presented. V-points represented
by equatorial points of a HOPS are made to diffract through a
triangular aperture.

Diffraction patterns of V-points having Poincaré-Hopf index
η = +1 are presented in Figure 12. Simulated and
experimentally recorded input SOPs of V-points with index
η = +1 are shown in Figure 12a. The locations of these
inhomogeneous polarization distributions are marked as points
1–8 on a HOPS in Figure 12c. These V-points on a HOPS are
superpositions of m = −1 and n = 1 scalar vortex beams in
RCP and LCP state, respectively. Figures 12b[d] show simulated
[experimentally recorded] input and diffracted intensity when

such beams are passed through a triangular aperture. Diffraction
disintegrates the V-points into C-points. The simulated and
experimentally recorded diffracted polarization distributions are
shown in Figure 12e. Note that each of the input V-point
distribution marked on a HOPS disintegrates into two lemons
(each with index Ic = +1/2) of opposite handedness upon
diffraction. The number of C-points in the diffracted patterns
are such that, in this process there is index conservation [60, 61].
The C-points occur in pairs with opposite handedness indicating
that there is also helicity conservation [62, 63]. Interestingly,
the polarization singularity incident on the diffracting aperture
can be represented by a point on the HOPS whereas the
singularities in the diffracted field can be represented by points
on many HyOPS.

3.1. Experimental Description
For diffraction experiments the polarization singular beam
is generated either by using a S-waveplate or by using an
interferometric setup. In Figure 13, we have shown the schematic
of the diffraction experiment where S-waveplate is used for V-
point generation. The polarization singular beam is then passed
through a diffracting triangular aperture. The far-field diffraction
pattern is observed and captured by the Stokes Camera at the
back focal plane of a lens.

Figure 14 depicts diffraction patterns of V-points with
Poincaré-Hopf index η = −1. V-points with negative Poincaré-
Hopf indices are located on a different HOPS as these are
superpositions of m = 1 and n = −1 scalar vortex
beams in RCP and LCP state, respectively. Some simulated
and experimentally obtained V-points are shown in Figure 14a

and their locations are marked as points 1–8 on a HOPS in
Figure 14c. The simulated [experimental] input and far field
intensities are depicted in Figures 14b[d]. Diffraction of a
negative V-point beam of index η = −1 produces two C-
point polarization singularities of index Ic = −1/2 (stars)
with opposite handedness, thereby following index and helicity
conservation. From Figures 12, 14, one can observe that the
diffracted intensity exhibit degeneracy when diffraction of V-
points with Poincaré-Hopf index |η| = 1 is considered. This
indicates that the polarity of η is insignificant and it cannot be
determined from the intensity measurements alone.

Far field diffraction intensity patterns of V-points with
|η| = 2 also exhibit degeneracy. This is shown in Figure 15.
Simulated input SOP distributions and their far field diffracted
polarization distributions for some V-points (labeled as points
1–4 on a HOPS) with index η = +2 [η = −2]
are depicted in Figures 15a[c]. Corresponding experimentally
recorded input SOPs and diffracted SOP distributions are shown
in Figures 15a′[c′]. Diffraction of V-points of index η = +2
(η = −2) produces four C-point polarization distributions
each with index Ic = +1/2 (Ic = −1/2), following the
index and helicity conservation. Note that all V-points with
index |η| = 2 produce same intensity patterns as shown
in Figure 15b (simulated) and Figure 15b′ (experimentally
recorded), respectively. Infact, different shape apertures can
be used in the diffraction experiments yielding similar results.
For V-point diffraction, use of diamond shaped aperture
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FIGURE 12 | Intensity degeneracy in Fraunhoffer diffraction of V-point beam with index η = +1 through a triangular aperture. (a) Simulated and experimentally

recorded input polarization distributions corresponding to points 1− 8 marked on a HOPS in (c). Note that all these distributions lie at the equator of a HOPS and

have same polarization singularity index η = +1. (b) Simulation: Schematic of the setup with Input intensity, aperture, and diffracted intensity. (d) Experimentally

recorded input and far field intensity. (e) simulated and experimentally observed polarization patterns after the diffraction through aperture. Note that for each of the

input SOPs marked on HOPS, the diffracted intensity exhibit degeneracy. Further each of the input V-point distribution disintegrates into two lemons (each with index

Ic = +1/2) of opposite handedness upon diffraction.

FIGURE 13 | Schematic of setup for diffraction through aperture: S-waveplate-spatially varying half waveplate; Diffracting triangular aperture; L- lens; Camera plane.

[64], right triangular aperture [60], and circular aperture [65]
have been reported. There is no literature available at this
point in time on diffraction of V-points through apertures
of different shapes. Although diffraction of scalar vortices
through different apertures like triangular [58], circular [66],
diamond shaped [67], hexagonal shaped [68], isosceles right
triangular [69], single slit [59], annular apertures [70, 71], have
been reported.

4. DISCUSSION

The intensity distributions obtained in the interference of

multiple plane waves each in different SOPs have been observed

as identical. But the polarization distribution in each of them is

different. The selection of SOPs of the interfering plane waves are

fromV-point polarization distribution having samemagnitude of

Poincaré-Hopf index and the method adopted to assign different
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FIGURE 14 | Intensity degeneracy in the diffraction patterns of V-point beam with index η = −1 through a triangular aperture. Simulated and Experimentally observed

(a) input and (e) diffracted SOP distributions. (b) Simulation: Schematic of the setup with input intensity, aperture, and diffracted intensity. (c) Locations of input SOPs

(shown in a,e) labeled as 1− 8 on a HOPS. All these SOPs when diffracted through triangular aperture produce same intensity patterns and hence exhibit

degeneracy. (d) Experimental: Schematic of the setup with input intensity, aperture, and diffracted intensity. Note in this case, the V-points disintegrate into two stars

of opposite handedness with Ic = −1/2.

SOPs to each beam is by introducing a S-waveplate at the Fourier
plane. For a given Poincaré-Hopf index the number of possible
polarization distributions are many and they can be represented
by equatorial points of HOPS. For each index and polarity there
is a separate HOPS. This means that the SOPs of the individual
plane waves can be tuned by large number of ways so that
the resulting interference intensity pattern remains invariant.
This degeneracy has been experimentally demonstrated by taking
many examples.

This intensity degeneracy is very similar to identical
interferograms that can be obtained (say for example) from
convex or concave wavefront structures with a given reference
wave. In interferometry this peak-valley degeneracy leads to
phase ambiguity. It is known that the phase information of an
optical signal is lost in intensity patterns. Likewise polarization
information of optical fields is also lost in intensity patterns.
Phase and polarization are inter-related quantities and by
modulating one the other can be modulated. But phase is

scalar and polarization is vector. Using intensity distributions
and experimental parameters, algorithms for phase retrieval,
phase estimation, phase detection have been developed in the
past. Similarly it may be possible to retrieve polarization from
single (or minimum) intensity measurements by some smart
researchers in future.

5. CONCLUSION

In scalar optics, phase introduced ambiguities in the interference
intensity patterns lead to occurrence of degenerate states.
In this article we have shown polarization introduced
degeneracies in the intensity patterns. This has been explained
by interference and diffraction patterns obtained using
polarization singular beams. The polarization singular beams
are selected from HOPS for our discussion. In the resulting
interference/diffraction patterns, the polarization singularities
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FIGURE 15 | Intensity degeneracy in the diffraction patterns of V-point beam with index |η| = 2 through a triangular aperture. Figures in left column: Input (first row)

and diffraction (second row) field SOPs—(a) simulated and (a′) experimental; Center column: (b) Simulated and (b′) experimental schematic of the setup with input

intensity, aperture, and diffracted intensity. Figures in the right column: Input (first row) and diffraction (second row) field SOPs—simulated (c) and experimental (c′); In

the center of the left and right column a HOPS is shown with numbers indicating the beams being diffracted, i.e., input beams.

observed are found to be frommanyHyOPS. This study therefore
illustrates the limitations on intensity based measurements in
identifying polarization singularities as these singularities
are expected to play a major role in future in diverse areas
of optics.
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