
ORIGINAL RESEARCH
published: 15 May 2020

doi: 10.3389/fphy.2020.00131

Frontiers in Physics | www.frontiersin.org 1 May 2020 | Volume 8 | Article 131

Edited by:

Mustafa Inc,

Firat University, Turkey

Reviewed by:

Haci Mehmet Baskonus,

Harran University, Turkey

Mehmet Yavuz,

Necmettin Erbakan University, Turkey

*Correspondence:

Sushila Rathore

sushila.jag@gmail.com

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 12 February 2020

Accepted: 06 April 2020

Published: 15 May 2020

Citation:

Mustahsan M, Younas HM, Iqbal S,

Rathore S, Nisar KS and Singh J

(2020) An Efficient Analytical

Technique for Time-Fractional

Parabolic Partial Differential Equations.

Front. Phys. 8:131.

doi: 10.3389/fphy.2020.00131

An Efficient Analytical Technique for
Time-Fractional Parabolic Partial
Differential Equations
Muhammad Mustahsan 1, H. M. Younas 1, S. Iqbal 2, Sushila Rathore 3*,

Kottakkaran Sooppy Nisar 4 and Jagdev Singh 5

1Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan, 2 School of Systems and

Technology, University of Management and Technology, Lahore, Pakistan, 3Department of Physics, Vivekananda Global

University, Jaipur, India, 4Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University,

Wadi Aldawaser, Saudi Arabia, 5Department of Mathematics, JECRC University, Jaipur, India

In this work, we examine time-fractional fourth-order parabolic partial differential

equations with the aid of the optimal homotopy asymptotic method (OHAM). The 2nd

order approximate results obtained by using the suggested scheme are compared with

the exact solution. It has been noted that the results achieved via OHAM have a large

convergence rate for the problems. The solutions are graphically analyzed, and the

relative errors are presented in tabular form.
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INTRODUCTION

The physical behaviors of fractional order differential and integral equations have been studied
in fractional calculus (FC). Fractional calculus deals with more general behavior than classical
calculus. However, in the present era FC has got more attention for its vast applications in many
fields such as science and engineering. Spanier and Oldham [1], Podlubny [2], and Miller and
Rose [3], have studied this subject in detail and developed the theoretical explanation of the
subject. During the last few decades, a large number of researchers have noted that the role of
fractional differential or integral operators are unavoidable in representing the characteristics of
physical phenomena like traffic flow, viscoelasticity, fluid flow, signal processing, etc., [4–10]. Many
processes and equipment have been efficiently explained by FC. Furthermore, comparative studies
have been done for fractional and total differential models. In conclusion, the fractional models are
more effective than classical models. Fourth ordered linear PDE

∂2t v (s, t) + µ ∂4s v (s, t) = h (s, t) , (1)

is very important in engineering and modern science. Bridge slabs, floor systems etc. are examples
of fourth order PDEs. Where v is the beam transversal displacement, µ the is ratio of flexural
stiffness to mass per unit length, t is the time, s is the space variable and h is the dynamic deriving
force acting on unit mass.

In this study, the problem of undamped transverse vibrations of a flexible straight beam is
considered. The support of the beam does not contribute to the strain energy of the system.
The mathematical model of the problem is expressed in the form of the following time-fractional
fourth-order parabolic partial differential equation as

∂α
t v (s, t) + µ ∂4s v (s, t) = f (s, t) , s ∈ [0, 1], t > 0, 1 < α ≤ 2, (2)
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where ∂t and ∂s represents the partial derivatives with respect to t
and s, respectively. The initial and boundary conditions are

v (s; 0) = g0, vt (s; 0) = g1, (3)

v (0; t) = f0, vt (s; 0) = f1,

vss (0; t) = p0, vss (1; t) = p1,

where ∂α
t denotes the fractional order derivative operator, v(s, t)

is the displacement of the beam in s direction, µ is the ratio of
flexural stiffness to mass per unit length, t the is time, s is the
space variable and f (s, t) is the dynamic deriving force acting
on per unit mass, and g0(s), g1(s), f0(t), f1(t), p0(t) and p1(t) are
continuous functions.

The concept of homotopy has been merged with perturbation
in order to solve non-linear problems. Liao [11] conducted
the basic work by utilizing the homotopy analysis method
(HAM). He [12] presented the homotopy perturbation method
and its applications. Marinca et al. [13–15] developed a
novel computational scheme known as OHAM. The OHAM
established a convergence criteria similar to HAM, but OHAM is
more flexible. In various research papers Iqbal et al. [16–18] and
Sarwar et al. [19, 20] have demonstrated the usefulness extension
and trust of this technique and have achieved trustworthy
solutions. In this paper, the Idea of OHAM has been explained.
It gives logical, trustworthy solutions to linear and non-linear
mathematical model fractional orders.

Very recently, some new definitions of fractional derivatives
have been introduced and many physical medical problems have
been modeled based on fractional derivatives, e.g., the SIRS-SI
model describes the transmission of malaria disease [21]. The
fractional extension of partial differential equations occurring in
physical sciences was studied by Dubey et al. [22]. Other real-life
problems with fractional calculus can be seen in a recent work by
Gao et al. [23].

The homotopy asymptotic method (HAM) is also effective
in solving a differential equation. Some result work comprises
linear and nonlinear fractional differential equations considering
different constraints without a singular kernel [24, 25]. The
model shows that OHAM/HAM guarantee good approximation
and better convergence rate than other numerical techniques.

The paper is structured as follows: The basic definition of
fractional calculus is given in Section Basic Definitions. The
method is described in Section Solution Procedure of OHAM.
Section Solutions of Fractional Models of Parabolic PDEs gives
the model problems and detailed results. Section Discussion of
Results provides a discussion of the results. The conclusion is
outlined in Section Conclusions.

BASIC DEFINITIONS

Let g (t) , t > 0 is a function of real value considered to be in
space cλ, λ ∈ R, which is very useful for the study in FC. If
there exists, p > λ is a real number such that g (t) = tpg1 (t) ,
where g1 (t) ∈ c (0,∞) , supposed to be in space cmλ if and only
if gm ∈ cλ,m ∈ N.
Definition 2.1. Riemann-Liouville form of integral operator of a
function g ∈ cλ, of fractional order β > 0,λ ≥ −1 is expressed as

RLD
−β

a,t g (t) = 1
Ŵ(β)

∫ t
a (t − λ)β−1 g (λ) dλ, t > 0,β > 0,

k− 1 < β < k, k ∈ Z+ (4)

Definition 2.2. Riemann-Liouville form of integral operator of a
functiong(t) of fractional order β > 0 is given as

RLD
β

a,tg (t) = 1
Γ (n−β)

dk

dtk

∫ t
a (t − λ)k−β−1g (λ) dλ, t>0,β >0,

k− 1 < β < k, k ∈ Z+. (5)

Definition 2.3. The Caputo fractional derivative of order β > 0
is expressed as

CD
β

a,tg (t) = 1
Γ (n−β)

∫ t
a (t − λ)k−β−1 g(k) (λ) dλ, t>0,β >0,

k− 1 < β < k, k ∈ Z+. (6)

If j− 1 < β < j, and g ∈ cmλ , λ ≥ −1, then

RLD
−β
a,t

(

CD
β
a,tg (t)

)

= g (t) −
j−1
∑

i=0

gi (a)
(t − a)j

Γ (i+ 1)
, t > 0. (7)

SOLUTION PROCEDURE OF OHAM

Based on the OHAM scheme [18, 19], we will extend
this approach for time-fractional parabolic partial differential
equations (TFPPDE) in the subsequent steps.

Step I. Write the governing time fractional order parabolic
equation in the subsequent way

Q(v(s, t))− f (s, t) = 0; s ∈ [0, 1], t > 0. (8)

� is domain. Equation (8) is bifurcated in to Q(v) = J(v) +
T(v). In this expression J is a fractional component and T is a

non-fractional component. Ji = ∂α8i(s,t)
∂tα , i ≥ 0, Ti = ∂4ϕ

∂s4
, i ≥ 0.

Step II. Develop an optimal homotopy for time-fractional
partial deferential equation (TFPDE), ϕ(s, t; p) :� × [0, 1] → R
which satisfies

(1− p)(J(v)− f (s, t))−H(s, p; c)(Q(v)− f (s, t)) = 0. (9)

In Equation (9) p ∈ [0, 1] and s ∈ � is a parameter,
for p 6= 0,H

(

s, p; c
)

is a non-zero auxiliary function and
H(0, p; c) = 0 when p increases in the interval [0, 1] the solution
ϕ (s, t) guarantees the rapidly convergent to the exact solution.

H
(

s, p; c
)

= pj1 (s, ci) + p2j2 (s, ci) + p3j3(s, ci)+ . . .

+ pmjm (s, ci) , (10)

Where the auxiliary convergence control parameters are ci, i =
0, 1, 2, 3, ...,m and Ji(s), i = 0, 1, 2, 3, ...,m can be a function on the
variables. The Jm(s, ci) may be selected in the form of polynomial,
exponential and so on. It is very important to note that the crucial
step is to select an appropriate function as the convergence rate
depends on the initial guess of the solutions.
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Step III. Expand ϕ(s, t; p, c) in Taylor’s series for p to develop
an approximate result as

ϕ(s, t; p, ci) = v0(s, t)+
m
∑

j=1

vk (s, t; ci) pj, 1 ≤ i ≤ m. (11)

It has been clarified that the rate of convergence of the (11)
depends upon auxiliary constants ci. If the Equation (11), at p
= 1 is convergent, then one has:

ṽ(s, t; p, ci) = v0(s, t)+
m
∑

j=1

vk(s, t; ci). (12)

Step IV. Compare the coefficients of identical powers p after
substituting Equations (11) in (9), we can get 0th, 1st, 2nd and
higher order problems if needed.

p0 : J0 − f (s, t) = 0. (13)

p1 : J0 − J1 + f (s, t)− c1(J0 + T1 − f (s, t)) = 0. (14)

p2 : J2 − J1 − c1(J1 + T0)− c2(T0 − f (s, t)) = 0. (15)

p3 : J3 − J2 − c1(J2 + T2)− c2(J1 + T1)− c3(J0

+ T0 − f (s, t)) = 0. (16)

And so on
Step V. Substitute Equations (12) in (8), the outcome will

be residual.
Create the δ(ci)

δ (ci) =
∫ t

0

∫

�

R2 (s, t; ci)dsdt.

Residual of Problem Is R
Convergence auxiliary control (ci) constants can be acquired
as follows.

∂δ

∂c1
=

∂δ

∂c2
= . . . =

∂δ

∂cm
= 0. (17)

If R(s; ji) = 0 then v(s; ji) = 0 must be exact solution of the
TFPDE. Normally it does not happen for non-linear problems.
Step VI. Using the convergence auxiliary control constants in
Equation (12), we can develop an approximate solution.

Step VII. Accuracy of the technique is presented as
Error norm L2

∥

∥vexact − vn
∥

∥ =

√

√

√

√

b− a

n

N
∑

i=0

∣

∣vexact − vn
∣

∣

2
. (18)

Error normL∞

∥

∥vexact − vn
∥

∥ =
∣

∣vi
exact − (vn)i

∣

∣ . (19)

SOLUTIONS OF FRACTIONAL MODELS OF
PARABOLIC PDES

In the current section, we take the two examples and solve them
with the aid of OHAM and demonstrate the accuracy, validity,
and suitability of the suggested computational scheme.

Example 1
Let us take the fourth order TFPPDE of the form

∂αv (s, t)

∂tα
+

∂4v (s, t)

∂s4
=
(

π4 − 1
)

sinπs cos t.

s ∈ [0, 1] , t > 0, µ = 1, 1 < α ≤ 2. (20)

Initial conditions (ICs)

v (s, 0) = sinπs, vt (s, 0) = 0.

Boundary conditions (BCs)

v (0, t) = 0, vss (0, t) = 0.
v (1, t) = 0, vss (1, t) = 0.

Exact solution of problem is

v(s, t) = cos t sinπs (21)

Compare the coefficients of equal powers of embedding
parameter p, after substituting φ

(

s, p
)

in to optimal homotopy
equation to get zero-order, 1st-order, and 2nd-order and higher-
order series problems.

p0 :

∂αv0(s, t)

∂tα
= 0, (22)

p1 :

(

cos (t) sin (πs) + π4 cos (t) sin (πs) −
∂4v0 (s, t)

∂s4

−
∂αv0(s, t)

∂tα

)

c1 −
∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα
= 0,

p2 :

(

− cos (t) sin (πs) + π4 sin (πs) cos(t)−
∂4v0 (s, t)

∂s4

−
∂αv0(s, t)

∂tα

)

c2 (23)

− c1

(

∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα

)

−
∂αv1(s, t)

∂tα

+
∂αv2(s, t)

∂tα
= 0. (24)

After implementing the step-5 of sec-3 on Equations (22–24), we
get following zero-order, 1st-order and 2nd-order results:

v0 (s, t) = sin (πs) , (25)

v1 (s, t) =
c1(π

4 −
1

4
(1+ π4)(−t2)) sin(πs)tα

Γ (α + 1)
, (26)

v2 (s, t) =
((1+ π4)c1(c1 + 1)+ (π4 − 1)c2) sin(πs)t

α+2

4Γ (α + 1)

+
π8c21 sin(πs)t

2α +
π4(1+ π4)(α + 2)c21 sin(πs)t

2α+2

8(2α + 1)

Γ (2α + 1)

+
π4c1(c1 + 1) sin(πs)tα

Γ (α + 1)
+

π4c2 sin(πs)t
α

Γ (α + 1)
. (27)
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After using Equations (25–27), we get the second order solution
as follows

v (s, t) =
1

8
sin (πs)

(

π4c21
(

(α + 2) t2 + π4
(

16α + (α + 2) t2 + 8
))

t2α

Γ (2α + 2)

+
2
(

c1 (c1 + 2)
(

t2 + π4
(

t2 + 4
))

+ c2
(

π4
(

t2 + 4
)

− t2
))

tα

Γ (α + 1)
+ 8

)

. (28)

Example 2
We take the 4rth-order TFPPDE of the form

∂αv(s, t)
∂tα + ∂4v(s, t)

∂s4
=
(

π4 − 1
)

etsinπs,

s ∈ [0, 1] , t > 0, µ = 1, 1 < α ≤ 2.
(29)

Initial conditions

v (s, 0) = sin (πs) , vt (s, 0) = sin (πs ) .

Boundary conditions

v (0, t) = 0, vss (0, t) = 0,

v (1, t) = 0, vss (1, t) = 0.

Exact solution is
v (s, t) = et sin (πs) . (30)

Compare the coefficients of like powers of embedding parameter
p, after substituting φ

(

s, p
)

in to optimal homotopy equation to
get zero-order, 1st-order, 2nd-order and higher-order (if needed)
deformed problems as under:

p0 :

∂αv0(s, t)

∂tα
= 0, (31)

p1 :

(

et sin (πs) + etπ4 sin (πs) −
∂4v0 (s, t)

∂s4
−

∂αv0(s, t)

∂tα

)

c1 −
∂αv0(s, t)

∂tα
+

∂αv1(s, t)

∂tα
= 0, (32)

p2 :

(

et sin (πs) + π4 sin (πs) cos(t)−
∂4v0 (s, t)

∂s4
−

∂αv0(s, t)

∂tα

)

c2

− c1

(

∂4v1(s, t)

∂s4
+

∂αv1(s, t)

∂tα

)

−
∂αv1(s, t)

∂tα
+

∂αv2(s, t)

∂tα
= 0.

(33)

After implementing the step-5 of sec-3 on Equations
(31–33), we develop the following zero-order, 1st-order
and 2nd-order results.

v0
(

s, t
)

= t sin
(

πs
)

+ sin
(

πs
)

, (34)

v1
(

s, t
)

=
√

πc1t
α sin

(

πs
)(

2π
7
2
(

α + t + 1
)

−
(

1+ π4
)

2−α
(

2t2

4 + t2t
4

)

Γ
(

α + 2
))

2Γ
(

α + 2
) , (35)

v2
(

s, t
)

=
1

8
tα sin

(

πs
)

(

8π8c21t
α+1

Γ
(

2α + 2
)

−
π

9
2
(

1+ π4
)

21−αc21 Γ
(

α + 3
)

tα+2

Γ
(

2α + 3
) −

π
9
2
(

1+ π4
)

2−αc21 Γ
(

α + 4
)

tα+3

Γ
(

2α + 4
)

+
8π8c21t

α

Γ
(

2α + 1
) +

8
(

c21 + c1 + c2
)(π4

(

α+t+1
)

− 1
4

(

1+π4
)

t3

α+1 − 1
4

(

1+ π4
)

t2
)

Γ
(

α + 1
)

)

. (36)

After using Equations (34–36), we get the second order solution
as follows:

v
(

s, t
)

=
1

8
sin
(

πs
)

(

−

2−αc1t
α
(

2α+1
(

t2 + π4
(

t2 − 8
))(

α + t + 1
)

+
(

1+ π4
)√

π
(

t + 2
)

t2 Γ
(

α + 2
))

Γ
(

α + 2
)

−
2c2
(

t2 + π4
(

t2 − 4
))(

α + t + 1
)

tα

Γ
(

α + 2
)

+ c21t
α

(

−
π

9
2
(

1+ π4
)

2−α Γ
(

α + 3
)(

4α +
(

α + 3
)

t + 6
)

tα+2

Γ
(

2α + 4
)

+
8π8

(

2α + t + 1
)

tα

Γ
(

2α + 2
)

−
2
(

t2 + π4
(

t2 − 4
))(

α + t + 1
)

Γ
(

α + 2
)

)

+ 8t + 8

)

. (37)

DISCUSSION OF RESULTS

In the last section, a detailed algorithm for OHAM is presented
for parabolic equations of arbitrary fractional order, and a
description is designed for the examples in the above section
which gives remarkably valid results for the TFPPDEs without
domain discretization. OHAM does not require any higher order
solutions to initiate the process.

In the Tables 1A, 2A for examples 1 and 2 represent the values
of auxiliary constants c1 and c2 for distinct values of α,α =
1.5, 1.75, and 2. Tables 1B, 2B for examples 1 and 2 represent the
approximate and exact solutions with absolute error for distinct
values of α at fixed time t = 0.01, and also error norms of
example 1 are L2 = 2.48306 × 10−5, L∞ = 1.11348 × 10−5

and error norms of example 2 are L2 = 3.76272 × 10−7, L∞ =
1.68732× 10−7, which demonstrates the validity and accuracy of
the suggested scheme.

Figures 1, 2, 4 for example 1 represent the exact solution,
approximate result and absolute error for fixed value α = 2.
Figure 3 for example 1 represents the 2D results for different
values of α, α = 1.5, 1.75 and 2 at fixed value of t =
0.01. Figures 5, 6, 8 for example 2 represent the exact solution,
approximate result and absolute error for fixed value α = 2.
Figure 7 for example 2 represents the 2D results for different
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TABLE 1A | Shows the order of solution of problem-1 with α.

α c1 c2

1.5 −0.00023970059767714635 −0.004433615478664607

1.75 −0.00036010106878677054 −0.005492424284324476

2.0 −0.0005420552371218715 −0.006893703812240392

TABLE 2A | Shows the order of solution of problem-2 with α.

α c1 c2

1.5 −0.0008721941975312075 0.009452825526087602

1.75 −0.0007319603747448314 0.01166646474774557

2.0 0.00034649675001248057 0.01303912473486976

TABLE 1B | Shows the solutions and absolute error of problem-1 for various

values of α.

S α = 1.5 α = 1.75 α = 2 Exact Abs. Error

0 0 0 0 0 0

π
10 0.834054 0.834255 0.834322 0.834313 9.29844 × 10−6

π
5 0.919509 0.91973 0.919804 0.919794 1.02511× 10−5

3π
10 0.179665 0.179708 0.179722 0.17972 2.00299 × 10−6

2π
5 −0.721436 −0.72161 −0.721668 −0.72166 8.04292 × 10−6

π
2 −0.975017 −0.975252 −0.97533 −0.975319 1.087 × 10−5

3π
5 −0.353478 −0.353563 −0.353592 −0.353588 3.94074 × 10−6

7π
10 −0.585323 0.585646 0.585511 0.58550 6.52546 × 10−6

4π
5 0.998771 0.999012 0.999092 0.58550 1.11348 × 10−5

9π
10 0.515779 0.515904 0.515945 0.515939 5.75016 × 10−6

π −0.430146 −0.43025 −0.430284 −0.43028 4.79548 × 10−6

FIGURE 1 | Surface of Exact solution for TFPPDE (20) with α = 2.

values of α, α = 1.5, 1.75 and 2 at fixed value of
t = 0.01. All the above figures indicate the accuracy,
suitability and effectiveness of the suggested algorithm. It
is clear that as we proceed along the domain, we obtain

TABLE 2B | Shows the solution and absolute error of problem-2 for distinct

values of α.

S α = 1.5 α = 1.75 α = 2 Exact Abs. Error

0 0 0 0 0 0

π
10 0.835204 0.835192 0.835189 0.835189 1.40905 × 10−7

π
5 0.920776 0.920763 0.92076 0.92076 1.55341 × 10−7

3π
10 0.179912 0.17991 0.179909 0.179909 3.03524 × 10−8

2π
5 −0.72243 −0.72242 −0.722418 −0.722418 1.21879 × 10−7

π
2 −0.976361 −0.976347 −0.976344 −0.976344 1.64719 × 10−7

3π
5 −0.353965 −0.35396 −0.353959 −0.353959 5.97163 × 10−8

7π
10 0.586129 0.586121 0.586119 0.586119 9.8884 × 10−8

4π
5 1.00015 1.00013 1.00013 1.00013 1.68732 × 10−7

9π
10 0.51649 0.516483 0.516481 0.516481 8.71354 × 10−8

π −0.430739 −0.430733 −0.430732 −0.430732 7.26686 × 10−8

FIGURE 2 | Surface of Approximate solution for TFPPDE (20) with α = 2.

FIGURE 3 | Approximate solutions for TFPPDE (20) for distinct values of α =
1.5, 1.75, 2.

consistent validity. In the above discussion (Tables 1B, 2B)
show an excellent agreement between the approximate and
exact solutions.
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FIGURE 4 | Absolute error for TFPPDE (20) at α = 2.

FIGURE 5 | Surface of Exact solution for TFPPDE (29) with α = 2.

CONCLUSIONS

In this work, the TFPDE are examined by a semi-analytical
scheme. The problems in hand are solved by OHAM. OHAM
is incredibly effective for fractional order parabolic partial
differential equations. The solutions obtained from OHAM are
smooth enough to be compared with the exact solutions. The
graphical reviews show the smoothness of the solutions. The
error estimations with the exact solutions are of order 10−6.
The tabular and graphical reviews of the solutions and errors
are presented for different values of 1 < α ≤ 2 which are
convergent. L2 error and L∞ error norms are calculated which
show the error bounds. The error bound is of order 10−7. This is
incredibly excellent.

This article focuses on the approximate solution of the
parabolic equation which has many applications in engineering
and physical sciences. The contribution of this article is 3-fold:
first, we briefly defined the concept of fractional derivative,
then developed the mathematical model. In the last step we
implemented OHAM to find the solution of the model. The
results are graphically represented and shown in tabular form

FIGURE 6 | Surface of Approximate solution for TFPPDE (29) with α = 2.

FIGURE 7 | Approximate solutions of TFPPDE (29) for distinct values of α =
1.5, 1.75, 2.

FIGURE 8 | Absolute error for TFPPDE (29) at α = 2.

to show the novelty and credibility of our method. In the
future, we are interested in implementing OHAM on the system
of fractional order partial differential equations in a more
general way.
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