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The study of non-equilibrium quantum dynamics has recently received attention.

However, the nature and effects of non-equilibrium, such as detailed-balance breaking

and the relationship to the underlying intrinsic geometry, is still unclear. In this study,

we show that a gauge field will be induced by non-equilibrium in the coherence

representation. Furthermore, we show that its internal geometrical curvature is directly

related to the degree of detailed balance breaking. The non-equilibrium of the quantum

system induces an intrinsic geometric curvature which can enhance the quantum

coherence, leading to the possibility of a space time origin for non-local quantum

correlations or the possibility of curved space time emergence from non-equilibrium

quantum dynamics. We also uncovered that the internal curvature of the gauge field

provides a bridge to connect the generalized quantum fluctuation dissipation theorem

to the fluctuation theorem and time irreversibility of quantum dynamics. The quantum

time irreversibility is due to the path dependent factor along any particular path in an

internal curved space, which is analogous to the Wilson lines (or Wilson loops) in Abelian

gauge theory. We also found that the steady state quantum coherence disappears

when the non-trivial internal curvature vanishes for the quantum system coupled with

environments. When the curvature is relatively small, indicating weak detailed balance

breaking, the coherence increases as curvature increases. The internal curvature can

provide a general and direct quantitative measure of the detail-balance breaking for

any quantum/classical non-equilibrium systems, even without knowing the underlying

steady state distribution or the steady state flux. Using an example of two harmonic

oscillators, coupled to two environments with different temperatures, we explicitly show

the dependence of the internal curvature and quantum coherence.
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1. INTRODUCTION

With the recent progress made in experimental and theoretical
studies on quantum synchronization, energy/charge transports
in molecular junctions, and quantum information devices [1–6],
non-equilibrium quantum systems characterized by detailed-
balance breaking have attracted more attention. However, it
remains challenging to understand the fundamental nature
and underlying mechanisms of the non-equilibrium quantum
systems, for example, the effect on quantum coherence and
entanglement [7–10].

For non-equilibrium systems at the classical level, it has
been shown that the driving force for the dynamics of non-
equilibrium systems can be decomposed into the gradient of a
potential, quantified by the steady state probability distribution
and a curl flux (current) quantified by the steady state probability
flux [11]. The non-trivial curl flux provides a direct measure of
the degree of the intrinsic non-equilibrium: the detailed balance
breaking [12, 13]. Given a complex non-equilibrium system, the
quantification of the curl flux requires the information of the
resulting dynamics in the long run which is often challenging
to obtain. In our recent work [14] on classical non-equilibrium
systems, a connection between the curl flux or the detailed-
balance breaking and an internal curvature of a gauge field [15]
was uncovered. This leads to a new and geometric perspective of
classical non-equilibrium physics: it is the internal curvature that
leads to the detailed-balance breaking and the time irreversibility
in non-equilibrium dynamics.

Therefore, it will be interesting to know how this concept
can be extended to non-equilibrium quantum systems. In this
work, using coherent phase space representation in quantum
mechanics [16–19], we derive the gauge field and internal
curvature to a generic class of non-equilibrium bosonic quantum
systems coupled with the environments [9, 10]. The internal
curvature of the gauge field, which is derived from the
fundamental dynamics without requiring numerical or analytical
steady state solution, provides a direct measure of detailed-
balance breaking for non-equilibrium quantum systems. In
addition, it provides a new and geometric view for the general
nature and behaviors of non-equilibrium quantum systems, such
as the fluctuation-dissipation theorem (FDT), the fluctuation
theorem, and time irreversibility. In particular, the Wilson
lines/loops of the gauge theory provide the direct measure of
time irreversibility of non-equilibrium quantum systems. On
the other hand, quantum coherence, which characterizes the
quantum nature such as interferences, is also shown to be
connected to the internal curvature. When the internal curvature
is zero, there is no detailed-balance breaking and no steady
quantum coherence. Vice versa, when the internal curvature
is nonzero, detailed-balance breaking emerges with non-zero
quantum coherence. From here, we can develop a new view in
non-equilibrium quantum physics: the steady state coherence
is associated with internal curvature quantified by the degree
of the detailed-balance breaking. The non-equilibrium of the
quantum system induces an intrinsic geometric curvature which
can enhance the quantum coherence, leading to the possibility
of the space time origin for the non-local quantum correlations

or the possibility of curved space time emergence from non-
equilibrium quantum dynamics.

As an explicit example, we study two harmonic oscillators
coupled to two heat baths. For the first time, we explicitly
calculate the internal curvature and associated gauge field for
a specific non-equilibrium quantum system, which can be
measured and examined in experiments. Furthermore, in this
quantum system, we demonstrate the dependence of quantum
coherence on the internal curvature. It is found that, when a
quantum system is not very far away from the equilibrium,
the quantum coherence increases with the internal curvature
monotonically, which can also be tested in future experiments.

2. BOSE-HUBBARD MODEL AND
QUANTUM MASTER EQUATION IN
COHERENT SPACE

In this study, to quantify the gauge field and the curvature
introduced by non-equilibrium quantum flux, we consider the
Bose-Hubbard model on N sites with each site coupled to two
environments with site-dependent coupling strengths [9, 10]. It is
expected that the temperature difference of the two environments
can lead to non-equilibrium quantum dynamics.

By using creation/annihilation operators, the free
Hamiltonian of the system and the baths can be written as:

H0 =
N
∑

i=1

ǫia
†
i ai +

∑

i6=j

1ija
†
i aj +

g

2

N
∑

i=1

a†
i a

†
i aiai

+
2
∑

v=1

∑

k

h̄ωkb
(v),†
k b

(v)
k

(1)

and the interactions between the sites and baths are given as

Hint =
N
∑

i=1

2
∑

v=1

∑

k

f
i(v)
k (a†

i b
(v)
k + aib

(v),†
k ) (2)

In what follows, for simplicity without the loss of generality, we
will focus first on the case where the nonlinear self-coupling
strength is small (set to zero): g = 0. 1ij are the hopping
rates between different sites, which are real and symmetric. The

creation/annihilation operators a†
i /ai creates/annihilates bosons

on the i-th site, while b
(v),†
k /b

(v)
k create/annihilate bosons of mode

k in the v-th environment.
In the interaction picture, the dynamics of the annihilator

of the system is given as: ih̄ȧn = [an,H0] = ǫnan +
∑

j 6=n 1njaj. Following some standard procedures, after tracing

out the environmental influences under certain approximations
[18], quantum master equation (QME) in the interaction picture
governs the time evolution density operator ρs of the reduced
dynamics as:

dρs

dt
=
[

Dν
l

(

alρsa
†
ν − a†

νalρs

)

+ D̄ν
l

(

a†
l
ρsaν − aνa

†
l
ρs

)]

+h.c.

(3)
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where the Einstein’s summation rule is applied. The dissipation
rates D

µ

l
, D̄

µ

l
are given in the Supplementary Materials, which

contains parameters of the form nTω = 1/(eh̄ω/kBT − 1), i.e., the
mean number of bosons with frequencyω in thermal equilibrium
at temperature T. The non-equilibrium dynamics can emerge
under different temperatures of the two environments while
assuming identical coupling strengths to both environments:

f
i(1)
k = f

i(2)
k ; i = 1, 2, ...,N.

One conventional way to solve QME in Equation (3) was to
write the density matrix as a supervector in Liouville space [20,
21]. However, this strategy gives rise to an infinite dimensional
Fock space for bosons, which makes it difficult to manipulate.

Here we will consider the coherent representation, which
was first developed by Glauber [18], with the establishment
of a close analog to classical Fokker-Planck equations. The
coherent state is the eigenstate of the annihilation operators and
satisfies: âj|{αi}〉 = αj|{αi}〉. The coherent state is introduced
in a wide range of physical systems, from quantum harmonic
oscillators, quantum optics, superconductivity, superfluid, to
string theory. Coherent states mostly describe the classical-like
states by displacing the ground-state wave packet from its origin,
which minimizes the uncertainty relation. On the basis of Fock
states, the coherent state can be written as:

|αi〉 = e−
|αi |2
2

∞
∑

ni=0

α
ni
i√
ni!

|ni〉 (4)

with the probability of in state |ni〉 following Poissonian
distribution and the average boson number 〈n̂i〉 = |αi|2.

Then the density matrix can be expanded by the coherent
states as: ρs(t) =

∫
∏N

m=1 d
2αm P({αi}, {α∗

i }, t)|{αi}〉〈{αi}|.
By introducing the short notation α ≡ {αi}, the resulting PDE

takes the form of the classical Fokker-Planck equation:

∂

∂t
P(α,α∗, t) =

[

(D
µ

l
− D̄

µ

l
)

(

∂

∂αµ

αl +
∂

∂α∗
µ

α∗
l

)

+D̄
µ

l

(

∂2

∂α∗
µ∂αl

+ ∂2

∂αµ∂α∗
l

)

]

P(α,α∗, t) (5)

with a quasiprobability distribution P(α,α∗). The non-negative
quasiprobability P(α,α∗) acts like an ordinary probability
distribution in Fokker-Planck equations with dependence on
complex variables [22].

The driving force (D
µ

l
− D̄

µ

l
)αl represents the environmental

influences from tracing out the baths. This driving force is linear
in the coherent coordinate αl, which will push the system to the
coherent state with larger |α|. Since |α|2 represents the average
boson number and the large boson number represents a higher
average energy of the system, this driving force, which is due to
the coupling to the environment heat baths, will effectively drive
the quantum system to a higher energy level.

The diffusion term D̄
µ

l
represents the transitions between

different energy levels of each site (for diagonal diffusion matrix
elements) and between different sites (for off-diagonal diffusion
matrix elements). In particular, the off-diagonal diffusion matrix

elements of D̄
µ

l
govern coupling between coherence and

population dynamics for different coordinates αµ and αl in
coherent space. Since the coherent state |αi〉 is the superpositions
of Fock states |ni〉 for sites i, The off-diagonal term of D̄

µ

l
naturally represents the coherence in Fock states |ni〉 for site i,

which is introduced by interaction terms
∑

i6=j 1ija
†
i aj. When

coupling between different sites 1ij → 0, the diffusion matrix
will have no off-diagonal terms between different sites and the
density matrix P(α,α∗) in coherent space can be decomposed
into the production of density matrices in sub-space of different
coherent coordinates: P(αi,αj,α

∗
i ,α

∗
j ) = Pi(αi,αj)Pj(α

∗
i ,α

∗
j ).

On the other hand, with no interaction between different sites,
obviously the coherence of density matrix ρs in Fock space |ni〉
will vanish as well. Later, we will uncover the important link to the
geometrical curvature introduced by non-equilibrium dynamics.

3. FORCE DECOMPOSITION, FLUX

In classical non-equilibrium dynamical systems, the dual
description with both potential and flux has been identified
and quantified to determine the global dynamics [11, 13, 23].
There, in the continuous space, the non-equilibrium dynamics
are governed by Fokker-Planck equations with a driving force
which can be decomposed into the gradient of a potential and a
curl flux, quantifying the degree of the detailed-balance-breaking.
Therefore, by observing the analogous form of the density matrix
dynamical equation (5), a similar investigation can be applied for
non-equilibrium quantum systems.

Defining the probability flux J as Jµ = F̃µP − D̃µν∂νP,
and quantum Fokker-Planck equation (5) can be written as a
continuity equation ∂tP + ∇ · J = 0 in coherent space. F̃µ is the
driving force in the complex coherent state space xµ ≡ {αi,α

∗
i }

with i = 1, 2, ...,N representing N different sites, and D̃µν are
symmetric diffusion coefficients:

F̃a = −
N
∑

l=1

[

(γ (1)
a + γ (2)

a )δal

]

αl,

D̃al∗ =
D̄a
l
+ D̄l

a

2

(6)

Here, starred indexes indicate complex components

corresponding to the coordinates {α∗
i }. γ

(i)
a =

πN (ν̄)(f
a(i)
ν̄ )2/h̄2, i = 1, 2 is the damping coefficient depending

on the site index andN (ν̄) is the density of states.
The steady-state quasiprobability distribution satisfies ∂tPss =

0 and the steady-state probability flux Jss is given by

Jssµ = F̃µPss − D̃µν∂νPss (7)

which implies that Jss is a curl flux (a solenoidal vector field)
satisfying ∇ · Jss = 0. This does not necessarily mean that
the flux Jss = 0. Instead, due to the detailed-balance-breaking,
the divergence-free condition implies that the net non-zero
coherent state space dependent flux is a rotational curl field
in complex coherent state space. For general non-equilibrium
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systems without detailed balance: Jss 6= 0, the force term F̃µ can
not be written as the gradient of a potential. From Equation (7),
the driving force for non-equilibrium quantum dynamics can be
decomposed into two parts in the complex coherent state space:
a potential gradient term −D̃µν

∂
∂xν

U where U(x) = − ln Pss and

flux term −JSSµ /PSS ≡ −vSSµ , where vSSµ represents a probabilistic
velocity. In the next section, we can see that this potential-
flux landscape provides new insights into the non-equilibrium
quantum dynamics.

Analogous to the classical non-equilibrium systems, using Ito
calculus, dynamically quantum Fokker-Planck equation (5) is
equivalent to Langevin equations in the coherent state space:

dxµ

dt
= F̃µ + Bµνξν(t) (8)

where ξµ(t) is the Gaussian distributed white stochastic force:
〈ξµ(t)ξ

′
ν(t

′)〉 = δµνδ(t − t′) and the diffusion coefficient is given
as D̃µν = 1

2 (BB
T)µν .

4. GAUGE FIELD, CURVATURE

With the help of the driving force decomposition:

F̃µ = −D̃µν

∂

∂xν

U + vSSµ (9)

we can relate the non-equilibrium Quantum Fokker-Planck

equation Equation(5) with Abelian Gauge Theory and internal
curved space, as in Quantum Electrodynamics (QED)[15] and
classic Fokker-Planck equation. Defining the covariant derivative
∇µ = ∂µ − D̃−1

µν F̃ν = ∂µ + Aµ and the Abelian gauge field

Aµ = −D̃−1
µν F̃ν , flux can be rewritten as the form of covariant

derivative: D̃µν∇νP = −Jµ. As in Abelian gauge theory, the
curvature of internal charge space is:

Rµν = ∂µAν − ∂νAµ = [∇µ,∇ν]. (10)

where [·] indicates a commutator of two operators. According
to Equation (7), for the detailed balance case: JSS = 0,
Aµ = ∂µ ln(PSS) is a pure gradient and the curvature is zero:
Rµν = 0 which corresponds to a flat internal space. While for
non-equilibrium cases, A cannot be written as a gradient and
Rµν 6= 0 which corresponds to a curved internal space. On
the other hand, Rµν = 0 also means that Aµ can be written
as a pure gradient which can lead to a steady state solution PSS

to ensure JSS = 0. In other words, JSS = 0 and Rµν provide
equivalent measures of whether the detail balance is broken or
not. Therefore, by checking the internal phase space curvature
Rµν , we can know if the system is in detail balance or not without
knowing the steady state solution or by solving the steady state
flux. In addition, Rµν is a gauge invariant tensor: for a gauge
transformation Aµ → Aµ + ∂µφ, Rµν → R′µν = Rµν .
Furthermore, the probabilistic velocity v and the flux J are also
related to this internal curvature as:

∂µ(D̃
−1
νσ vσ )− ∂ν(D̃

−1
µσ vσ ) = Rµν (11)

As we discussed in the previous section, the interactions between
different sites introduce the coherence. When the coupling δij
between different sites vanish, the coherence between different
sites will go to zero. Meanwhile, the diffusion matrix D̃µν and its
inverse matrix D̃−1

µν will be diagonal. Then, following the linear

driving force F̃µ as in Equation (6), we have the gauge field Aµ ∝
xµ and the curvature of the internal charge space Rµν = 0. In
this way, we linked the coherence from the quantum systems to
the internal curvature of coherent state space, which only become
non-zero in non-equilibrium quantum dynamics.

Similar to Abelian gauge theory, we can define theWilson loop
orWilson line along any specific path ζ (t) = {α(t),α∗(t)} as:

Uζ (t)(x, y) = e−1sm = e
−
∫

ζ (t) Aµdζµ (12)

with

1sm(ζ (t)) = −
∫

ζ (t)
Aµdζµ (13)

=
∫

ζ (t)
D̃−1

µν F̃ν ζ̇µdt

The above expression for 1sm reminds the definition of the work
done by the force or heat dissipation, which may be used as
an analog to define quantum work or heat dissipation. Along a

closed loop C, we have the Wilson loop U(x, x) = e−1sCm . Using
the Stokess theorem, the phase factor can be written as:

1sCm = −
∮

C
Aµdζµ = −

∮

C
D̃−1

µνv
SS
ν dζµ

= −1

2

∫

6

dσµνRµν (14)

where 6 is the surface of the closed loop C, dσij is the area
element on this surface, and Rij is the curvature due to the gauge
field A. Under the gauge transformation Aµ → Aµ + ∂µφ, the
Wilson loop U(x, y) or the exponential of the quantum work,
or heat dissipation, transforms as: U(x, y) → eφ(x)U(x, y)e−φ(y),
while Rij and U(x, x), or the exponential of quantum work/heat
dissipation are gauge invariant. Therefore, the non-equilibrium
quantum dynamics and thermodynamics relate to an internal
curved coherent space. Here, the gauge field A can also be
considered as a Berry connection and the curvature Rij as a
Berry curvature. The non-zero flux in quantum dynamics breaks
the detailed balance, which leads to non-zero internal curvature
in the coherent state space and a global topological non-trivial
phase analogous to quantum mechanical Berry phase [11]. This
can also lead to quantum work and heat dissipation, which is
important for quantum thermodynamics. The phase factor of
Wilson line 1sm in Equation (13) plays an important role in the
time irreversibility for non-equilibrium systems [14, 24–27] and
generalized FDT for non-equilibrium dynamics [14].
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5. FLUCTUATION-DISSIPATION THEOREM,
FLUCTUATION THEOREM, AND
IRREVERSIBILITY FOR NONEQUILIBRIUM
QUANTUM SYSTEMS

Based on perturbation theories, Fluctuation-Dissipation
Theorem (FDT) for classic equilibrium systems under detailed
balance has been well studied [28–32]. Furthermore, such
investigations are extended to classic nonequilibrium systems
under detailed-balance breaking [14]. Since the operator master
equation (Equation 5) has the form of the classical Fokker-Planck
equation, the extension of FDT to non-equilibrium quantum
systems is straight forward [19]: With a linear perturbation
applied to the force: F̃µ → F̃′µ = F̃µ + h(t)δF̃µ, we have

R�(t − t′) (15)

=
∫

[d2α]�eL̂(t−t′){δF̃µ[−F̃ν − vSSν ]D̃−1
µν − ∂µδF̃µ}PSS

= −〈�(t)∂µδFµ(t
′)〉 −

[

〈�(t)δFµ(t
′)F̃ν(t

′)D̃−1
µν (t

′)〉

+〈�(t)δFµ(t
′)vSSν (t′)D̃−1

µν (t
′)〉
]

Equation (15) provides a general relation between the response
functions and the correlation functions, which is a general
extension of FDT to non-equilibrium quantum systems [19,
26, 27]. Here, 〈...〉 represents the average over the steady-
state quasiprobability distribution PSS. In particular, if the
perturbation is independent on α,α∗: δFµ′ = δFµ′µ, we obtain

R�
µ (t − t′) = −〈�(t)∂µ ln[PSS(x)]〉 (16)

= −
[

〈�(t)F̃ν(t
′)D̃−1

µν (t
′)〉 + 〈�(t)vSSν (t′)D̃−1

µν (t
′)〉
]

Equation (16) is a quantum generalization of FDT for non-
equilibrium systems. The response of the system can be
decomposed to two terms. The first term, which is present in FDT
of equilibrium systems obeying the detailed balance is related to
the equilibrium contribution due to the correlation of the variable
with the driving force. The second term is directly related to
the nontrivial non-zero flux which violates the detailed balance
and measures the degree of non-equilibrium (how far away the
system is from equilibrium).

For the quantum equilibrium system with detailed balance,
we have JSS = 0 and time reversal invariant: 〈�(t)Fν(x(t

′))〉 =
〈Fν(x(t))�(t′)〉. Using the Langevin equation (8) in coherent
state space, 〈Fµ(x(t))�(t′)〉 = 〈[ẋµ(t) − Bµνξν(t)]�(t′)〉 =
〈ẋµ(t)�(t′)〉, since random force will not correlate with � of
previous time (t > t′): 〈ξµ(t)�(t′)〉 = 0. Then, we arrive at:

R�
µ (t − t′) = −D̃−1

µν

[ d

dt
〈xν(t)�(t′)〉

]

(17)

Particularly, considering the operator �(x) = xη, we have

R
xη
µ (t − t′) = −D̃−1

µν

[ d

dt
〈xν(t)xη(t

′)〉
]

(18)

It can be considered as the FDT near quantum equilibrium,
which is analogous to classic equilibrium FDT[32].

If the quantum system is in non-equilibrium without
detailed balance, we have the flux J 6= 0 or curvature
Rµν 6= 0. Without detailed balance, the quantum system
is time irreversible: 〈�(t)Fη(x(t

′))〉 6= 〈Fη(x(t))�(t′)〉. For
general non-equilibrium quantum systems, due to the analogy
to the classical case in the coherent state representation,
we expect the quantum analog of the classical Fluctuation
theorem [24–27, 33–37] to have the similar analytical form
as:

ln
PSS(x′)P̃(x, t|x′, t′)
PSS(x)P̃(x′, t|x, t′)

= 1sm + ln
PSS(x′)

PSS(x)
(19)

with P̃(x, t|x′, t′) (P̃(x′, t|x, t′)) indicating the transition
probabilities of a forward (backward) path from x′

at time t′ to x at time t (from x at time t′ to x′ at
time t). We define the commutator 〈�(t)Fi(x(t

′))〉 −
〈Fi(x(t))�(t′)〉 =

∫

dxdx′�(x)Fi(x
′)A(x, x′, t − t′)

with

A(x, x′, t − t′) (20)

= PSS(x′)P(x, t|x′, t′)− PSS(x)P(x′, t|x, t′)

= PSS(x′)
∫

D[x]P̃(x, t|x′, t′)
(

1− PSS(x)

PSS(x′)
e−1sm

)

Here, D[x] is the path integral from x′(t′) to
x(t). Then, we can rewrite the response function,
as

R�
µ (t − t′) = −D̃−1

µη

[ d

dt
〈xη(t)�(t′)〉

]

−D̃−1
µη

∫

dxdx′�(x)Fη(x
′)A(x, x′, t − t′)

−D̃−1
µη〈�(t)vSSη (t′)〉 (21)

With the operator �(x) = xν , the response function
reads

Rν
µ(t − t′) = −D̃−1

µη

[ d

dt
〈xη(t)xν(t

′)〉
]

−D̃−1
µη

∫

dxdx′xνFη(x
′)A(x, x′, t − t′)

−D̃−1
µη〈xν(t)v

SS
η (t′)〉 (22)

The first term is the same as the equilibrium case. The
last two terms in Equation (22) are zero for equilibrium
cases with detailed balance, which are related to the
internal curvature due to the gauge field in space, as shown
in Equations (11) and (14). In Equation (20), the path-
dependent factor e−1sm = Uζ (t)(x, y) is defined as the Wilson
loop or Wilson line due to the internal curvature Rµν , as
Equation (12).
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FIGURE 1 | Coherence C(ρ) varies as the function of the curvature R. Red, Blue, and Green lines represent F2 = 4ps, F2 = 8ps, and F2 = 16ps, respectively. (A)

1ε = ε1 − ε2 = 0.2ev and (B) 1ε = ε1 − ε2 = 0.4ev. Other parameters are F1 = 2ps, T1 = 2100K, ε1 = 0.5ev, 1 = 0.3ev.

6. EXAMPLE

Nowwe illustrate the FDT for non-equilibrium quantum systems
by studying an explicit example: a simple model describing
energy transfer simulated by two harmonic oscillators coupled to
two environments with different temperatures.

H0 = ε̄1a
†
1a1 + ε̄2a

†
2a2 + 1̄(a†

1a2 + a†
2a1)

+
2
∑

ν=1

∑

k

h̄ωkb
(ν),†
k b

(ν)
k

(23)

and the interactions are

Hint =
2
∑

i=1

2
∑

v=1

∑

k

f
i(v)
k (a†

i b
(v)
k + aib

(v),†
k ) (24)

The operator Fokker-Planck equation (in the interaction picture)
in the coherent state space Equation (5) reads

∂P(αβ ,α
∗
β )

∂t
=
(

F̄1
∂

∂α1
α1 + F̄2

∂

∂α2
α2 + c.c.

)

P(αβ ,α
∗
β )

+
[

D̄1
1

∂2

∂α∗
1∂α1

+ D̄2
2

∂2

∂α∗
2∂α2

+ 2D̄

(

∂2

∂α∗
1∂α2

+ ∂2

∂α1∂α∗
2

)]

P(α,α∗)

with F̄1 = γ
(1)
1 + γ

(2)
1 , F̄2 = γ

(1)
2 + γ

(2)
2 and

D̄1
1 = (γ

(1)
1 nT1ω1

+ γ
(2)
1 nT2ω1

) cos2 θ + (γ
(1)
1 nT1ω2

+ γ
(2)
1 nT2ω2

) sin2 θ ,

D̄2
2 = (γ

(1)
2 nT1ω1

+ γ
(2)
2 nT2ω1

) sin2 θ + (γ
(1)
2 nT1ω2

+ γ
(2)
2 nT2ω2

) cos2 θ ,

D̄ = (γ
(1)
1 + γ

(1)
2 )(nT1ω2 − nT1ω1 )+ (γ

(2)
1 + γ

(2)
2 )(nT2ω2 − nT2ω1 )

2
sin θ cos θ

(25)

and nTωi
= 1/(eh̄ωi/kBT − 1), ω1 = ε̄1

h̄
, ω2 = ε̄2

h̄
, θ =

1
2 tan

−1( 21̄
ε̄1−ε̄2

).

Then, Abelian gauge field can be written as

Aµ = −D̃−1
µν F̃ν = −









Y1F̄1α
∗
1 + Y3F̄2α

∗
2

Y1F̄1α1 + Y3F̄2α2

Y3F̄1α
∗
1 + Y2F̄2α

∗
2

Y3F̄1α1 + Y2F̄2α2









(26)

where inverse matrix reads

D̃−1
µν =









0 Y1 0 Y3

Y1 0 Y3 0
0 Y3 0 Y2
Y3 0 Y2 0









(27)

with elements Y1 = D̄2
2

D̄1
1D̄

2
2−D̄∗D̄ , Y2 = D̄1

1

D̄1
1D̄

2
2−D̄∗D̄ , and

Y3 = D̄
D̄∗D̄−D̄1

1D̄
2
2
. It easy to calculate the curvature of the

internal charge space due to the non-trivial Abelian gauge
field Aµ:

Rµν =









0 0 0 R
0 0 R 0
0 −R 0 0
−R 0 0 0









(28)

with

R = Y3(F̄1 − F̄2) (29)

Therefore, without calculating steady state solution or the
steady state flux, we can obtain the curvature Rµν . It is
noticed that the internal curvature Rµν is proportional to
the Y3 ∼ D̄(F̄1 − F̄2). If internal curvature vanishes,
the coherence vanishes F̄1neqF̄2. The internal curvature can
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promote the emergence of the steady state coherence. On
the other hand, as we mentioned in the beginning of the
article, when the coupling between different sites vanishes, it
leads to vanishing coherence between different site D̄ = 0
or zero quantum correlations and the zero internal curvature
Rµν = 0. The detailed-balance is more broken as the
temperature difference between two baths increases, leading to
higher coherence.

In addition, the steady state of the two quantum oscillators
under the two baths is exactly solvable, which has the
form of:

PSS(α,α
∗) = 1

A
e−[A1|α1|2+A2|α2|2+BRe(α1α∗2)] (30)

with

A1 =
(F̄1 + F̄2)D̄

2
2

D̄1
1D̄

2
2
F̄1+F̄2
F̄1

− 4 F̄2
F̄1+F̄2

D̄ ∗ D̄
(31)

A2 =
(F̄1 + F̄2)D̄

1
1

D̄1
1D̄

2
2
F̄1+F̄2
F̄2

− 4 F̄1
F̄1+F̄2

D̄ ∗ D̄
(32)

B = 2D̄

D̄1
1D̄

2
2
F̄1+F̄2
F̄1F̄2

− 4 1
F̄1+F̄2

D̄ ∗ D̄
(33)

With a given density matrix, the coherence

C(ρ) = Tr(ρsa
†
1a2) =

∞
∑

n1=1

∞
∑

n2=1

〈n1 − 1, n2|ρs|n1, n2 − 1〉 (34)

can be used to quantify the non-local correlations between
the vibrational modes of spatially separated sites, from the
combination of off-diagonal elements of the density matrix
in the Fock space. In our model, the coherence can be
written as:

C(ρ) = 2D̄

F̄1 + F̄2
(35)

When the coupling between different sites D̄ = 0, we have
B = 0, which leads to C(ρ) = 0 and the curvature
R = 0. This means, when the coupling between different sites
vanishes, the coherence between spatially separated sites vanishes
at the steady state. In Figures 1A,B, we plot the coherence
C(ρ) vs curvature R with different sets of parameters. One
observation is that all curves cross the same points: when the
coherence C(ρ) is zero, the curvature R is 0. The coherence
C(ρ) depends on the curvature R in a nonlinear and non-
monotonic way. In the near-equilibrium region where R ≈
0, the quantum coherence C(ρ) increases with the internal
curvature R.

Therefore, quantum coherence is naturally connected to
the internal curvature of the gauge field. Without quantum
coherence, the gauge field is trivial associated with flat internal
space. On the other hand, when the internal space is not flat and

the gauge field is non-trivial, the detailed-balance is broken with
non-local quantum coherence. This provides a new fundamental
view in quantum physics: the non-local coherence can emerge
from the non-equilibrium detailed-balance breaking which can
be measured by an internal curvature of the gauge field in
phase space.

The steady state curl quantum flux is of
the form:

vSSα1 =
JSSα1
PSS

= (vSS
α∗
1
)∗ (36)

=
D̄ ∗ D̄( 12 −

F̄1
F̄1+F̄2

)A1

(F̄1 + F̄2)D̄
2
2

α1 + (
F̄1

F̄1 + F̄2
− 1

2
)D̄A2α2

vSSα2 =
JSSα2
PSS

= (vSS
α∗
2
)∗ (37)

=
D̄ ∗ D̄( 12 −

F̄2
F̄1+F̄2

)A2

(F̄1 + F̄2)D̄
1
1

α2 + (
F̄2

F̄1 + F̄2
− 1

2
)D̄A1α1

Here, from steady state curl quantum flux, we have the same
observations as from the internal curvature Rµν discussed above.

On the other hand, from the coherent space {α,α∗} to the
Fock space, the coherence between αi and αj is equivalent
to the coherence or coupling between eigenstate of different
sites: |ni〉 and |nj〉, since the coherence is introduced by the

interaction term
∑

i6=j 1ija
†
i aj. If the coupling between different

sites vanishes, we have D̄ → 0 and no interactions between sites,
which leads to the curvature Rµν → 0 and steady curl quantum
flux vSSµ → 0. Therefore, there will be no quantum correlations
regardless of the environmental conditions.

7. CONCLUSION

In this study, we have uncovered that non-equilibrium quantum
dynamics gives rise to an intrinsic geometric curvature which
can enhance quantum coherence. The non-equilibrium can
be characterized by the curvature. This may help reveal an
intrinsic connection between the space time geometry/topology
and the quantum nature. On the one hand, curved space time
may emerge from the non-equilibrium quantum dynamics,
on the other hand, the intrinsic underlying curved space
time may provide a possible channel (space time shortcut) or
physical origin for the non-local quantum correlations such as
coherence and entanglement. Furthermore, we illustrated that
intrinsic curvature could lead to new fluctuation-dissipation
theorem for non-equilibrium quantum systems. Therefore, the
curved space time geometry/topology from non-equilibrium
can give rise to new types of fluctuations in addition to
the original spontaneous fluctuations. The non-equilibrium
response is now linked not only to the spontaneous fluctuations
around the equilibrium but also to the non-equilibrium
fluctuations that originated from the curved geometry/topology
or non-equilibrium. We have also shown that the curved
geometry/topology characterized by the intrinsic curvature
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from non-equilibrium can generate quantum work and heat
dissipation important for quantum thermodynamics. We believe
our approach and results in the current study are general and
can be applied to further studymany interesting non-equilibrium
quantum systems.

AUTHOR CONTRIBUTIONS

HF and JW have contributed to the organization, research
performance, and writing of this article.

ACKNOWLEDGMENTS

JW would like to acknowledge the support from the National
Science Foundation PHY-76066.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2020.00129/full#supplementary-material

REFERENCES

1. Tao NJ. Electron transport in molecular junctions.Nat Nano. (2006) 1:173–81.

doi: 10.1038/nnano.2006.130

2. Joachim C, Ratner MA. Molecular electronics: some views on transport

junctions and beyond. Proc Natl Acad Sci USA. (2005) 102:8801–8.

doi: 10.1073/pnas.0500075102

3. Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science.

(2003) 300:1384–9. doi: 10.1126/science.1081572

4. Walter S, Nunnenkamp A, Bruder C. Quantum synchronization of

a driven self-sustained oscillator. Phys Rev Lett. (2014) 112:094102.

doi: 10.1103/PhysRevLett.112.094102

5. Ludwig M, Marquardt F. Quantum many-body dynamics

in optomechanical arrays. Phys Rev Lett. (2013) 111:073603.

doi: 10.1103/PhysRevLett.111.073603

6. Lee TE, Sadeghpour HR. Quantum synchronization of quantum van

der Pol oscillators with trapped ions. Phys Rev Lett. (2013) 111:234101.

doi: 10.1103/PhysRevLett.111.234101

7. Chen H, Wen X, Guo X, Zheng J. Intermolecular vibrational energy

transfers in liquids and solids. Phys Chem Chem Phys. (2014) 16:13995.

doi: 10.1039/C4CP01300J

8. Woutersen S, Bakker HJ. Resonant intermolecular transfer of vibrational

energy in liquid water. Nature. (1999) 402:507–9. doi: 10.1038/

990058

9. Zhang ZD, Wang J. Curl flux, coherence, and population landscape

of molecular systems: nonequilibrium quantum steady state, energy

(charge) transport, and thermodynamics. J Chem Phys. (2014) 140:245101.

doi: 10.1063/1.4884125

10. Zhang ZD, Wang J. Assistance of Molecular Vibrations on Coherent

Energy Transfer in Photosynthesis from the View of a Quantum

Heat Engine. J Phys Chem B. (2015) 119:4662. doi: 10.1021/acs.jpcb.

5b01569

11. Wang J, Xu L, Wang EK. Potential landscape and

flux framework of nonequilibrium networks: robustness,

dissipation, and coherence of biochemical oscillations. Proc

Natl Acad Sci USA. (2008) 105:12271–6. doi: 10.1073/pnas.

0800579105

12. Qian H. Open-system nonequilibrium steady state:? statistical

thermodynamics, fluctuations, and chemical oscillations.

J Phys Chem B. (2006) 110:15063–74. doi: 10.1021/

jp061858z

13. Wang J. Landscape and flux theory of non-equilibrium dynamical

systems with application to biology. Adv Phys. (2015) 64:1.

doi: 10.1080/00018732.2015.1037068

14. Feng H, Wang J. Potential and flux decomposition for dynamical

systems and non-equilibrium thermodynamics: curvature, gauge field, and

generalized fluctuation-dissipation theorem. J Chem Phys. (2011) 135:234511.

doi: 10.1063/1.3669448

15. Peskin ME, Schroeder DV. An Introduction to Quantum Field Theory.

Addison-Wesley Publishing Company (1995).

16. Wigner EP. On the quantum correction for thermodynamic equilibrium. Phys

Rev. (1932) 40:749. doi: 10.1103/PhysRev.40.749

17. Glauber RJ. Coherent and incoherent states of the radiation

field. Phys Rev. (1963) 131:2766. doi: 10.1103/PhysRev.131.

2766

18. Carmichael HJ. Statistical Methods in Quantum Optics 1: Master Equations

and Fokker-Planck Equations. New York, NY: Springer (1999).

19. Zhang Z, Wu W, Wang J. Fluctuation-dissipation theorem for

nonequilibrium quantum systems. Europhys Lett. (2016) 115:20004.

doi: 10.1209/0295-5075/115/20004

20. Esposito M, Harbola U, Mukamel S. Nonequilibrium fluctuations,

fluctuation theorems, and counting statistics in quantum systems.

Rev Mod Phys. (2009) 81:1665. doi: 10.1103/RevModPhys.

81.1665

21. Harbola U, Esposito M, Mukamel S. Quantum master equation

for electron transport through quantum dots and single molecules.

Phys Rev B. (2006) 74:235309. doi: 10.1103/PhysRevB.74.

235309

22. Risken H. The Fokker-Planck Equation: Methods of Solution and Applications.

Berlin: Springer-Verlag (1989).

23. Wang J, Zhang K, Wang E. Kinetic paths, time scale, and underlying

landscapes: A path integral framework to study global natures of

nonequilibrium systems and networks. J Chem Phys. (2010) 133:125103.

doi: 10.1063/1.3478547

24. Evans DJ, Cohen EGD, Morriss GP. Probability of second law

violations in shearing steady states. Phys Rev Lett. (1993) 71:2401–4.

doi: 10.1103/PhysRevLett.71.2401

25. Evans DJ, Searles DJ. Equilibrium microstates which generate

second law violating steady states. Phys Rev E. (1994) 50:1645–8.

doi: 10.1103/PhysRevE.50.1645

26. Seifert U. Entropy production along a stochastic trajectory and

an integral fluctuation theorem. Phys Rev Lett. (2005) 95:040602.

doi: 10.1103/PhysRevLett.95.040602

27. Speck T, Seifert U. Integral fluctuation theorem for the housekeeping heat. J

Phys A Math Gen. (2005) 38:L581. doi: 10.1088/0305-4470/38/34/L03

28. Kubo R. The fluctuation-dissipation theorem. Rep Prog Phys. (1966) 29:255–

84. doi: 10.1088/0034-4885/29/1/306

29. Ruelle D. General linear response formula in statistical mechanics, and the

fluctuation-dissipation theorem far from equilibrium. Phys Lett A. (1998)

245:220–4. doi: 10.1016/S0375-9601(98)00419-8

30. Colangeli M, Maes C, Wynants B. A meaningful expansion

around detailed balance. J Phys A Math Theor. (2011) 44:095001.

doi: 10.1088/1751-8113/44/9/095001

31. Marini Bettolo Marconi U, Puglisi A, Rondoni L, Vulpiani

A. Fluctuation-dissipation: response theory in statistical

physics. Phys Rep. (2008) 461:111. doi: 10.1016/j.physrep.2008.

02.002

32. Deker U, Haake F. Fluctuation-dissipation theorems for classical

processes. Phys Rev A. (1975) 11:2043. doi: 10.1103/PhysRevA.

11.2043

33. Wang GM, Sevick EM, Mittag E, Searles DJ, Evans DJ. Experimental

demonstration of violations of the second law of thermodynamics for

small systems and short time scales. Phys Rev Lett. (2002) 89:050601.

doi: 10.1103/PhysRevLett.89.050601

Frontiers in Physics | www.frontiersin.org 8 May 2020 | Volume 8 | Article 129

https://www.frontiersin.org/articles/10.3389/fphy.2020.00129/full#supplementary-material
https://doi.org/10.1038/nnano.2006.130
https://doi.org/10.1073/pnas.0500075102
https://doi.org/10.1126/science.1081572
https://doi.org/10.1103/PhysRevLett.112.094102
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.1039/C4CP01300J
https://doi.org/10.1038/990058
https://doi.org/10.1063/1.4884125
https://doi.org/10.1021/acs.jpcb.5b01569
https://doi.org/10.1073/pnas.0800579105
https://doi.org/10.1021/jp061858z
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1063/1.3669448
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1209/0295-5075/115/20004
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1063/1.3478547
https://doi.org/10.1103/PhysRevLett.71.2401
https://doi.org/10.1103/PhysRevE.50.1645
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0305-4470/38/34/L03
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1016/S0375-9601(98)00419-8
https://doi.org/10.1088/1751-8113/44/9/095001
https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1103/PhysRevA.11.2043
https://doi.org/10.1103/PhysRevLett.89.050601
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Feng and Wang Quantum Coherence by Geometric Curvature

34. Andrieux D, Gaspard P. A fluctuation theorem for currents and

non-linear response coefficients. J Stat Mech. (2007) P02006.

doi: 10.1088/1742-5468/2007/02/P02006

35. Hummer G, Szabo A. Free energy reconstruction from nonequilibrium single-

molecule pulling experiments. Proc Natl Acad Sci USA. (2001) 98:3658–61.

doi: 10.1073/pnas.071034098

36. Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev

Lett. (1997) 78:2690. doi: 10.1103/PhysRevLett.78.2690

37. Colangeli M, Rondoni L. Equilibrium, fluctuation relations and transport

for irreversible deterministic dynamics. Phys D. (2012) 241:681–91.

doi: 10.1016/j.physd.2011.12.005

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Feng and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 9 May 2020 | Volume 8 | Article 129

https://doi.org/10.1088/1742-5468/2007/02/P02006
https://doi.org/10.1073/pnas.071034098
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1016/j.physd.2011.12.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	The Quantum Coherence Induced by Geometric Curvature of Gauge Field in Non-equilibrium Quantum Dynamics
	1. Introduction
	2. Bose-Hubbard Model and Quantum Master Equation in Coherent Space
	3. Force Decomposition, Flux
	4. Gauge Field, Curvature
	5. Fluctuation-Dissipation Theorem, Fluctuation Theorem, and Irreversibility for Nonequilibrium Quantum Systems
	6. Example
	7. Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


