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In this article, we present the Jacobi spectral colocation method to solve the fractional

model of Liénard and Duffing equations with the Liouville–Caputo fractional derivative.

These equations are the generalization of the spring–mass system equation and describe

the oscillating circuit. The main reason for using this technique is high accuracy and

low computational cost compared to some other methods. The main solution behaviors

of these equations are due to fractional orders, which are explained graphically. The

convergence analysis of the proposed method is also provided. A comparison is made

between the exact and approximate solutions.

Keywords: fractional Liénard equation, fractional Duffing equation, spectral colocation method, Jacobi

polynomials, convergence analysis

INTRODUCTION

The standard Liénard equation (LE) is a generalization of the damped pendulum equation or
spring–mass system. Because this equation can be applied to describe the oscillating circuits,
therefore, it is used in the development of radio and vacuum-tube technology. The LE was given by
Liénard [1], and it is written as follows:

D′′v+ τ1 (v)D′v+ τ2 (v) = τ3(t), (1)

where τ1 (v)D′v is the damping force, τ2 (v) is the restoring force, and τ3(t) is the external
force. For different choices of the variable coefficients τ1 (v) , τ2 (v), and τ3 (t), the LE is used
in many phenomena. The Liénard Equation (1) becomes the van der Pol equation for τ1 (v) =
ε
(

v2 − 1
)

, τ2 (v) = v, and τ3 (t) = 0, which has many applications [2, 3].
By usual way, we cannot find the exact solution for these equations [4]. Kong [5] studied the LE

given as follows:

D′′v+ aD′v+ bv3 + cv5 = 0, (2)

where a, b, and c are real constants.
In particular, if we take c = 0 in the LE, then it reduces to the Duffing equation (DE). This special

case of the LE is known as the DE and is given as follows;

D′′v+ aD′v+ dv+ bv3 = 0, (3)

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00120
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00120&domain=pdf&date_stamp=2020-04-30
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:harendra059@gmail.com
mailto:harimsri@math.uvic.ca
https://doi.org/10.3389/fphy.2020.00120
https://www.frontiersin.org/articles/10.3389/fphy.2020.00120/full
http://loop.frontiersin.org/people/885297/overview


Singh and Srivastava Investigation of the Fractional-Order Liénard and Duffing Equations

where a, d, and b are real constants.
In recent years, fractional calculus has become an interesting

and useful part of mathematical analysis and applied
mathematics. The importance of fractional calculus arises
because of its non-local nature. The real-life applications of
fractional calculus are in fluid dynamics [6], signal processing
[7], chemistry [8], viscoelasticity [9], and bioengineering [10].
For some other applications, see Srivastava et al. [11], Kilbas et al.
[12], and Robinson [13]. Many physical problems are modeled
by fractional-order LE (FLE) and DE. In addition, we are familiar
with the fact that non-integer-order derivatives handle models
accurately. So, for the accurate modeling of these equations, it
is fundamentally needed to change integer-order equations to
fractional-order equations.

Fractional-Order Liénard Equation
The FLE is given by

Dαv(t)+ aD′v+ bv3 + cv5 = 0, 1 < α ≤ 2, t ∈ [0, 1], (4)

with the conditions:

v (0) = ξ , v′ (0) = η, (5)

where ξ and η are real constants.

Fractional-Order DE
The fractional-order DE (FDE) is given by

Dβv(t)+ aD′v+ dv+ bv3 = 0, 1 < β ≤ 2, t ∈ [0, 1], (6)

with the following conditions:

v (0) = µ, v′ (0) = σ , (7)

where µ and σ are real constants.
The innovator approach to solve the LE originates in the work

by Kong [5], who provided an exact solution of these equations in
some particular cases. For some particular choices of the involved
real constants, Feng [14] obtained an exact solution of these
equations, which were the generalization of Kong’s [5] results.
In 2008, Matinfar et al. [15] suggested a variational iteration
method in order to obtain the approximate solutions of the
LE. Subsequently, in 2011, a variational homotopy perturbation
method was applied in order to solve LE (see Matinfar et al. [16]).
Recently in 2017, a numerical method using homotopy analysis
transform method (HATM) in order to solve fractional LE was
proposed, and the uniqueness and existence of solutions were
also given (see Kumar et al. [17]). Further, Singh [18, 19] used
Legendre polynomials and Chebyshev polynomials, respectively,
to solve fractional models of these equations.

In this article, we propose an effective method for the FLE and
DE. The proposed method is a spectral colocation method based
on the applications of operational matrix of differentiation for the
Jacobi polynomials. Spectral colocation method is used to solve
many problems in differential calculus (see [20–29]). By using the
spectral colocation method, these equations are converted into
a system of non-linear algebraic equations whose solution gives

approximate solution to these equations. The derived solution is
discussed for different fractional orders. The obtained results are
compared with the exact solution and presented in the form of
numerical tables. Because fractional order derivatives are non-
local in nature, and integer-order derivatives are a special case
of fractional order derivative, it is important to study fractional
order models. The proposed method is easy to implement
because it is computer oriented. It is also a time-saving method.
The integer as well as fractional order behavior of solution is
shown in numerical section. Themain solution behaviors of these
equations are due to fractional orders, and using the proposed
method, these behaviors of solution are explained clearly.

PRELIMINARIES

In this article, we have considered the non-integer-order
differentiations in Liouville–Caputo (LC) sense, which are
defined as follows:

Definition 2.1 The LC non-integer derivative of order β is
defined as follows [30, 31]:

Dβ f (x) = Il−βDlf (x) =
1

(l− β)

x
∫

0

(x− t)l−β−1 d
l

dtl
f (t)dt,

l− 1 < β < l, x > 0. (8)

In this article, we have used Jacobi polynomials as a basis for
the approximation of unknown functions. The shifted Jacobi
polynomial is given as follows [32–34]:

λ
(e,f )
i (t)

=
i

∑

k=0

(−1)i−k Ŵ (i+ f+ 1) Ŵ (i+ k+ e+ f+ 1)

Ŵ
(

k+ f+ 1
)

Ŵ
(

i+ e+ f+ 1
) (

i− k
)

!k!
tk, (9)

where e and f are parameters in Jacobi polynomials as given in
Doha et al. [32].

The orthogonal property of Jacobi polynomials is as follows:

1
∫

0

λ
(e,f )
n (t) λ

(e,f )
m (t) g(e,f ) (t) dt = v

e,f
n δmn, (10)

where g(e,f ) (t) is weight function, and δmn is kronecker delta
function and given as

g(e,f ) (t)

= (1− t)etf and v
e,f
n

=
Ŵ(n+ e+ 1) Ŵ(n+ f + 1)

(

2n+ e+ f + 1
)

n!Ŵ(n+ e+ f + 1)
. (11)

A function f ∈ L2g[0, 1], with
∣

∣f ′′(t)
∣

∣ ≤ A, can be expanded
as follows:

f (t) = lim
n→∞

n
∑

i=0

ciλ
(e,f )
i (t) , (12)
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where f (t) = 〈ci, λ
(e,f )
i (t)〉, and 〈., .〉 denotes the usual inner

product space.
Equation (12), for finite dimensional approximation, is

written as follows:

f ∼=
m

∑

i=0

ciλ
(e,f )
i (t) = CTpm(t), (13)

where C and pm(t) are (m+ 1)× 1 matrices given by

C = [c0, c1, . . . ., cm]
Tand pm(t) = [λ

(e,f )
0 , λ

(e,f )
1 , . . . ., λ

(e,f )
m ]

T
. (14)

Theorem 1. If pn(t) = [λ
(e,f )
0 , λ

(e,f )
1 , . . . ., λ

(e,f )
n ]

T
be the shifted

Jacobi vector and if v > 0, then

Dvλ
(e,f )
i (t) = D(v)pn (t) , (15)

where D(v) =
(

q
(

i, j
))

is an (n+ 1)× (n+ 1) operational matrix
of non-integer derivative of order v, and its entries are given by

q
(

i, j, e, f
)

=
i

∑

k=[v]

(−1)i−k Ŵ (i+ f + 1) Ŵ (i+ k+ e+ f + 1)
(

i− k
)

! Ŵ (k+ f + 1) Ŵ (i+ e+ f + 1) Ŵ (k− v+ 1)

×
j

∑

l=0

(−1)j−l Ŵ (e+ 1) Ŵ (j+ l+ e+ f + 1) Ŵ (k+ l− v+ f + 1)
(

2j+ e+ f + 1
)

j!
(

j− l
)

!(l)! Ŵ (j+ e+ 1) Ŵ (l+ f + 1) Ŵ
(

k+ l− v+ e+ f + 2
) .

Proof. See Doha et al. [32], Ahmadian et al. [33], and

Bhrawy et al. [34].

OUTLINE OF THE METHOD

Here, we will describe the algorithm for the construction of
the solution for the fractional LE and DE using operational
matrix and colocation method [27–29]. Let us take the
following approximation:

v (t) =
n

∑

i=0

ciλ
(e,f )
i (t) = CTpn(t). (16)

Then, by taking the derivative of order one on both sides of
Equation (16), we get

D′v (t) = CTD′pn(t) ∼= CTD(1)pn(t), (17)

where D(1) is the operational matrix of differentiations for the
Jacobi polynomials of order 1.

Next, by taking the derivatives of orders α and β on both sides
of Equation (16), we find that

Dαv (t) = CTDαpn(t) ∼= CTD(α)pn(t) (18)

Dβv (t) = CTDβpn(t) ∼= CTD(β)pn(t), (19)

where D(α) and D(β) are the operational matrices of
differentiations for the Jacobi polynomials of orders α and
β , respectively.

From Equations (16) and (17), we can write,

v (0) = CTpn(0), (20)

v′ (0) = CTD(1)pn(0), (21)

Fractional-Order LE
Grouping Equations (4) and (16)–(18), we get

CTD(α)pn(t)+ aCTD(1)pn(t)+ b(CTpn(t))
3

+ c(CTpn(t))
5 = 0. (22)

The residual for Equation (22) is given as follows:

Rn (t) = CTD(α)pn(t)+ aCTD(1)pn(t)+ b(CTpn(t))
3

+ c(CTpn(t))
5
. (23)

Now, colocating Equation (23) at n−1 points given by ti = i
n , i =

1, 2, . . . , n− 1, we find that

Rn (ti) = CTD(α)pn(ti)+ aCTD(1)pn(ti)

+ b(CTpn(ti))
3 + c(CTpn(ti))

5
. (24)

Further, from Equations (5), (20), and (21), we can write

CTpn(0) = ξ , CTD(1)pn(0) = η, (25)

where ξ and η are real constants.
Using the colocation points in Equation (24), together with

Equation (25), we get a system of non-linear algebraic equations
with the same number of unknowns. The solution of this system
leads the solution for FLE.

Fractional-Order DE
Grouping Equations (6), (16), (17), and (19), we get

CTD(β)pn (t) + aCTD(1)pn (t) + dCTpn(t)+ b(CTpn(t))
3 = 0. (26)

The residual for Equation (26) is given as follows:

Rn (t) = CTD(β)pn (t) + aCTD(1)pn (t) + dCTpn (t)

+ b(CTpn(t))
3
. (27)

Now, colocating Equation (27) at the n − 1 points given by
ti = i

n , i = 1, 2, . . . , n− 1, we get

Rn (ti) = CTD(β)pn (ti) + aCTD(1)pn (ti) + dCTpn (ti)

+ b(CTpn(ti))
3
. (28)
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Further, from Equations (7), (20), and (21), we can write

CTpn(0) = µ, CTD(1)pn(0) = σ , (29)

where µ and σ are real constants.
By using the colocation points in Equation (28), together

with the Equation (29), we get a system of equations with the
same number of unknowns. The solution of this system leads the
approximate solution for the FDE.

CONVERGENCE ANALYSIS

Theorem 4.1. Let the function v :[0, 1] → R, and v ∈ C(n+1)[0, 1]
and vn(t) be the nth approximation obtained by using Jacobi
polynomials, then

E
g
v, n = ||v− vn||L2g [0,1], (30)

and the error vector in Equation (30) tends to zero as n → ∞.
Proof: See Rivlin [35], Kreyszig [36], and Behroozifar and

Sazmand [37].
Theorem 4.2. If E

α, g
D, n be the error vector for α order

operational matrix integration, which is obtained using (n + 1)
Jacobi polynomials. Then

E
α, g
D, n = D(α)pn (t) − Dαpn (t) , (31)

and the error vector in Equation (31) tends to zero as n → ∞.
Proof: See Kazem [38].
Let Vn be the n-dimensional subspace generated by

(

λ
(e,f )
i

)

0≤i≤n
for L2g[0, 1]. Let δn is the minimum value of

the functional on the space Vn. We can write

Vn ⊂ Vn+1 and δn+1 ≥ δn.

Theorem 4.3. Consider the functional L, then

lim
n→∞

δn (t) = δ (t) = inf
t∈[0,1]

L(t).

Proof: See Ezz-Eldien [39].
Functional for FLE is given as follows:

L (t) = Dαv(t)+ aD′v+ bv3 + cv5 = 0. (32)

Using Equations (16)–(18), we get

L(E) (t) = CTD(α)pn (t) + E
α, g
D, n + aCTD(1)pn (t) + aE

1, g
D, n

+ b(CTpn (t) + E
g
v, n)

3 + c(CTpn (t) + E
g
v, n)

5
. (33)

where

E
g
v, n = CTp (t) − CTpn(t), (34)

E
α, g
D, n = D(α)pn (t) − Dαpn (t) , (35)

E
1, g
D, n = D(1)pn (t) − D1pn (t) . (36)

Residual for Equation (33), is given as

R(E)n (t) = CTD(α)pn (t) + E
α, g
D, n + aCTD(1)pn (t) + aE

1, g
D, n

+ b(CTpn (t) + E
g
v, n)

3 + c(CTpn (t) + E
g
v, n)

5
. (37)

Now, similar as in Equation (23), colocating Equation (37), at
n− 1 points given by ti = i

n , i = 1, 2, . . . , n− 1, we get

R(E)n (ti) = 0. (38)

Using the colocation points in Equation (37), together with
Equation (25), we get a system of non-linear algebraic equations.
The solution of this system leads the solution for FLE. Let this
solution be denoted by δ∗n(t).

Using Theorems 4.1 and 4.2 and taking n → ∞,

δ∗n(t) → δn(t). (39)

From Theorem 4.3 and Equation (39), we achieve that

lim
n→∞

δ∗n(t) = δ(t).

Proof completed. Similar proof can be written for convergence
of DE.

NUMERICAL SIMULATION OF RESULTS

In this section, we implement our proposed algorithm by
testing it on some special cases of the LE and DE. We study
the applicability and accuracy of our proposed computational
method by applying it on the FLE and DE. The parameters in the
LE and DE are chosen in such a way for which the exact solution
is known.

Case 1. For the particular choices of the parameters a =
−1, b = 4 and c = 3 in Equation (4), the FLE is given as follows
(see Singh [18] and Tohidi et al. [20]):

Dαv (t) − D′v+ 4v3 + 3v5 = 0, 1 < α ≤ 2, (40)

v (0) = ξ =
√

τ

2+ δ
and v′ (0) = η = 0, (41)

where

τ = 4

√

3a2

3b2 − 16ac
and δ = −1+

√
3b

√

(3b2 − 16ac)
. (42)

The exact solution for the FLE given by Equation (40), with
conditions in Equation (41), is given by

v (t) =

√

τ sech2
√
−at

2+ δ sech2
√
−at

, at α = 2, (43)

where τ and δ are as given in Equation (42).
In Figures 1, 2, we have shown the approximate solution for

different values of α for the FLE choosing different parameters
in the Jacobi polynomials. In Figure 3, we have compared
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FIGURE 1 | Numerical solutions at α = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 1 at e = 1 and f = 1.

FIGURE 2 | Numerical solutions at α = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 1 at e = 0.8 and f = 0.8.

FIGURE 3 | Comparison of solutions at e = f = 1 and α = 2.

TABLE 1 | Comparison with the exact solution at α = 2 and n = 3 for Liénard

equation.

t Exact solution Present method Absolute error

0.00 0.643594 0.643594 0

0.01 0.643556 0.643524 3.2164e-5

0.02 0.643443 0.643314 1.2861e-4

0.03 0.643255 0.642965 2.8931e-4

0.04 0.642991 0.642477 5.1429e-4

0.05 0.642653 0.641894 8.0360e-4

0.06 0.642239 0.641082 1.1573e-3

0.07 0.641751 0.640176 1.5757e-3

0.08 0.641189 0.639130 2.0589e-3

0.09 0.640553 0.637946 2.6073e-3

0.1 0.639844 0.636623 3.2210e-3

TABLE 2 | Comparison with the methods of Singh [18, 19] at α = 2 and n = 3 for

Liénard equation.

t Present method Method Singh [18] Method in Singh [19]

0.1 0.6366235 0.6366235 0.6366235

0.2 0.6157811 0.6157811 0.6157811

0.3 0.5811714 0.5811714 0.5811714

0.4 0.5328986 0.5328986 0.5328986

0.5 0.4710672 0.4710672 0.4710672

0.6 0.3957817 0.3957817 0.3957817

0.7 0.3071462 0.3071462 0.3071462

0.8 0.2052653 0.2052653 0.2052653

0.9 0.0902432 0.0902432 0.0902432

1 −0.0378154 −0.0378154 −0.0378154

approximate solution by our proposed method and solution
obtained by the methods of Singh [18, 19] for integer-order LE.

Figures 1, 2 show that the period will be really affected by
the non-integer-order values, and the solution varies continually
from non-integer-order solution to integer-order solution and
coincides with the integer-order solution at α = 2. The solution
has some different behavior when the value of fractional order is
1.76, and this is because the main solution behavior of LE takes
place when α is very close to 2. Figure 3 shows that solution has
exact the behavior as the methods of Singh [18, 19]. In Table 1,
we have listed approximate and exact solutions for the integer-
order equation. Table 1 shows a good accuracy of the achieved
solution. In Table 2, we have listed approximate solution by our
method and the methods of Singh [18, 19]. Table 2 shows good
agreement with these methods.

Case 2. For the particular choices of the parameters a =
0.5, b = 25, and c = 25 in Equation (6), the fractional
DE is given as follows [see Singh [18, 19] and Nourazar and
Mirzabeigy [40]]:

Dβv (t) + 0.5D′v+ 25v+ 25v3 = 0, 1 < β ≤ 2, (44)

v (0) = µ = 0.1 and v′ (0) = σ = 0, (45)
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FIGURE 4 | Numerical solutions at β = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 2 at e = 1 and f = 1.

FIGURE 5 | Numerical solutions at β = 1.76, 1.8, 1.86, 1.9, 1.96, and 2 for

case 2 at e = 0.8 and f = 0.8.

The analytical solution using the differential transform method
(DTM) for fractional DE given by Equation (44), with the initial
conditions in Equation (45), is given by

v (t) = 0.1− 1.2625t2 + 0.2104t3 + 2.6828t4 − 0.5392t5

−2.6563t6 + 0.6152t7at α = 2. (46)

In Figures 4, 5, we have shown the behavior of the approximate
solution for different values of β for fractional DE for different
choices of the parameters in the Jacobi polynomials. In Figure 6,
we have compared approximate solution by our proposed
method and solution obtained by the methods of Singh [18, 19]
for integer-order DE.

Figures 4, 5 reveal that the solution varies continually from
the fractional-order solution to the integer-order solution and
coincides with the integer-order solution at β = 2. The solution

FIGURE 6 | Comparison of solutions at e = f = 1 and β = 2.

TABLE 3 | Comparison between results by our proposed method and DTM [40]

for fractional Duffing equation at β = 2 and n = 3 for case 2.

t Method in Nourazar

and Mirzabeigy [40]

Present method Absolute error

0.00 0.100000 0.100000 0.00000

0.01 0.099874 0.099874 7.0821e-7

0.02 0.099497 0.099502 5.4931e-6

0.03 0.098871 0.098889 1.7960e-5

0.04 0.098002 0.098041 4.1211e-5

0.05 0.096886 0.096964 7.7852e-5

0.06 0.095534 0.095664 1.3001e-4

0.07 0.093949 0.094148 1.9934e-4

0.08 0.092135 0.092422 2.8706e-4

0.09 0.090098 0.090492 3.9394e-4

0.1 0.087845 0.088366 5.2036e-4

has some different behavior when the value of fractional order is
1.76, and this is because the main solution behavior of DE takes
place when β is very close to 2. Figure 6 shows that solution has
the exact behavior as the methods of Singh [18, 19]. In Table 3,
we have listed the approximate and exact solutions by the DTM
method for the integer-order equation. Table 3 shows a good
accuracy of the achieved solution.

CONCLUSIONS

In this article, we have presented numerical solution and
simulation for fractional-order and integer-order LE and DE.
The proposed algorithm is easy to implement because the
construction of the operational matrix is sufficiently easy,
which makes our method remarkably attractive for practical
applications. In the numerical section, it is presented how the
approximate solution varies continuously for different values
of the fractional time derivatives and for the integer-order
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approximate solution is the same as the exact solution for the
fractional LE and DE. Recently, many equations in science
and engineering appear in the form of non-linear fractional
differential equations, which makes it necessary to investigate
the method of solution for such equations. The main advantage
of the proposed method is that it works for such type of
equations arising in science and engineering. In the future, we
can use operational matrices of different orthogonal polynomials
to achieve better accuracy.
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