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The formalism of Holographic Space-time (HST) is a translation of the principles

of Lorentzian geometry into the language of quantum information. Intervals

along time-like trajectories, and their associated causal diamonds, completely

characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-’t

Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates

the logarithm of the dimension of the Hilbert space associated with a diamond to one

quarter of the area of the diamond’s holographic screen, measured in Planck units.

The most convincing argument for this principle is Jacobson’s derivation of Einstein’s

equations as the hydrodynamic expression of this entropy law. In that context, the null

energy condition (NEC) is seen to be the analog of the local law of entropy increase.

The quantum version of Einstein’s relativity principle is a set of constraints on the mutual

quantum information shared by causal diamonds along different time-like trajectories.

The implementation of this constraint for trajectories in relative motion is the greatest

unsolved problem in HST. The other key feature of HST is its claim that, for non-negative

cosmological constant or causal diamonds much smaller than the asymptotic radius of

curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond

are constrained states of variables defined on the holographic screen. This principle

gives a simple explanation of otherwise puzzling features of BH entropy formulae, and

resolves the firewall problem for black holes in Minkowski space. It motivates a covariant

version of the CKN [1] bound on the regime of validity of quantum field theory (QFT)

and a detailed picture of the way in which QFT emerges as an approximation to the

exact theory.

Keywords: spacetime and information, holographic spacetime, quantum gravity, covariant entropy principle,

tensor network

1. INTRODUCTION

Every known human or computer language has the notion of time hard wired into every sentence.
One of Einstein’s great insights was that this notion is relative. Every information gathering system
has its own proper time, and part of every physical theory must be a prescription for understanding
the relations between the proper times of different systems. His second great insight, that “the speed
of light is finite,” can be thought of as the definition of what we mean by space and space-time. The
region of space accessible to a system grows at a finite rate as a function of the proper time interval.
The region of space-time accessible in a given time interval is called a causal diamond. One can
view time evolution along a time-like trajectory/set of nested causal diamonds as a foliation of the
space-time manifold into space-like leaves. The variety of such trajectories means that this can be
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done in many different ways. This led Einstein to formulate his
theory of gravitation as a theory of the Lorentzian geometry of
the space-time manifold.

Lorentzian geometry can be recast as a theory of timelike
trajectories and causal diamonds in a differentiable manifold. A
timelike trajectory is a one parameter choice of negative norm
tangent vectors, and defines a positive number, the proper time
interval, between any two points along the trajectory. The causal
diamond of a proper time interval is the set of all points that can
be connected to both the past and future tips of the interval by
timelike trajectories. The boundary of any finite area1 diamond
can be parametrized by two patches, with metrics

ds2± = du±A±
i (x, u

±)+ g±ij (x, u
±) dxidxj. (1)

The absolute maximum volume of the two Euclidean metrics g±ij ,

as a function of the null coordinates u± is called “the volume of
the holographic screen of the diamond,” which we will distort to
“the area of the diamond” as a shorthand.

Although Jacobson did not use the language of causal
diamonds, his seminal paper [2] showed that Einstein’s
gravitational equations follow as the hydrodynamics of a law
that equates the “entropy” of a diamond to a linear function
of its area. The null energy condition (NEC) then follows from
increase of entropy and is seen to be a thermodynamic statement,
which will have fluctuation corrections. Jacobson’s derivation of
Einstein’s equations uses the frame of reference of a maximally
accelerated trajectory to define energy. Such a system has infinite
temperature, which is the strongest argument that the entropy in
the covariant entropy bound [3] refers to the log of the dimension
of the Hilbert space of the diamond [4].

The essence of Jacobson’s argument, in the language of causal
diamonds, is that the holographic screen [4] of the diamond
is, by its definition, a maximum of the area on the boundary.
Therefore, if we consider a pencil of null geodesics on the
boundary of the diamond, approaching the holographic screen,
then the Raychauduri equation can be linearized in the vicinity
of the screen, and the increase of area can be written as

dA = Rµνk
µkνdλ, (2)

where λ is the affine parameter along the center of the pencil and
kµ is the null tangent vector. By appropriate choice of diamond,
kµ can be any null vector in space-time. The pair of future
directed null trajectories following the boundary of the diamond
past the holographic screen is the limit of a uniformly accelerated
Unruh trajectory, with infinite Unruh temperature. Defining
energy to be the limit of kµkνTµν , where T is a covariantly
conserved stress tensor, the equation dE = TdS, with S =

GNA/4, gives us exactly (in 4 dimensions)

kµkν(Rµν −
1

2
gµνR− 8πGNTµν) = 0. (3)

1Here we’re anticipating the definition of area that we are about to give. In the limit
of infinite area, the past and future halves of the diamond’s boundary do not have
to be joined differentiably. We also, by abuse of language, use the term area for the
d−2 volume of a space-like slice of boundary of a causal diamond in d dimensions.

This is the content of Einstein’s equation without the
cosmological constant (c.c.). We’ve thus derived the gravitational
field equations as the hydrodynamic equations of the area law,
and simultaneously shown that the c.c. is not a hydrodynamic
energy density.

The area law for entropy is the clue for understanding
locality/causality in a quantum theory of space-time. Given a
time-like trajectory, the causal diamonds of a nested series of
proper time intervals partition the interior of the largest diamond
into a sequence of quantum subsystems whose maximal entropy
is non-decreasing as a function of the length of proper time.
Causality is the statement that the smaller subsystems remain
unentangled with the rest of the degrees of freedom during the
relevant proper time intervals. This implies that time evolution
is naturally viewed trajectory by trajectory2 and that the natural
time slices inside a diamond must remain inside the diamond.
The Hamiltonian is perforce time dependent. This can be viewed
either as the quantum requirement of gradual entanglement of
subsystems or, macroscopically, as the geometric requirement
that time slices remain within a diamond. As Milne [5] first
appreciated, this kind of time slicing induces a redshifting of the
“energies” of distant objects3.

From a more philosophical point of view, what a formalism
based on these ideas is saying, is that time is fundamental, but
relative (trajectory dependent, many fingered), while space is
an emergent concept describing a measure of the amount of
quantum information required to describe a certain time interval.
The quantum analog of Einstein’s principle of relativity then
becomes apparent. Consider a pair of causal diamonds along
two different trajectories. There is a maximal causal diamond
in their intersection. The Covariant Entropy Principle (CEP)
assigns this diamond a Hilbert space of fixed dimension, which
will always be smaller (geometry) than the dimensions of either
intersecting diamond. Each parent diamond is a quantum system
with time dependent Hamiltonian and, given a choice of initial
pure state, will assign a sequence of density matrices to the
subsystem describing the intersection. The Quantum Principle of
Relativity (QPR) asserts that the two density matrices assigned by
the parent diamonds have the same entanglement spectra. This
constrains the choice of both the Hamiltonian and the initial state
in each diamond. We’ll outline below the utility of this principle
for trajectories at relative rest.We have not yet found amodel that
implements the QPR for pairs of trajectories in relative motion.

While the CEP allows us to localize quantum information
on the holographic screens of nested or intersecting diamonds,
it does not give us a clear definition of a traditional localized
excitation in the bulk of a given diamond. The clue to bulk
localization comes from two formulae in black hole physics. The
first is the entropy formula for Schwarzschild-de Sitter black
holes. The metric is

ds2 = −f (r)dt2 + dr2/f (r)+ r2d�2, (4)

2Jacobson’s derivation of Einstein’s equations from the first law of (local)
thermodynamics uses the energy along a particular maximally accelerated
trajectory and thus also points to a trajectory by trajectory view of time evolution.
3Milne was of course incorrect in assuming that the observed cosmological redshift
could be attributed entirely to this kinematic effect.
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where

rf (r) = −(r − R+)(r − R−)(r + R+ + R−), (5)

R2 = R2+ + R2− + R+R−, 2MR2 = R+R−(R+ + R−). (6)

R is the dS radius, andM is the parameter that becomes the black
hole mass in the R → ∞ limit. Everything is written in Planck
units. This formula shows that the introduction of any object with
a long range Schwarzschild field, at rest on a timelike geodesic
of dS space, creates an entropy deficit. The CEP identifies this,
when M is small compared to the maximal black hole mass in
dS space, as the deficit expected in a thermal ensemble with
temperature T = (2πR)−1, the Gibbons-Hawking temperature
[6]. In fact one can demonstrate a similar entropy deficit effect in
Minkowski space [7], which suggests that theMinkowski vacuum
is an infinite entropy ensemble.

The second hint that localized objects are constrained states of
holographic variables comes from the ordinary formula for the
entropy of a Minkowski black hole of massM when an additional
small mass m is dropped into it. Despite the fact that the small
mass is a very low entropy object, the final equilibrium state is a
state of much higher entropy

1S = 2πRSm. (7)

This indicates that before equilibration, the combined system
lived in a much larger Hilbert space than that of the original
black hole, but that the initial state had 2πRSm frozen degrees
of freedom. Inverting this process (by unitarity), we have a
derivation of theHawking temperature for emission of the system
of massm.

If the Hamiltonian that equilibrates the system has a natural
time scale RS and is a “fast scrambler” [8, 9], then the infalling
subsystem will remain isolated for a time of order RSln RS, and
this is the basis for the resolution of the “firewall paradox” [10–
12]. Again, the principle operating here is that a localized state
in the causal diamond formed by the horizon of the black hole of
massm+M is a constrained state of theHilbert space of that black
hole. Another important feature we learn from this discussion
is that the constraints must have the property that they isolate
the degrees of freedom of the small system, from that of the
black hole. This immediately suggests that the degrees of freedom
should form matrices, with a single trace Hamiltonian, and the
constraints implying that off diagonal matrices connecting the
“m-block” to the “M-block,” vanish.

Constraints can “propagate through a nested sequence of
causal diamonds,” giving a holographic interpretation of particle
trajectories. More properly we’ll see that these should be thought
of as jets of particles, including many soft gravitons whose
number changes with time. Indeed, we’ll see that “particle” is
a perturbative concept and jets are the fundamental scattering
states in models of quantum gravity in Minkowski space. The
trajectory of a jet, a quantum system with many states for fixed
momentum, is a much more robust semi-classical object than a
particle trajectory in quantum field theory.

We’ll see that the CEP, the QRP, the identification of particle
jets as constraints, and the fast scrambling properties of black

hole horizons give us a number of vital clues to the nature of a
general theory of quantum gravity. For example, the QRP enables
us to tie together jet interactions (some number of jets enter the
past boundary of a diamond and a possibly different number exit
its future boundary) in different causal diamonds, obtaining a
manifestly local, Feynman diagram like, description of transition
amplitudes. The same formalism can describe the production
and decay of high entropy meta-stable excitations with all of the
qualitative properties of black holes.

2. THE HOLOGRAPHIC VARIABLES OF
QUANTUM GRAVITY

The CEP implies that a finite area diamond corresponds to a finite
dimensional Hilbert space. The fact that the U(D) GellMann
matrices, which are closed under both commutation and anti-
commutation, form a basis for all complex matrices shows us
that this space is the fundamental representation of the super-
algebra SU(P|Q) for any integers P,Q such that P + Q = D.
That is to say, fermionic variables are inevitable in any finite
dimensional quantum system. This remark ignores the constraint
of spatial locality. A discrete, spatially local system can be defined
on the tensor product of finite dimensional Hilbert spaces sitting
at the points of some graph, whose links define what we mean
by nearest neighbor, next to nearest neighbor, etc. couplings.
Fermionic operators on the full Hilbert space will be non-local
functions of the bosonic site variables. In some cases [13–15]
a local theory of mutually commuting site variables, with a Z2
gauge invariance, can be rewritten as a local theory of fermions,
but this is not always the case.

The fast scrambling property of black holes [8, 9] implies
that the correct quantum theory cannot be local on the
holographic screen of a diamond4. Instead we will suggest that
the Hamiltonian should be invariant under a finite dimensional
approximation to the group of area preserving maps on the
sphere. The theory of fuzzy approximations to Euclidean
geometries has a long history. Traditionally it is viewed as the
replacement of the algebra of smooth, or continuous, functions
on the manifold by a finite dimensional non-abelian matrix
algebra. This can be developed in a systematic way for any
manifold with a Kahler or symplectic structure. In Banks
and Kehayias [16] we proposed a different approach, inspired
by Connes’ insight about the connection between the Dirac
operator and Riemannian geometry. The Dirac operator on
any spin manifold is an unbounded operator with spectrum
symmetric around 0 and compact inverse on the space of spinor
sections orthogonal to its discrete zero modes. Its eigenvalues
are invariant under any symmetries of the manifold, and its zero
mode spectrum encodes some of the topological properties. The
space of spinor bilinears is the space of all differential forms
on the manifold, so appropriate products of spinor bilinears
are proportional to its volume form and a Hamiltonian given

4In AdS space, for black holes larger than the radius of curvature, scrambling is

ballistic on length scales larger than the AdS radius. This is a consequence of the
AdS/CFT correspondence.
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by the integral over such products is invariant under area
preserving maps.

We fuzzify the geometry by putting a symmetric eigenvalue
cutoff P > 0 on the Dirac operator. For large P, the eigenvalue
degeneracy goes like Pd−2 where d is the space-time dimension,
so if each eigensection is quantized in a finite dimensional Hilbert
space of fixed dimension, then we get an area law for the maximal
entropy. On the d − 2 sphere, the counting of spinor spherical
harmonics is exactly that of anti-symmetric d − 2 tensors with
indices ranging from 1 to o(P) [16]. We can think of these as

little area elements. The matrix M
j
i ≡ ψi,a1...ad−3ψ† j,a1...ad−3 can

be viewed as a d − 3 sphere “band” on the surface of a d − 2
sphere and the trace of a product of these matrices is a “line
bundle” construction of the d−2 sphere from a succession of such
bands. In plainer language, it’s the picture of the d− 2 sphere as a
succession of “thick” d − 3 spheres along a polar coordinate

ds2 = dθ2 + sin2 θd�2
d−3. (8)

The bilinears in spinors are differential forms of varying degrees
and the trace is the integral over d − 2 forms formed as wedge
products of these elementary forms. Any action constructed from
sums of such single traces is invariant, in the formal continuous
limit, under area preserving maps. If we write

Hin(t) =
1

t
Tr P(

Mt× t

td−3
), (9)

where t is the proper time in a diamond, and P is a polynomial
of finite order whose coefficients are t independent in the large
t limit, then the leading term in the energy scales like Pd−3 as
t → ∞. The gaps between an infinite number of low lying
states and the ground state are o(1/t) in this limit. The CEP
indicates that P ∼ t should be proportional to the radius
of the sphere, in Planck units. The relation between the short
wavelength cutoff on the sphere, and the proper time/area of
the holographic screen, is a UV/IR correspondence, generalizing
Maldacena’s scale radius duality.

The full Hamiltonian of HST is more complicated than this in
constrained subspaces, which make the matrices block diagonal.
If we have a number of isolated blocks in a causal diamond of size
t5, then for each block of size nb we add

H
nb
in (t) = knd−3

b
+

1

nb
Tr P(

Mnb× nb

nd−3
b

), (10)

where k is a constant, which will be determined by the correct
normalization of energies in the limits discussed below. The
first term is the “asymptotically conserved energy of the jet
represented by the block,” while the second term represents
fragmentation of the jet into subjets constituents. The block
COULD also represent an isolated black hole in the diamond
and then the second term represents interactions on the black
hole horizon. Note that Hnb

in (t) is t independent. This is because

5At this point the reader should be prepared to understand “causal diamond” as
“tensor factor of the Hilbert space which interacts only with itself over the time
interval [−t, t].”

it represents excitations localized near the trajectory, which have
order 1 energies in “Milne” coordinates. There is also, of course,
an Hout(t) describing interactions of degrees of freedom outside
the diamond. We’ll see below that this is determined by the QRP.

The commutation relations for these variables that are
invariant under SO(d − 1) are

[ψA,ψ
B]+ = δBA. (11)

Here A,B are d − 2 dimensional antisymmetrized multi-indices
and the right hand side is the appropriately antisymmetrized
Kronecker symbol. These, and the Hamiltonian are invariant
under the largerU(t) group of unitaries, which can be interpreted
as a fuzzy approximation to the group of area preserving maps.
It has many SO(d − 1) subgroups under which the variables
transform as a sum of spherical harmonics up to some maximal
angular momentum (simply conjugate one SO(d − 1) subgroup
by a general element of U(t)).

If the ψ variables have another index A, apart from their
SO(d−1) spinor label we can try to view them as fuzzy spinors on
a higher dimensional manifold, of the form K ⊗M

1,d−1because
the spinor bundle on a product manifold is a tensor product of
spinors on the lower dimensional manifolds. More research is
needed to find restrictions on the commutation relations as a
function of the A label, which approach geometrically sensible
rules, where the anti-commutator of two spinor generators
involves forms integrated over closed cycles on a manifold, in the
limit that the number of A labels gets large.

Given the generators ψa1...ad−3 , we can define mutually
commuting Pauli operators by multiplying each fermion by
(−1)N−n whereN is the total number operator and n the number
operator of that particular species. The bilinear

ψA
a ψ

† b
A ,

becomes

σA
− aσ

A
3 aσ

b
3 Aσ

b
+ A.

Here A is a d − 3 component index, representing an interface
between two bands on the d − 2 sphere. So we can “bosonize”
these fermions without introducing any more non-locality than
was present in the original Hamiltonian. For models invariant
under the fuzzy version of area preserving maps, fermionic
variables are natural, invariant, and as local as a bosonic
presentation of the same Hamiltonian.

An alternative view of the fermionic variables of HST comes
from a proposal for generalized scattering theory for models
of quantum gravity in Minkowski space [17–19]. Ordinary
scattering theory for quantum field theories with a mass gap is
based on the infinite set of asymptotically conserved LSZ currents

j
f
µ = i(f±∂µφ − f±∂µφ). (12)

Here φ is an interacting Hermitian Heisenberg field and
f± normalizable positive or negative energy solutions of the
Klein-Gordon equation with the physical particle mass. Matrix
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elements of these currents in physical states are assumed to
be conserved near the conformal boundary of Minkowski
space, and this is true up to exponential corrections, to all
orders in perturbation theory. The physical Fock space is the
representation space of the algebra of these currents and the
Scattering operator intertwines been the past and future bases.
This formalism breaks down for massless particles.

However, all particles that are massless for an entire range of
couplings are associated with conserved currents. For Goldstone
bosons, where we can turn on a mass continuously, violating the
current conservation law, the almost conserved current plays the
role of the field ∂µφ in massive scattering theory and it’s plausible
that the asymptotic Hilbert space is simply the representation
space of the conserved current in the limit. Similarly gauge and
gravitational fields all have asymptotically conserved currents
associated with them [17–19]. The stress tensor in gravitational
models plays a special role because the joint spectrum of its
asymptotically conserved currents is the momentum null cone,
the Fourier dual of the conformal boundary. All other conserved
currents can be viewed as generalized functions on this cone.
That is, they are “quantized fields” on the momentum null cone.
We’ll see that the reason for the scare quotes is that these
operator valued generalized functions are not the conventional
tempered distributions of axiomatic QFT. The null cone is a
singular manifold and conventional Wightman fields would not
be well-defined there.

More importantly, the behavior of black hole and
cosmological quasi-normal modes indicates that the quantum
systems living on horizons cannot have the approximate locality
in angle that one would expect from even a lattice approximation
to a conventional QFT, where the rigorous theorem of Lieb and
Robinson proves that information transport over large distances
is ballistic. Instead one expects all of the degrees of freedom
to be coupled together, without regard to metrical distance.
Correspondingly the fields are not expected to satisfy differential
equations. The Hamiltonians we have written are not local, and
are fast scramblers, because every fermionic variable is coupled
to every other one by some term in the Hamiltonian.

The purpose of currents on the conformal boundary is
to describe the flow of quantum numbers other than the
momentum, at infinity. Helicity or spin must be one of those
quantum numbers, so we expect operators H±

i (P) carrying
helicity out of/into the future/past null boundary and H̃±

i (P)
describing flows along the boundary. The two kinds of operators
are related by space reflection, and only the tilde-free operators
are needed to describe massless particles.

When we retreat from the conformal boundary to a finite area
causal diamond, P must become a discrete label6 and the CEP
implies that the Hilbert space on which the generators H±

i (P)
and H̃±

i (P) act must be finite dimensional, in which case we can
always view the same space as generated by fermionic operators
as above. If we want the formalism to obey the spin-statistics
theorem, then those fermions must carry half integer helicity and
must, in the conformal boundary limit, take the form QI

α(P),

6We’ll see later that it is an emergent label.

Q̃I
α(P), where γ

aPaQ
J(P) = γ aP̃aQ̃(P) = 0. Here P̃ is the space

reflected null vector. Note that these kinematic arguments do not
imply that the model must be supersymmetric. If all fermionic
generators come in parity symmetric pairs, then the spin 3/2
particles that must accompany the graviton will be massive.

The algebra of the left or right handed spinor generators
is completely determined [20] by Lorentz invariance, cluster
decomposition, and the absence of tensor charges in an
interacting theory of particles. It is

[QI
α(P),Q

J
β (P

′)]+ = δIJδ(P · P′)γ µαβMµ(P, P
′). (13)

Mµ is the smaller of the two parallel null vectors. Note that
the P = 0 generators anticommute with all the others. There’s
a similar equation for the space-reflected generators. The anti-
commutation relations between the two sets of generators are
not universal, and encode information about the masses of stable
particles corresponding to branes wrapped around non-trivial
cycles of a compact manifold. As noted above, the detailed
mathematics of the connection between finite dimensional super-
algebras and the notion of smooth compactmanifolds, has not yet
been worked out.

3. TIME DEPENDENT HAMILTONIANS AND
ERROR CORRECTING CODES

The basic principles of HST imply that causality is implemented
by gradually entangling new degrees of freedom in a larger causal
diamond with the subset describing a smaller diamond contained
in the original one. We can ask where on the holographic
screen of the larger diamond, the information about the smaller
diamond is stored. As long as the dynamics is invariant under
(fuzzy) area preserving maps, this question has no meaning.
However, the constraints are a partial breaking of this symmetry.
The variables are labeled by spinor harmonic quantum numbers
on the sphere, but there are an infinite number of ways of doing
this, corresponding to the embeddings of SO(d− 1) in the group
of area preserving maps. The constraints are interpreted in a way
that mirrors a metric geometry on the sphere.

For simplicity, let’s work on four dimensions. In a large causal
diamond with proper time T, we say that the physical state
contains a localized jet on the past or future boundary if of
order ET, with E ≪ T, of the variables ψ J

i vanish on that state.
Given the single trace nature of the interactions, this means that
interactions between the variables ψ[ij] and the rest vanish on
this state. Here the small letters form an antisymmetric matrix
with indices from 1 to E, which can be organized into fuzzily
localized spinor sections around some point �. We can think
of the constraints as the vanishing of variables in an annulus
surrounding a spherical cap, whose opening angle is determined
by E. More generally there will be multiple isolated subsets of
degrees of freedom, which form Ei × Ei anti-symmetric matrices
and are interpreted as belonging to spherical caps localized
around different angles �i. It can be shown [21] that

∑
Ei is an

asymptotically conserved quantumnumber if the time dependent
Hamiltonian has energy differences of order 1/T. Asymptotically,
for large T, there will be a unique choice of rotation subgroup
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for which all of the jets form spherical caps localized around
different points.

To see this, note that we can always choose the Ei ×

(Ei − 1) components of a single jet’s degrees of freedom to be
localized functions around some particular point on the sphere,
with localization radius ∼1/Ei, by choosing a particular linear
combination of spherical harmonics. We can do the same for
all the other jets, keeping them separated in angle, as long as∑

Ei≪T, so that there are plenty of variables available to describe
the empty angular regions with no jets. In the limit T≫

∑
Ei with

Ei → ∞ we can accommodate an arbitrary number of localized
jets. Note that the rotation subgroup we choose should also be
used to organize the addition of degrees of freedom each time we
increase the proper time by one Planck unit. This corresponds to
adding exactly one angular momentum multiplet of the chosen
subgroup to the “in” Hilbert space for every Planck size tick of
the clock. It’s also important to emphasize that the action of the
rotations on the decoupled (T−

∑
Ei)× (T−

∑
Ei) block of the

matrix is, in a sense, trivial since the interactions of these variables
are invariant under area preserving maps that leave invariant the
spherical caps at which the jets are located. The ratio of the areas
of those caps to the area of the sphere goes to zero in the limit.
Since the Hamiltonian of this large set of degrees of freedom
goes to zero in the limit, they become topological degrees of
freedom, sensitive only to the punctures on the sphere. This is the
HST description of the infinite dimensional space of arbitrarily
soft massless particles that are present in any quantum theory of
gravity in Minkowski space.

Thus, both rotation and time translation are asymptotic
symmetries, as expected in a theory of gravity. Note that the
magnitude of the null momentum is an emergent quantity,
proportional to

∑
Ei. To get a Lorentz invariant scattering

operator we must take all Ei to infinity at fixed ratio, keeping∑
i Ei ≪ T.
As a consequence, the error correcting code [22–34]7

generated by the expansion of Hin(t) to include more degrees
of freedom, contains information that allows us to localize
information about the constrained variables at angles. Now
however, consider the full evolution in the interval from [−T,T].
The initial state satisfies constraints corresponding to incoming
jets with energies Ei. At some later negative time −t with t < T
there are two possibilities. Either we inevitably reach a point
where

∑
Ei ∼ t or some of the constraints and decoupled

degrees of freedom are not contained in the Hilbert space on
which Hin(t) acts. In the former case the fast scrambling nature
of the Hamiltonian implies that the constraints will be erased
by the time one gets to the end of the time interval [−t, t].
The entire Hilbert space will be in equilibrium and we have a

7The connection between quantum error correction and bulk (AdS scale) locality
was pointed out in the second paper of this reference, but was anticipated by the
tensor network construction of Swingle. The general idea of error correction is
to entangle the desired quantum information, with widely distributed degrees of
freedom of a much larger system, so that erasing the part entangled with a few
q-bits does not degrade the information. The particular use of error correction in
the AdS/CFT correspondence exploits/is limited by the locality of the boundary
theory. It is not appropriate for discussing horizons whose dynamics is invariant
under area preserving maps. HST claims to remedy this.

FIGURE 1 | The left figure shows a system with a number of constraints much

smaller than the total number of degrees of freedom while the right one is what

happens when the constrained subspace has entropy that is an order one

fraction of the total. Red lines denote jet degrees of freedom, each of which is

surrounded on the past/future boundary of the diamond, by frozen degrees of

freedom,indicated by erasure of the boundary. The diamonds in these figures

are finite, and the right hand picture does not include black hole evaporation.

causal diamond with energy proportional to
∑

Ei filled with an
isotropic system on its boundary, in equilibrium with entropy
(
∑

Ei)2. This system has all of the qualitative properties of a black
hole. Figure 1 shows cartoons of the two possibilities.

There are two different kinds of amplitudes where no black
hole production occurs. In the first, the total energy coming into
the past boundary of the causal diamond [−T,T] is so small that
E2 is not a large entropy, and all of those constraints propagate
into smaller diamonds along the same trajectory. Then the future
boundary of a diamond of proper time t > E has a small number
of constraints, which can be interpreted as jets of particles exiting
that boundary. On scales t = E the amplitude looks like a vertex
in a Feynman diagram.

Another possibility is that the constraints proportional to the
total incoming energy, which might be large, do not all propagate
into small diamonds along the trajectory. Here is where the
overlap constraints of HST demonstrate the emergence of the
concept of space in the HST formalism. At time t≪T, constraints
that are not imposed on the Hilbert space of the [−t, t] diamond,
are imposed on its tensor complement in the [−T,T] Hilbert
space, which is acted upon by the Hamiltonian Hout(t). The
structure of Hout(t) is determined by the HST compatibility
conditions, the QPR. That is, given an assumed global structure
of space-time, which is a dS space with R ≫ T ≫ 1 we can
impose boundary conditions on causal diamonds with proper
time [−T,T] corresponding to ∼ET constraints, with E ≪ T,
along time-like geodesics “at different spatial points in their
common rest frame.” These are identical quantum systems, with
the same sequence of time dependent Hamiltonians.

Now consider, for a given initial state, the Hilbert spaces
of these individual systems over time intervals [−t + ti, ti +
t]. Let us first assume that the dynamics is such that in the
large T limit the proportionality constant E in the number of
constraints ET + k is conserved. Call it the energy. This is true
for every individual trajectory. When E ∼ t or greater, these
cannot all be constraints on the “in” Hilbert spaces of the small
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FIGURE 2 | Exchange diagram involving multiple jets.

causal diamonds. Therefore, the energy must be divided between
the in and out spaces. The QPR implies that at any time, the
“out” Hilbert space of a given diamond can be viewed as a
tensor product of small Hilbert spaces corresponding to spatially
separated diamonds. If we take all of the ti equal, the translation
of this statement into space-time language is that the energy
E is the sum of energies Ei in each of the disjoint diamonds,
with Ei ≪ t if we want to study a process in which no black
holes are created. The QPR implies that the “out” dynamics of
any one diamond generates the same entanglement spectrum for
the density matrices in each of the external diamonds, that is
generated by the “in” dynamics of each of those diamonds. Since
we’re studying geodesics in Minkowski space, the Hamiltonians
are all assumed equal to each other, so the QPR is a constraint on
initial states.

Now consider unequal ti. The final state constraints on the
earliest diamond, can become part of the initial constraints
on later diamonds, so we can draw a space-time picture of
the amplitude that resembles a time ordered Feynman diagram
(Figure 2). Thus, these models reproduce the clustering structure
of field theory amplitudes, which we usually derive from the
postulates of QFT. However, theHST formalism can also describe
black hole formation and evaporation in a manner consistent
with unitarity and causality. So far, we have not found a model
that gives Lorentz invariant scattering amplitudes.

We can close this circle by using QPR to finish the proof that
the coefficient of T in the number of asymptotic constraints is a
conserved quantity. If all of the asymptotic energy remains visible
along a single time-like trajectory, conservation is a consequence
of two facts. The Hamiltonian in a causal diamond of proper time
t that is capable of removing constraints that prevent interaction
between bulk and boundary DOF has eigenvalue differences
of order 1/t and can only act to remove o(1) constraints.
Furthermore, inside a causal diamondmuch of the “in” evolution
over time t acts on only a small part of the DOF. For amplitudes
in which the asymptotic energy divides into clusters localized in

space-like separated diamonds, the QPR guarantees that the “out”
Hamiltonian along a trajectory that currently sees only part of the
energy, has the same effect as an “in” Hamiltonian acting on the
individual energies Ei.

3.1. Asymptotic Symmetries of HST
We have just seen that time translation symmetry in HST
arises as an asymptotic symmetry. This is to be expected in
a theory of gravity, but it’s satisfying to see it arising from
the quantum dynamics of an explicit model. We’ve also shown
that rotation symmetry arises asymptotically, acting only on the
decoupled jet degrees of freedom. It is asymptotic both because
the organization of the DOF into spherical harmonics of a fixed
rotation subgroup of the fuzzy volume preserving group depends
on the asymptotic nesting of causal diamonds, and because
rotations only act on the decoupled jets, which become truly
independent of the rest of the system only in the limit of infinite
proper time.

Spatial translation is more complicated. Part of it is
programmed into the construction of the model, by using the
same sequence of time dependent Hamiltonians along each
time-like geodesic of Minkowski space. But the argument that
scattering amplitudes are translation invariant comes from
a combination of the QPR applied to asymptotically large
diamonds along different geodesics, and the fact that jets
decouple from “soft radiation” in the asymptotic limit. Note
that the QPR alone is insufficient because the overlap between
two spacelike separated diamonds has parametrically smaller
entropy than either of the diamonds in the infinite T limit. Thus,
the QPR says only that the density matrix on the overlap is
maximally uncertain, subject to the constraints. The QPR also
says that the angular location of the constraints seen along one
trajectory, should look like a spatial translation of the angular
locations as seen from the second. Since the bulk of the variables
decouple and freeze in the large T limit, this suggests there is
an identical Hilbert space, consisting of jets only, along the two
relatively translated trajectories, and that the density matrices in
that Hilbert space are related by a unitary transformation. Thus,
spatial translation is an asymptotic symmetry as well.

4. CONCLUSIONS

The basic principles of the HST formalism are the CEP and
the implementation of causality by the unfolding entanglement
of degrees of freedom in a nested set of causal diamonds.
The unitarity of the entangling map implies that this has
the properties of an error correcting code. The fact that the
fundamental variables are the fermionic generators in the
fundamental representation of SU(K|L)8 follows from the finite
dimension of the Hilbert space and the fact that dynamics is
invariant under fuzzy area preserving maps of the holographic
screen. Area preserving invariance is valid for non-negative c.c.
and for proper times sufficiently small compared to the AdS
radius for negative c.c., as seen from the behavior of black hole
quasi-normal modes. The fact that the fermionic operators must

8Equivalently, they are canonical fermions with constraints.
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transform like asymptotic spinors, follows from the presumed
Lorentz or AdS invariance of the boundary amplitudes, and the
usual connection between spin and statistics.

For negative c.c. and proper times of order the AdS radius
and larger, quasi-normal mode analysis suggests and AdS/CFT
dictates, that propagation is ballistic on the screen, on distance
scales in the bulk larger than the AdS radius. In order to make
this compatible with the CEP for finite area causal diamonds
with proper time approaching the AdS radius, we have to make
a lattice field theory out of the fermionic variables and invoke
the Lieb-Robinson bound. The unfolding entanglement map that
implements propagation in proper time is then the inverse of
a Tensor Network Renormalization Group map in the sense of
Evenbly and Vidal [35].

Quantum information about small regions in the bulk is
spread non-locally on the holographic screen, in a manner
similar to that found in Error Correcting Codes. Omission of
the information in a small area region of a big screen does not
destroy the data about the small causal diamond, because the
entanglement of the small diamond’s variables with those of the
large screen is shared uniformly among the large screen variables.
The rate of spread over the area (which by the CEP is essentially
the number of q-bits on the screen) undergoes a sort of phase
transition in asymptotically AdS spaces, when the proper time
in the diamond approaches the critical value (of order the AdS
radius) at which the area of the diamond goes to infinity. Prior
to that regime, the scrambling is “fast” and the information is
homogenized on the sphere in a time of order the radius of
the sphere times the logarithm of the total number of q-bits.
As the proper time approaches the critical value, information
scrambling is “fast” only over an area of order the d − 2 power
of the AdS radius. If we imagine a collection of local probes,
separated by distances on the holographic screen which are of
order the AdS radius, communication between those probes is
ballistic. The system thus behaves like a lattice approximation to
a quantum field theory.

In Banks and Fischler [36, 37] the authors conjectured that
in the regime of the transition the HST Hamiltonian was the
inverse of a Tensor Network Renormalization Group (TNRG)
transformation [35]. TNRG transformations disentangle the
degrees of freedom of a fine grained lattice field theory at
its critical point, producing a Hamiltonian on a more coarse
grained lattice. It’s been shown by numerical analysis of
simple one dimensional critical systems that the coarse grained
Hamiltonians have a spectrum equal to that of the low lying
levels of the radial quantization Hamiltonian of the CFT that
describes the critical point. Radial quantization always picks out
a particular element of the conformal group as the Hamiltonian,
and this is tied to a particular timelike geodesic, making an
explicit connection with HST. This is a direct implementation of
the scale/radius duality of Maldacena. The TNRG can probably
be improved via the technology of Pastawski et al. [24], which
constructs tensor networks invariant under discrete subgroups of
the conformal group.

The HST formalism adds an extra element to the TNRG
formulation of asymptotically AdS dynamics. The TNRG
Hamiltonian corresponding to some fixed proper time is

conventionally defined to act as the unit operator on the tensor
complement of the small Hilbert space corresponding to that
causal diamond. In HST language, it is Hin(t) + 1 for the last
time slice in that diamond. In HST, we have a Hamiltonian
Hin(t) + Hout(t) where Hout(t) acts on the tensor complement.
In HST Hout(t) is supposed to be determined by the consistency
conditions with time evolution along other timelike trajectories.
In AdS space, all time-like geodesics are related by elements of the
conformal group, so at least some of these consistency conditions
are guaranteed asymptotically by the restoration of conformal
symmetry implicit in any RG transformation at a fixed point. It’s
possible that the conditions for finite diamonds and accelerated
trajectories add further constraints.

This implementation of HST has implications for the CFT
description of diamonds of size much smaller than the AdS
radius. The work of Evenbly and Vidal shows that the finite
dimensional Hamiltonians of the TNRG can be chosen to
have the same spectrum as the low lying part of the exact
CFT spectrum. This is a very explicit implementation of
Maldacena’s scale-radius duality. However, in the HST model,
this correspondence breaks down as the proper time in the
diamond is taken smaller than the AdS radius. Instead of a lattice
field theory we have a highly degenerate Hamiltonian with area
preserving map invariance and fast scrambling.

One can argue that this disturbing disconnection must be a
property of the AdS/CFT correspondence without any reference
to HST. Consider the causal diamond along a particular timelike
geodesic in AdS space with proper time interval much smaller
than the AdS radius. Now consider the Witten diagrams for a
correlation function of a finite number of operators on R ×

Sd−2. The vertices of the diagrams are integrated over the entire
AdS space, whose spatial volume on global time slices is all
concentrated near the boundary. Thus, the contribution to that
correlation function from the causal diamond is very small, but
non-zero. The probability that the interactions take place within
that diamond is small and is dominated by contributions from
the boundary of the diamond. As a consequence, if there is a
notion of measurements localized in the diamond, they must
register a state that is close to “empty Minkowski space,” with
deviations concentrated near the boundary of the diamond. This
is consistent with the fact that the “energy” of such boundary
states, in any coordinate system with spacelike slices localized in
the diamond, will be very small. This is an AdS/CFT argument
that the “vacuum” of the approximately Minkowski region is a
nearly degenerate ensemble rather than a single pure state.

The standard derivation [38–41] of Minkowski amplitudes
from CFT correlators illustrates the same principle. All of
the work on this subject has concentrated on showing that
specially prepared 4-point functions converge to tree level
4 point scattering amplitudes9. But now consider a 4 + n
point function with n operators not constrained to focus on a
particular “arena” causal diamond. This gives a slightly different
amplitude in Witten diagrams, but causes only small changes

9There are all sorts of caveats to this statement, particularly to its extension to
higher point amplitudes which require us to study states localized in the large
compact directions of AdSd ×K, but they’ve been discussed elsewhere.
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to the contribution from the bulk of the arena. The obvious
interpretation of these correlators is as a superposition of
amplitudes for “n gravitons” and other soft massless particles to
be injected into or emitted from the arena. The full Minkowski
scattering operator for “2 to 2” scattering includes all of
these processes.

Note that in the discussion above there was no particular
restriction to which n operators were inserted. We used only
the fact that in connected diagrams involving all 4 + n particles,
most of the vertices were integrated over all of AdS space. Thus,
the precise definition of the limiting Hilbert space on which the
Minkowski scattering operator acts requires us to find a basis
of states that can reproduce all of these amplitudes. This is an
unsolved problem in AdS/CFT.

If we accept the CEP for finite area diamonds in AdS space,
Page’s theorem [42] implies that the empty Minkowski vacuum is
a maximally uncertain density matrix. In the large radius limit,
the ensemble consists of all states on the boundary of the arena
that can be created by Witten diagrams with little weight in
the arena causal diamond. It is maximally uncertain because the
number of possibleWitten diagram states is much larger than the
number of states that the CEP allows in the diamond. States that
correspond to scattering in the arena must then be constrained
states of this ensemble. That is, we’ve recovered the picture of
localized excitations as constrained states of an ensemble of low
energy excitations on the horizon.

In summary, HST treats time as fundamental, discrete and
relative. Space-time is an emergent phenomenon, measuring the
amount of quantum information accessible to an information
gathering system on a given timelike trajectory in fixed intervals
of proper time. This gives us a quantum definition of causal
diamonds. Causal propagation is an error correcting code by
which quantum information about events in a small diamond is
entangled with the states of a larger diamond containing it. The
information is spread rapidly over the holoscreen of the larger
diamond, homogeneously for non-negative c.c., or for holoscreen
sizes≪ the AdS radius for negative c.c. On proper time scales of
order the AdS radius, information is concentrated in the nodes of
a tensor network and spreads ballistically over the network. The
spatial size of the nodes is of order AdS radius, as is the spacing
between them.

The principle, valid for small enough diamonds with any
c.c. and any diamond with non-negative c.c., that bulk localized
states are constrained states of boundary DOF, with bulk energy
proportional to the number of constrained q-bits, explains
most of the qualitative features of black hole and cosmological
horizons and eliminates the firewall paradox. The HST model
gives a very explicit picture of the transition between an ordinary
scattering event and black hole formation. Black holes formwhen
the energy, the number of constraints, entering into the past
boundary of a causal diamond, creates a state so atypical that the

fast scrambling Hamiltonian eliminates those constraints before
the energy exits the diamond. Thus, the boundary of validity
of effective field theory ideas is an entropy bound. The bulk
localized entropy must be less that S3/4 in four dimensions in
order to avoid black hole formation. This is a covariant version of
a bound conjectured by Cohen et al. [1]. Their bound was based
on trying to understand the failure of field theory to compute the
cosmological constant. InHST, the c.c. is an input, but it is correct
that the expectation value of the Hamiltonian in dS space does
scale like the integral of the c.c. over the spatial volume of the
static patch.

The resolution of the firewall paradox for non-negative c.c.
is also completely entropic and can be understood without any
of the details of the HST formalism. The fact that black holes
in these space-times have negative specific heat implies that the
state just prior to the event we call “dropping a low entropy
system onto a black hole,” has a huge entropy deficit relative to
the equilibrated black hole of slightly higher mass. If there is any
notion at all of a finite dimensional Hilbert space associated with
the equilibrated system, then the pre-equilibrium state must be a
low entropy constrained state in that Hilbert space. Combining
this with the fact that dynamics on the horizon has a natural time
scale of order the black hole radius, and the natural conjecture
that the frozen degrees of freedom mediate the interactions
between the low entropy system and the original black hole
horizon10, we find that there will be a time of order RSln RS
during which the infalling system behaves as if the black hole
were not there. This is the “temporary” definition of “the smooth
part of the black hole interior.” After the scrambling time the
last phrase in scare quotes has no meaning, but a new infalling
system will create its own interior. Firewalls are a consequence of
insisting on an invalid quantum field theory picture of quantum
states near the horizon.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This work was supported in part by the U.S. Department of
Energy under grant DE-SC0010008.

ACKNOWLEDGMENTS

I’d like to thankW. Fischler for years of joint work that went into
formulating the HST formalism described here.

10In the HST model the constraints are precisely those that imply the off diagonal
matrix elements of the matrix connecting the “black hole block” and the “infalling
block,” vanish, so that the two blocks don’t interact.

REFERENCES

1. Cohen AG, Kaplan DB, Nelson AE. Effective field theory, black
holes, and the cosmological constant. Phys Rev Lett. (1999) 82:4971.
doi: 10.1103/PhysRevLett.82.4971

2. Jacobson T. Thermodynamics of space-time: the Einstein equation of state.
Phys Rev Lett. (1995) 75:1260.

3. Fischler W, Susskind L. Holography and cosmology. arXiv. hep-th/9806039
4. Bousso R. A covariant entropy conjecture. J High Energy Phys. (1999)

9907:004.

Frontiers in Physics | www.frontiersin.org 9 April 2020 | Volume 8 | Article 111

https://doi.org/10.1103/PhysRevLett.82.4971
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Banks Holographic Space-Time

5. Milne EA. Relativity, Gravitation and World Structure. Oxford: Oxford
University Press (1935).

6. Gibbons GW, Hawking SW. Cosmological event horizons, thermodynamics,
particle creation. Phys Rev D. (1977) 15:2738. doi: 10.1103/PhysRevD.15.2738

7. Verlinde EP. Emergent gravity and the dark universe. Sci Post Phys. (2017)
2:016. doi: 10.21468/SciPostPhys.2.3.016

8. Hayden P, Preskill J. Black holes as mirrors: quantum information
in random subsystems. J High Energy Phys. (2007) 0709:120.
doi: 10.1088/1126-6708/2007/09/120

9. Sekino Y, Susskind L. Fast scramblers. J High Energy Phys. (2008) 0810:065.
doi: 10.1088/1126-6708/2008/10/065

10. Braunstein SL, Pirandola S, Zyczkowski K. Better late than never:
information retrieval from black holes. Phys Rev Lett. (2013) 110:101301.
doi: 10.1103/PhysRevLett.110.101301

11. Almheiri A, Marolf D, Polchinski J, Sully J. Black holes: complementarity or
firewalls? arXiv. 1207.3123.

12. Banks T, Fischler W, Kundu S, Pedraza JF. Holographic space-time and black
holes: mirages as alternate reality. arXiv. 1401.3341.

13. Chen YA, Kapustin A, Radicevic D. Exact bosonization in two spatial
dimensions and a new class of lattice gauge theories.Ann Phys. (2018) 393:234.
doi: 10.1016/j.aop.2018.03.024

14. Chen YA, Kapustin A. Bosonization in three spatial dimensions
and a 2-form gauge theory. Phys Rev B. (2019) 100:245127.
doi: 10.1103/PhysRevB.100.245127

15. Banks T. Fermi/Pauli duality in arbitrary dimension. arXiv. 1908.10453.
16. Banks T, Kehayias J. Fuzzy geometry via the spinor bundle, with applications

to holographic space-time and matrix theory. Phys Rev D. (2011) 84:086008.
doi: 10.1103/PhysRevD.84.086008

17. Banks T. Current algebra on the conformal boundary and the variables of
quantum gravity. arXiv. 1511.01147.

18. Banks T. The temperature/entropy connection for horizons, massless particle
scattering, and the origin of locality. Int J Mod Phys D. (2015) 24:1544010.
doi: 10.1142/S0218271815440101

19. Banks T. The super BMS algebra, scattering and holography. arXiv. 1403.3420.
20. Awada MA, Gibbons GW, Shaw WT. Conformal supergravity,

twistors and the super BMS group. Ann Phys. (1986) 171:52.
doi: 10.1016/S0003-4916(86)80023-9

21. Banks T, Fischler W. Holographic theory of accelerated observers, the S-
matrix, and the emergence of effective field theory. arXiv. 1301.5924.

22. Swingle B. Entanglement renormalization and holography. Phys Rev D. (2012)
86:065007. doi: 10.1103/PhysRevD.86.065007

23. Almheiri A, Dong X, Harlow D. Bulk locality and quantum error
correction in AdS/CFT. J High Energy Phys. (2015) 1504:163.
doi: 10.1007/JHEP04(2015)163

24. Pastawski F, Yoshida B, Harlow D, Preskill J. Holographic quantum error-
correcting codes: toy models for the bulk/boundary correspondence. J High
Energy Phys. (2015) 1506:149. doi: 10.1007/JHEP06(2015)149

25. Mintun E, Polchinski J, Rosenhaus V. Bulk-boundary duality, gauge
invariance, and quantum error corrections. Phys Rev Lett. (2015) 115:151601.
doi: 10.1103/PhysRevLett.115.151601

26. Freivogel B, Jefferson R, Kabir L. Precursors, gauge invariance, and
quantum error correction in AdS/CFT. J High Energy Phys. (2016) 1604:119.
doi: 10.1007/JHEP04(2016)119

27. Harlow D. The Ryu-Takayanagi formula from quantum error correction.
Commun Math Phys. (2017) 354:865. doi: 10.1007/s00220-017-2904-z

28. Kim IH, Kastoryano MJ. Entanglement renormalization,
quantum error correction, bulk causality. J High

Energy Phys. (2017) 1704:040. doi: 10.1007/JHEP04(20
17)040

29. Harlow D. TASI lectures on the emergence of bulk physics in AdS/CFT. PoS
TASI. (2018) 2017:002. doi: 10.22323/1.305.0002

30. LŽvay P, Holweck F. Finite geometric toy model of spacetime
as an error correcting code. Phys Rev D. (2019) 99:086015.
doi: 10.1103/PhysRevD.99.086015

31. Kamal H, Penington G. The Ryu-Takayanagi formula from quantum error
correction: an algebraic treatment of the boundary CFT. arXiv. 1912.
02240.

32. Bao N, Cheng N. Eigenstate thermalization hypothesis and approximate
quantum error correction. J High Energy Phys. (2019) 1908:152.
doi: 10.1007/JHEP08(2019)152

33. Hirai H. Shrinking of operators in quantum error correction and
AdS/CFT. J High Energy Phys. (2019) 1912:128. doi: 10.1007/JHEP12
(2019)128

34. Vaid D. Quantum error correction in loop quantum gravity. arXiv.

1912.11725.
35. Evenbly G, Vidal G. Tensor network renormalization. arXiv. 1412.0732.
36. Banks T, Fischler W. Holographic space-time models of anti-deSitter space-

times. arXiv. 1607.03510.
37. Banks T, Fischler W. Soft gravitons and the flat space limit of anti-deSitter

space. arXiv. 1611.05906.
38. Polchinski J. S matrices from AdS space-time. arXiv. hep-th/9901076.
39. Susskind L. Holography in the flat space limit. AIP Conf Proc. (1999) 493:98.

doi: 10.1063/1.1301570
40. Banks T, Fischler W. Holographic space-time and Newton’s law. arXiv.

1310.6052.
41. Banks T, Fischler W. Holographic theory of accelerated observers, the S-

matrix, and the emergence of effective field theory. arXiv. 1301.5924.
42. Page DN. Average entropy of a subsystem. Phys Rev Lett. (1993) 71:1291.

doi: 10.1103/PhysRevLett.71.1291

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Banks. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 10 April 2020 | Volume 8 | Article 111

https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.21468/SciPostPhys.2.3.016
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1103/PhysRevLett.110.101301
https://doi.org/10.1016/j.aop.2018.03.024
https://doi.org/10.1103/PhysRevB.100.245127
https://doi.org/10.1103/PhysRevD.84.086008
https://doi.org/10.1142/S0218271815440101
https://doi.org/10.1016/S0003-4916(86)80023-9
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevLett.115.151601
https://doi.org/10.1007/JHEP04(2016)119
https://doi.org/10.1007/s00220-017-2904-z
https://doi.org/10.1007/JHEP04(2017)040
https://doi.org/10.22323/1.305.0002
https://doi.org/10.1103/PhysRevD.99.086015
https://doi.org/10.1007/JHEP08(2019)152
https://doi.org/10.1007/JHEP12(2019)128
https://doi.org/10.1063/1.1301570
https://doi.org/10.1103/PhysRevLett.71.1291
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Holographic Space-Time and Quantum Information
	1. Introduction
	2. The Holographic Variables of Quantum Gravity
	3. Time Dependent Hamiltonians and Error Correcting Codes
	3.1. Asymptotic Symmetries of HST

	4. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


