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The passively mode-locked fiber laser modulated by low-dimensional materials can

provide an ideal platform to investigate the soliton dynamics. Here, we experimentally

explored the soliton formation and evolution from an erbium-doped fiber laser

mode-locked by mechanically exfoliated PtSe2 saturable absorber via evanescent

field interaction. With the increasing pump power, different soliton patterns, such as

single soliton, two solitons, and bound soliton, can be observed experimentally. The

experimental results can identify the non-linear optical response of the PtSe2 and may

make avenue toward unveiling the nature of the soliton dynamics in the fiber laser system.
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INTRODUCTION

Transient phenomena and ultrafast dynamics are very important for understanding and unveiling
the nature of the non-linear systems. Soliton, a localized wave structure, can be formed and
observed in different non-linear processes, such as hydrodynamics, biology dynamics, plasma
physics, and optics [1–3]. Among the separate optical systems, the passively mode-locked fiber
lasers can deliver robust ultrashort pulses with a compact and stable configuration. In addition, the
passively mode-locked fiber lasers can provide an ideal platform to investigate soliton evolution
behaviors [1–5]. Ordinarily, the soliton pulse will favor multiple pulsing with increasing pump
power for the peak power-limiting effect in a passively mode-locked fiber laser operating in the
anomalous dispersion regime [1, 2]. With different cavity arrangements and pump power, different
pulse patterns can be observed, such as single soliton, multi-solitons [3], and bound soliton
[4, 5], etc.

The ultrashort pulse can be generated from the passively mode-locked fiber laser with the key
component, i.e., saturable absorber (SA). The SA can be divided into the artificial SA [such as
non-linear polarization rotation (NPR) technique [6], the figure-eight-cavity [7] method], the real
SA [such as semiconductor saturable absorber mirrors (SESAMs) [8], carbon nanotubes (CNTs)
[9], and low-dimensional materials [10–16]], and the hybrid type. However, the modulation depth
and operating wavelength of SESAMs are small and narrow. The non-linear absorption of CNTs

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00107
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00107&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:andguobao@163.com
https://doi.org/10.3389/fphy.2020.00107
https://www.frontiersin.org/articles/10.3389/fphy.2020.00107/full
http://loop.frontiersin.org/people/772257/overview


Wu and Jiang Nonlinear Optical Response of PtSe2

depends on the size and chirality, which would affect the
laser performance. Graphene has a small linear absorption
coefficient and limited modulation depth, which will influence
the stability and pulse narrowing of the laser. With the functional
material evolvement, novel low-dimensional materials have
shown excellent non-linear optical performance, such as the
hybrid perovskite [17], metal–organic framework [18], and
versatile transition metal dichalcogenides (TMDs) [19–22].

TMDs have caught researchers’ attention due to their unique
properties in both physics and chemistry [20–22]. In respect
of non-linear optics, the TMDs have been applied as SA in
pulsed laser generation. However, the non-linear threshold in
the optical communication wavelength is too large for the large
bandgap of the usual TMDs [23]. In recent years, two newly
emerged TMDs, PtS2 and PtSe2, have been studied for their
layer-dependent bandgap largely tuned from 1.2 to 0.2 eV [24,
25], which can cover nearly all of the optical communication
band. The outstanding high-performance devices based on
PtSe2 have been investigated, such as the pressure and gas
sensors [26, 27], broadbandmid-infrared photodetector [28], and
wide spectral photoresponse photodiode [29]. In addition, the
PtSe2 has advantages of high carrier mobility [30–32], ambient
stable and sizable band gap, all of which filled the gaps of
the materials mentioned above. Moreover, PtSe2 has excellent
non-linear optical response, which can provide a candidate
to explore the soliton evolution in the passively mode-locked
fiber laser.

Here, PtSe2 has been prepared via a mechanical exfoliation
method, and then transferred onto the side-polished fiber to
form a SA. With the SA, we have observed different kinds of
solitons, such as single soliton, two solitons, bound soliton,
and noise-like pulse, from the fiber laser by tuning the pump
power or the polarization controllers. By optimizing the cavity,
the fiber laser can deliver the shortest pulse duration down to
699 fs with a signal-to-noise ratio of 57 dB and repetition rate
of 11.26 MHz.

EXPERIMENTS AND RESULTS

The bulked PtSe2 crystal is bought fromHQGraphene Company.
The mechanical exfoliation method was used to exfoliate PtSe2
[33], which was then transferred onto the D-shaped fiber to
form a SA. It is an easy, effective and low-cost exfoliation
method to prepare the PtSe2 based SA. To characterize the
exfoliated PtSe2, we have carried out the scanning electronic
microscope (SEM) and Raman spectra measurements. The
Raman spectrum of PtSe2 is shown in Figure 1A, which has
two Raman peaks at 175 and 205 cm−1 assigned to Eg and
A1g modes shown in Figure 1A, matching well with the results
of previous work [34]. The inset of the Figure 1A is the SEM
of PtSe2, from which it can be inferred that the mechanically
exfoliated PtSe2 is relatively smooth. The twin-detector method
has been performed to test the non-linear optical absorption
of PtSe2. The adopted laser for measurement has the center
wavelength 1,560 nm, pulse width 130 ps, repetition rate 20.8
MHz [34]. The non-linear absorption curve of PtSe2 has been

shown in Figure 1B. From the plot, we can see that the SA
has a modulation depth 6.8% and a saturation intensity 9.9
MW/cm2, respectively.

To verify the non-linear absorption of PtSe2, a fiber laser
was constructed, as shown in Figure 2. The passively mode-
locked fiber laser operating in a fiber ring cavity with a length
of 17.5m includes a 16.6m standard passive single mode fiber
(SMF-28) and a 0.9m active erbium-doped fiber (EDF, LIEKKI
Er 80-8/125). A laser diode with a central wavelength of 975 nm
is adopted as the pump laser, which is introduced into the
fiber ring cavity via a 980/1,550 wavelength-division multiplexer
(WDM). The laser can be delivered out from the cavity via a 15%
output coupler. A polarization independent isolator (PI-ISO) is
fused between the D-shaped fiber and polarization controllers
(PCs) to enforce the unidirectional operation of the intra-
cavity laser. During the experiments, the PCs can be adjusted
to tune the polarization state of the light circulating in the
cavity [34].

The PtSe2 based SAwas brought into the fiber ring cavity to act
as a non-linear optical modulator. Firstly, self-started Q-switched
mode-locking operation was achieved by increasing the pump
power up to 160 mW. Figure 3A has shown the corresponding
optical spectrum of Q-switched mode-locking, from which we
can infer that the output wavelength is centered at 1,567 nm. The
typical pulse trace of Q-switched mode-locking output is shown
in Figure 3B, from which we can see that the mode-locked pulses
enveloped form a Q-switched pulse shape.

When the pump power is increased up to 180 mW, the output
pulse changes to the mode-locked regime, as shown in Figure 4.
Figure 4A shows the corresponding optical spectrum with a
central wavelength of 1,566 nm, and 3 dB spectral bandwidth
about 3.1 nm. By enlarging the span of the oscilloscope trace, we
can see the mode-locked pulse over 2 µs time scale, as shown in
Figure 4B. It can be seen from the figure that the soliton begins
to split due to a soliton peak clamping effect and pulse shaping of
the dispersive waves with increasing intra-cavity energy [1]. We
can also obtain the full width at half maximum (FWHM) of the
pulse duration 1.139 ps in Figure 4C, which indicates a true pulse
width of about 699 fs, fitted by the hyperbolic secant function
(sech2). Figure 4D shows the electrical spectrum of the mode-
locked pulse with signal-to-noise ratio (SNR) up to 57 dB, which
indicates a stable mode-locking operation. In addition, we have
not observed extra frequency components within a wide radio
frequency spectrum up to 500 MHz in the inset of Figure 4D.

By further increasing the pump power to 210 mW, the single
soliton will split into two solitons. As can be seen in Figure 5A,
the mode-locked pulse breaks up easily due to the soliton
quantization effect arising from the two-photon absorption. The
repetition rate doubled in Figure 5B implies that the soliton pulse
breaks into two pulses.

Under the same pump conditions, the laser pulse can be
switched from the traditional mode-locked soliton to bound
soliton by slightly adjusting the PC. The optical spectrum
with sidebands has been shown in Figure 6A, which is the
typical symbol of the two-pulse bound soliton. The bound
soliton locates at about 1,565 nm wavelength with spectral
modulation period of 2 nm [1, 35–38]. Three peaks can be
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FIGURE 1 | (A) Raman spectrum of PtSe2 (The inset is the SEM of PtSe2 ). (B) The non-linear optical absorption curve of PtSe2.

FIGURE 2 | Experimental setup of the mode-locked Er-doped fiber laser.

FIGURE 3 | (A) Output spectrum. (B) Q-switched mode-locked pulse trace.
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FIGURE 4 | (A) Output spectrum of single soliton. (B) Pulse train of single soliton. (C) Autocorrelation trace. (D) Radio frequency spectrum (Inset: wide-band

RF spectrum).

FIGURE 5 | (A) Output spectrum. (B) Pulse train.

seen in the autocorrelation trace in Figure 6B, which means
that the bound soliton is a two phase-locking pulse. The
oscilloscope trace in Figure 6C also confirmed the bound soliton
operation [38].

DISCUSSIONS

The pulsed fiber laser can be easily achieved, which indicates
that the PtSe2 based SA is a promising one. Due to the
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FIGURE 6 | (A) Output spectrum; (B) autocorrelation trace; (C) pulse train.

non-uniform distribution of PtSe2, which will weaken the
interaction betweenmaterials and guided light, the pulsed output
needs a relatively large pump power. However, once the pulsed
output is obtained, the output can maintain long-term stability.
From the experimental results, the PtSe2 has been proved to be a
good candidate for ultrashort pulse modulation.

Based on the excellent non-linear optical response of
PtSe2, the ultrashort pulses have been generated with different
mechanisms [1, 35–37]. While the pump power is under the
pulse shaping threshold, a Q-switched mode-locking pulse can
be observed. In the mode-locking regime, a single soliton,
two solitons, and a bound soliton have been obtained. Single

soliton operation is the prevailing mode-locking operation in
an anomalous dispersion laser cavity. Owing to the soliton
quantization effect and peak limiting originating from the
two-photon absorption effect [35], the soliton breaks up easily.
When the pump power is set to 180 mW, a two solitons
mode-locking operation can be achieved. Two solitons transform
separately in the laser cavity, unless the random relative-phase

variations between the solitons are not suppressed [36]. The
1,565 nm wavelength bound soliton has been observed with a
modulation period of 2 nm (1ν = 244 GHz), as shown in
Figure 6A, which indicates that the pulse-to-pulse interval is
4.1 ps. The autocorrelation trace in Figure 6B shows three
peaks, implying that the bound soliton is a two phase-locking
pulse [38].

CONCLUSION

We have prepared the PtSe2 SA via the evanescent field coupling
method by transferring the mechanically exfoliated PtSe2 onto
the side-polished fiber. By implementing the PtSe2 based SA
in a fiber ring laser, different solitons have been observed, and
the mode-locked pulse has evolved from a single soliton to two
solitons and a bound soliton by increasing the pump power. This
work suggests that PtSe2 could be a promising SA, and the layered
material may provide an ideal platform to investigate the soliton
formation and dynamics in fiber lasers.
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