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We numerically investigate the self-diffusion coefficient and correlation length (i.e., the

typical size of the collective motions) in sheared soft athermal particles. Here we find that

the rheological flow curves on the self-diffusion coefficient are collapsed by the proximity

to the jamming transition density. This feature is in common with the well-established

critical scaling of flow curves on shear stress or viscosity. We furthermore reveal that

the divergence of the correlation length governs the critical behavior of the diffusion

coefficient, where the diffusion coefficient is proportional to the correlation length and

the strain rate for a wide range of the strain rate and packing fraction across the jamming

transition density.
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1. INTRODUCTION

Transport properties of soft athermal particles, e.g., emulsions, foams, colloidal suspensions,
and granular materials, are important in science and engineering technology [1]. In many
manufacturing processes, these particles are forced to flow through pipes, containers, etc.
Therefore, the transportation of “flowing particles” is of central importance for industrial
applications [2] and thus there is a need to understand how the transport properties are affected
by the rheology of the particles.

Recently, the rheological flow behavior of soft athermal particles has been extensively studied
by physicists [3–17]. It has been revealed that the rheology of such particulate systems depends
not only on shear rate γ̇ but also on packing fraction of the particles. If the packing fraction φ

is lower than the so-called jamming transition density φJ [18], steady state stress is described by
either Newtonian [3, 4] or Bagnoldian rheology [5–9] (depending on whether particle inertia is
significant). However, if the packing fraction exceeds the jamming point, one observes yield stress
at vanishing strain rate [19]. These two trends are solely determined by the proximity to jamming
|1φ| ≡ |φ − φJ | [3], where rheological flow curves of many types of soft athermal particles have
been explained by the critical scaling near the jamming transition [4–15].

On the other hand, the mass transport or self-diffusion of soft athermal particles seems to be
controversial. As is the rheological flow behavior on shear stress or viscosity, the diffusivity of the
particles under shear is also dependent on both γ̇ and φ. Its dependence on γ̇ is weakened with
the increase of γ̇ , i.e., the diffusivity D exhibits a crossover from a linear scaling D ∼ γ̇ to the
sub-linear scaling D ∼ γ̇ q at a characteristic shear rate γ̇c, where the exponent is smaller than
unity, q < 1 [20–25]. For example, in molecular dynamics (MD) simulations of Durian’s bubble
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model in two dimensions [20, 21] and frictionless granular
particles in three dimensions [22], the diffusivity varies from
D ∼ γ̇ (γ̇ < γ̇c) to D ∼ γ̇ 0.8 (γ̇ > γ̇c). These results also
imply that the diffusivity does not depend on spatial dimensions.
However, another crossover from D ∼ γ̇ to D ∼ γ̇ 1/2 was
suggested by the studies of amorphous solids (though the scaling
D ∼ γ̇ 1/2 is the asymptotic behavior in rapid flows γ̇ ≫ γ̇c) [23–
25]. In addition, it was found in MD simulations of soft athermal
disks that, in a sufficiently small flow rate range, the diffusivity
changes from D ∼ γ̇ (φ < φJ) to γ̇ 0.78 (φ ≃ φJ) [26], implying
that the crossover shear rate γ̇c vanishes as the system approaches
jamming from below φ → φJ .

Note that the self-diffusion of soft athermal particles shows a
clear difference from the diffusion in glass; no plateau is observed
in (transverse) mean square displacements (MSDs) [20, 22–
26]. The absence of sub-diffusion can also be seen in quasi-
static simulations (γ̇ → 0) of soft athermal disks [27] and
MD simulations of granular materials sheared under constant
pressure [28].

Because the self-diffusion can be associated with collective
motions of soft athermal particles, physicists have analyzed
spatial correlations of velocity fluctuations [3] or non-affine
displacements [29] of the particles. Characteristic sizes of
collectively moving regions, i.e., rigid clusters, are then extracted
as a function of γ̇ and φ. However, there is a lack of consensus
on the scaling of the sizes. For example, the size of rigid clusters
ξ diverges as the shear rate goes to zero γ̇ → 0 so that the
power-law scaling ξ ∼ γ̇−s was suggested, where the exponent
varies from s = 0.23 to 0.5 depending on numerical models
and flow conditions [22, 28]. The dependence of ξ on φ is
also controversial. If the system is below jamming, the critical
scaling is given by ξ ∼ |1φ|−w, where different exponents
in the range between 0.5 ≤ w ≤ 1.0 have been reported by
various simulations [3, 29–31]. In contrast, if the system is above
jamming, the size becomes insensitive to φ (or exceeds the system
size L) as only L is the relevant length scale, i.e., ξ ∼ L, in a
quasi-static regime [4, 23–25].

From a scaling argument [27, 28], a relation between the
diffusivity and size of rigid clusters was proposed as

D ∼ d0ξ γ̇ , (1)

where d0 is the particle diameter. It seems that previous results
above jamming, i.e., as γ̇ increases,D/γ̇ changes from constant to
γ̇−1/2 and corresponding ξ undergoes from L to γ̇−1/2, support
this argument [23–25]. However, the link between the diffusivity
and rigid clusters below jamming is still not clear.

In this paper, we study the self-diffusion of soft athermal
particles and the size of rigid clusters. The particles are driven
by simple shear flows and their fluctuating motions around a
mean velocity field are numerically calculated. From numerical
results, we extract the diffusivity of the particles and explain
its dependence on the control parameters, i.e., γ̇ and φ. We
investigate wide ranges of the control parameters in order to
unify our understanding of the diffusivity in both slow and fast
flows (γ̇ < γ̇c and γ̇ > γ̇c) and both below and above jamming

(φ < φJ and φ > φJ). Our main result is the critical scaling
of the diffusivity D, which parallels the critical scaling of the
size of rigid clusters ξ . We find that the linear relation between
D/γ̇ and ξ (Equation 1) holds over the whole ranges of γ̇ and
φ if finite-size effects are not important. In the following, we
show our numerical method in section 2 and numerical results
in section 3. In section 4, we discuss and conclude our results and
future works.

2. METHODS

We perform MD simulations of two-dimensional disks. In order
to avoid crystallization of the system, we randomly distribute an
equal number of small and large disks (with diameters dS and
dL = 1.4dS) in a L×L square periodic box [32]. The total number
of disks is N = 8192 and the packing fraction of the disks φ is
controlled around the jamming transition density φJ ≃ 0.8433
[3]. We introduce an elastic force between the disks, i and j, in
contact as f eij = kδijnij, where k is the stiffness and nij ≡ rij/|rij|

with the relative position rij ≡ ri − rj is the normal unit vector.
The elastic force is linear in the overlap δij ≡ Ri + Rj − |rij| >

0, where Ri (Rj) is the radius of the disk i (j). We also add a

damping force to every disk as f di = −η
{

vi − u(ri)
}

, where η,
vi, and u(r) are the damping coefficient, velocity of the disk i,
and external flow field, respectively. The stiffness and damping
coefficient determine a time scale as t0 ≡ η/k.

To simulate simple shear flows of the system, we impose
the external flow field u(r) = (γ̇ y, 0) under the Lees-Edwards
boundary condition [33], where γ̇ is the shear rate. Motions
of the disks are described by overdamped dynamics [3, 4, 11],
i.e.,

∑

j 6=i f
e
ij + f di = 0, so that we numerically integrate the

disk velocity vi = u(ri) + η−1
∑

j 6=i f
el
ij with a time increment

1t = 0.1t0. Figure 1 displays snapshots of our MD simulations,
where the system is sheared along the horizontal arrows in
(Figure 1A). Here, the shear rate is fixed to γ̇ = 10−7t−1

0 and
the packing fraction increases from φ = 0.8 (Figure 1A) to
0.9 (Figure 1D). We observe that, as φ increases, the magnitude
of non-affine velocities, |vi − u(ri)|, is pronounced and mobile
particles (satisfying |vi − u(ri)| > 10d0γ̇ with the mean disk
diameter d0 ≡ (dS + dL)/2) form clusters (filled circles).
The size of these clusters, or rigid clusters, increases with φ

(Figures 1B,C) and reaches the box size L if the system is far
above jamming (Figure 1D).

In the following, we analyze the data in a steady state, where
shear strain applied to the system is larger than unity, and scale
every time and length by t0 and d0, respectively.

3. RESULTS

In this section, we show our numerical results of the self-
diffusion of soft athermal particles (section 3.1). We also
extract rigid clusters (Figure 1) from numerical data in order
to relate their sizes to the diffusivity (section 3.2). We explain
additional data of the rheology and non-affine displacements in
Supplemental Materials.
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FIGURE 1 | Snapshots of our MD simulations, where the particles (circles) are

sheared as indicated by the horizontal arrows in (A). The filled (open) circles

represent mobile (immobile) particles, where the magnitude of their non-affine

velocities |vi − u(ri )| is larger (smaller) than 10d0γ̇ . The shear rate is

γ̇ = 10−7t−1
0 and the packing fraction φ increases as (A) 0.80, (B) 0.84,

(C) 0.85, and (D) 0.90.

3.1. Diffusion
We analyze the self-diffusion of soft athermal particles by the
transverse component of mean squared displacement (MSD)
[24–26, 28],

1(τ )2 =

〈

1

N

N
∑

i=1

1yi(τ )
2

〉

. (2)

Here, 1yi(τ ) is the y-component of particle displacement and
the ensemble average 〈. . . 〉 is taken over different choices of
the initial time (see Supplemental Materials for the detail)1.
Figure 2 displays the MSDs (Equation 2) with different values
of (Figure 2A) φ and (Figure 2B) γ̇ . The horizontal axes are
the time interval scaled by the shear rate, γ ≡ γ̇ τ , i.e., the
shear strain applied to the system for the duration τ . As can
be seen, every MSD exhibits a crossover to the normal diffusive
behavior, 1(τ )2 ∼ γ̇ τ (dashed lines), around a crossover strain
γ = γc ≃ 1 regardless of φ and γ̇ . The MSDs below jamming
(φ < φJ) monotonously increase with the increase of packing
fraction, while they (almost) stop increasing once the packing
fraction exceeds the jamming point (φ > φJ) (Figure 2A). The
dependence of MSDs on the shear rate is monotonous; their
heights decrease with the increase of γ̇ (Figure 2B). These trends
well-correspond with the fact that the non-affine displacements
are amplified in slow flows of dense systems, i.e., γ̇ t0 ≪ 1 and
φ > φJ [34]. In addition, different from thermal systems under

1The MSDs defined by the total non-affine displacements show quantitatively the

same results (data are not shown).

FIGURE 2 | The transverse MSDs 12 (Equation 2) as functions of the shear

strain γ ≡ γ̇ τ . (A) The packing fraction φ increases as indicated by the arrow

and listed in the legend, where the shear rate is γ̇ = 10−6t−1
0 . (B) The shear

rate γ̇ increases as indicated by the arrow and listed in the legend, where the

packing fraction is φ = 0.84.

shear [14, 35, 36], any plateaus are not observed in the MSDs.
Therefore, neither “caging” nor “sub-diffusion” of the particles
exists in our sheared athermal systems [22, 27, 37].

To quantify the normal diffusion of the disks, we introduce the
diffusivity (or diffusion coefficient) as2

D = lim
τ→∞

1(τ )2

2τ
. (3)

Figure 3A shows double logarithmic plots of the diffusivity
(Equation 3) over the shear rate D/γ̇ , where symbols represent
the packing fraction φ (as listed in the legend). The diffusivity
over the shear rate increases with φ. If the system is above
jamming φ > φJ , it is a monotonously decreasing function of
γ̇ . On the other hand, if the system is below jamming φ < φJ ,
it exhibits a crossover from plateau to a monotonous decrease
around a characteristic shear rate, e.g., γ̇0t0 ≃ 10−3 for φ = 0.80
[24, 25].

In SM, we have demonstrated scaling collapses of rheological
flow curves [3]. Here, we also demonstrate scaling collapses of
the diffusivity. As shown in Figure 3B, all the data are nicely
collapsed3 by the scaling exponents, ν = 1.0 and λ = 4.0. If the
shear rate is smaller than a characteristic value as γ̇ /|1φ|λ . 104,
i.e., γ̇ < γ̇c ≃ 104|1φ|λ, the data below jamming (φ < φJ) are

2We define the diffusivity (Equation 3) as the slope of the MSD (Equation 2) in the

normal diffusive regime γ = γ̇ τ > 1, where we take sample averages of 1(τ )2/2τ

as D/γ̇ ≡< 1(γ )2/2γ > in the range between 1 < γ < 102.
3The data for the highest shear rate, γ̇ = 10−1t−1

0 , is removed from the scaling

collapses in Figures 3B, 5A.
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FIGURE 3 | (A) The diffusivity over the shear rate, D/γ̇ , as a function of γ̇ ,

where φ increases as indicated by the arrow and listed in the legend.

(B) Scaling collapses of the diffusivity, where 1φ ≡ φ − φJ. The critical

exponents are given by ν = 1.0 and λ = 4.0, where slopes of the dotted and

solid lines are −ν/λ and −0.3, respectively.

constant. However, the data above jamming (φ > φJ) show the
power-law decay (solid line), where the slope is −0.305 ± 0.002
(approximately −0.3). Therefore, we describe the diffusivity in
a quasi-static regime (γ̇ < γ̇c) as |1φ|νD/γ̇ ∼ G±(γ̇ /|1φ|λ),
where the scaling functions are given by G−(x) ∼ const. for
φ < φJ and G+(x) ∼ x−0.3 otherwise. On the other hand, if
γ̇ > γ̇c, all the data follow a single power law (dotted line).
This means that the scaling functions are given by G±(x) ∼

x−z in a plastic flow regime (γ̇ > γ̇c), where the diffusivity
scales as D ∼ γ̇ |1φ|−νG±(γ̇ /|1φ|λ) ∼ γ̇ 1−z|1φ|λz−ν . Because
this scaling should be independent of whether the system is
below or above jamming, i.e., independent of |1φ|, the power-
law exponent is given by z = ν/λ = 1/4 as confirmed
in Figure 3B.

In summary, the diffusivity of the disks scales as

D ∼

{

|1φ|−ν γ̇ (φ < φJ)

|1φ|0.3λ−ν γ̇ 0.7 (φ > φJ)
(4)

in the quasi-static regime (γ̇ < γ̇c) and

D ∼ γ̇ 1−ν/λ (5)

in the plastic flow regime (γ̇ > γ̇c), where the critical exponents
are estimated as ν = 1.0 and λ = 4.0. From Equations (4)
and (5), we find that the diffusivity below jamming (φ < φJ)
is linear in the shear rate D ∼ γ̇ in slow flows, whereas its
dependence on the shear rate is algebraic D ∼ γ̇ 3/4 in fast
flows. A similar trend has been found in molecular dynamics
studies of simple shear flows below jamming [22, 26, 37]. In
addition, the proportionality for the diffusivity below jamming
diverges at the transition as |1φ|−1 (Equation 4), which we
will relate to a length scale diverging as the system approaches
jamming from below (section 3.2). The diffusivity above jamming
(φ > φJ) implies the crossover from D ∼ |1φ|0.2γ̇ 0.7 to
γ̇ 3/4 = γ̇ 0.75, which reasonably agrees with the prior work on
soft athermal disks under shear [26]. Interestingly, the crossover
shear rate vanishes at the transition as γ̇c ∼ |1φ|4.0, which is
reminiscent of the fact that the crossover from the Newtonian or

yield stress to the plastic flow vanishes at the onset of jamming
(see Supplemental Materials).

3.2. Rigid Clusters
We now relate the diffusivity D to rigid clusters of soft athermal
particles under shear (Figure 1). The rigid clusters represent

collective motions of the particles which tend to move in the
same direction [34]. According to the literature of jamming [3,
4, 29], we quantify the collective motions by a spatial correlation
function C(x) = 〈vy(xi, yi)vy(xi + x, yi)〉, where vy(x, y) is
the transverse velocity field and the ensemble average 〈. . . 〉 is
taken over disk positions and time (in a steady state). Figure 4
shows the normalized correlation function C(x)/C(0), where the
horizontal axis (x-axis) is scaled by the mean disk diameter d0.

As can be seen, the correlation function exhibits a well-defined
minimum at a characteristic length scale x = ξ (as indicated
by the vertical arrow for the case of φ = 0.84 in Figure 4A).

Because the minimum is negative C(ξ ) < 0, the transverse
velocities are most “anti-correlated" at x = ξ [3]. Therefore, if we
assume that the rigid clusters are circular4, their mean diameter

is comparable in size with ξ . The length scale ξ increases with

the increase of φ (Figure 4A) but decreases with the increase
of γ̇ (Figure 4B). These results are consistent with the fact that

the collective behavior is most enhanced in slow flows of dense
systems [34].

As reported in Olsson and Teitel [3], we examine critical

scaling of the length scale. Figure 5A displays scaling collapses
of the data of ξ , where the critical exponents, ν = 1.0 and

4 In a short range of x, non-affine velocities tend to be aligned in the same

direction, i.e., vy(xi, yi)vy(xi + x, yi) > 0, such that the correlation function C(x)

is a positive decreasing function of x. If the non-affine velocities start to align in

the opposite direction, i.e., vy(xi, yi)vy(xi + x, yi) < 0, the correlation function

becomes negative, C(x) < 0. Because the correlation function is minimum when

the non-affine velocities are located on either side of a vortex-like structure,

a typical size of rigid clusters can be defined as the distance at which C(x)

becomes minimum. In a long distance of x, due to the randomness of non-

affine velocities, the correlation function eventually decays to zero with or without

oscillations [34].
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FIGURE 4 | Normalized spatial correlation functions of the transverse

velocities C(x)/C(0), where symbols are as in Figure 2. (A) The packing

fraction φ increases as indicated by the arrow and listed in the legend, where

γ̇ = 10−6t−1
0 . The minimum of the data for φ = 0.84 is indicated by the short

vertical arrow. (B) The shear rate γ̇ increases as indicated by the arrow and

listed in the legend, where φ = 0.84.

λ = 4.0, are the same with those in Figure 3B. If the shear
rate is smaller than the characteristic value, i.e., γ̇ < γ̇c ≃

104|1φ|λ, the data below jamming (φ < φJ) exhibit plateau,
whereas those above jamming (φ > φJ) diverge with the
decrease of shear rate. Therefore, if we assume that the data
above jamming follow the power-law (solid line) with the slope
−0.40 ± 0.02 (approximately −0.4), the length scale in the
quasi-static regime (γ̇ < γ̇c) can be described as |1φ|νξ ∼

J±(γ̇ /|1φ|λ) with the scaling functions, J−(x) ∼ const. for
φ < φJ and J+(x) ∼ x−0.4 otherwise. Note that, however,
the length scale is limited to the system size L (shaded region
in Figure 5A) and should be scaled as ξ ∼ L above jamming
in the quasi-static limit γ̇ → 0 [4, 24, 29]. This means that
the system size is the only relevant length scale [38] and thus
we conclude ξ ∼ L in slow flows of jammed systems. On
the other hand, if γ̇ > γ̇c, all the data are collapsed onto
a single power law (dotted line in Figure 5A). Therefore, the
scaling functions are given by J±(x) ∼ x−z such that the
length scale scales as ξ ∼ γ̇−z|1φ|λz−ν . Because this relation
is independent of |1φ|, the exponent should be z = ν/λ as
confirmed in Figure 5A.

In summary, the length scale, or themean size of rigid clusters,
scales as

ξ ∼

{

|1φ|−ν (φ < φJ)

L (φ > φJ)
(6)

FIGURE 5 | (A) Scaling collapses of the length scale ξ , where 1φ ≡ φ − φJ

and φ increases as listed in the legend. The critical exponents are ν = 1.0 and

λ = 4.0 as in Figure 3B, where slopes of the dotted and solid lines are given

by −ν/λ and −0.4, respectively. The shaded region exceeds the system size

|1φ|νL/2 for the case of φ = 0.90. (B) Scatter plots of the diffusivity over the

shear rate D/γ̇ and the length scale ξ , where φ increases as listed in the

legend. The dotted line represents a linear relation D/γ̇ ∼ ξ and the shaded

region exceeds the system size L/2 ≃ 44d0.

in the quasi-static regime (γ̇ < γ̇c) and

ξ ∼ γ̇−ν/λ (7)

in the plastic flow regime (γ̇ > γ̇c), where the critical exponents,
ν and λ, are the same with those for the diffusivity (Equations 4
and 5). The critical divergence below jamming in the quasi-static

regime, i.e., ξ ∼ |1φ|−1 (Equation 6), is consistent with the
results of quasi-static simulations (γ̇ → 0) of sheared athermal

disks [27, 29]. In addition, the scaling ξ ∼ γ̇−1/4 in the plastic
flow regime (Equation 7) is very close to the prior work on
athermal particles under shear [22].

From the results of the diffusivity and length scale, we

discuss how the rigid clusters contribute to the diffusion of

the particles. From Equations (4) to (7), the linear relation
D ∼ d0ξ γ̇ (Equation 1) holds below jamming (regardless of
γ̇ ) and in the plastic flow regime (regardless of φ). We stress
that the divergence of the diffusivity over the shear rate in
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the quasi-static regime, i.e., D/γ̇ ∼ |1φ|−1 (Equation 4), is
caused by the diverging length scale below jamming, i.e., ξ ∼

|1φ|−1 (Equation 6). As shown in Figure 5B, the linear relation
(dotted line) well explains our results below jamming, where the
length scale ξ is smaller than 10d0. The linear relation (dotted
line) also well captures our results above jamming5 until the
length scale eventually reaches the system size L/2 ≃ 44d0
(shaded region).

4. DISCUSSIONS

In this study, we have numerically investigated rheological and
transport properties of soft athermal particles under shear.
Employing MD simulations of two-dimensional disks, we have
clarified how the rheology, self-diffusion, and size of rigid clusters
vary with the control parameters, i.e., the externally imposed
shear rate γ̇ and packing fraction of the disks φ.

Our main result is the critical scaling of the diffusivity (section
3.1), where their dependence on both γ̇ and φ is reported
(Equations 4–7). The diffusivity has been calculated on both
sides of jamming (by a single numerical protocol) to unify the
understanding of self-diffusion of soft particulate systems. We
found that (i) the diffusivity below jamming exhibits a crossover
from the linear scaling D ∼ γ̇ to the power-law D ∼ γ̇ 3/4.
Such a crossover can also be seen in previous simulations [20–
22]. In addition, (ii) the diffusivity below jamming diverges
as D ∼ |1φ|−1 if the system is in the quasi-static regime
(γ̇ < γ̇c), whereas (iii) the diffusivity (both below and above
jamming) is insensitive to φ if the system is in the plastic
flow regime (γ̇ > γ̇c). Note that (iv) the crossover shear rate
vanishes at the onset of jamming as γ̇c ∼ |1φ|4.0. These
results (ii)–(iv) are the new findings of this study. On the
other hand, we found that (v) the diffusivity above jamming
is weakly dependent on φ (as D ∼ |1φ|0.2) in the quasi-
static regime and (vi) shows a slight change from D ∼ γ̇ 0.7 to
γ̇ 3/4. Though the result (v) is the new finding, the result (vi)
contrasts with the prior studies, where the diffusivity exhibits
a crossover from D ∼ γ̇ to γ̇ 1/2 [24, 25, 28]. Because our
scaling D ∼ γ̇ 0.7 in the quasi-static regime is consistent
with Olsson [26], where the same overdamped dynamics are
used, we suppose that the discrepancy is caused by numerical
models and flow conditions, where the Lennard-Jones potential
is used for the interaction between the particles in Lemaître and
Caroli [24] and Chattoraj et al. [25] and frictionless/frictional
disks are sheared under constant pressure in Kharel and
Rognon [28].

5 If the system is above jamming (φ > φJ ) and in the quasi-static regime (γ̇ < γ̇c),

the diffusivity over the shear rate scales as D/γ̇ ∼ |1φ|0.2γ̇−0.3 (see Equation 4).

However, if φ > φJ and γ̇ < γ̇c, the length scale is ξ ∼ |1φ|0.6γ̇−0.4 as long as

ξ does not exceed the system size L. Though the linear relation D/γ̇ ∼ ξ is not

exact in this regime, their exponents are close to each other such that the dotted

line in Figure 5B fairly well explains the data. To figure out the relation between

D/γ̇ and ξ in this regime more carefully, further studies of different system sizes

may be necessary because there is a possibility of the coexistence of different length

scales, e.g., not only the rigid clusters but also string-like structures with different

fractal dimensions as can be seen in Figure 1.

We have also examined the relation between the diffusivity
and typical size of rigid clusters ξ (section 3.2). Below jamming,
we found the critical divergence ξ ∼ |1φ|−1 in the quasi-
static regime as previously observed in quasi-static simulations
(γ̇ → 0) of sheared athermal disks [29]. Note that our exponent
is larger than that obtained from previous studies of soft athermal
particles [3, 30], where the critical divergence ξ ∼ |1φ|−ν is
characterized by the exponent in the range between 0.6 < ν <

0.7. Though the meaning of ξ is similar, in the sense that it
quantifies the size of collective motions of the particles under
shear, we found that the quality of data collapse of ξ is even
worse if we use the exponents ν = 0.6 and 0.7. So far, we
cannot figure out the cause of this discrepancy and postpone
this problem as a future work. In the plastic flow regime, the
size becomes independent of φ and scales as ξ ∼ γ̇−1/4.
This is consistent with the previous result of sheared athermal
particles [22] (and is also close to the result of thermal glasses
under shear [36]). Above jamming, however, the size exhibits a
crossover from ξ ∼ L to γ̇−1/4 which contrasts with the crossover
from ξ ∼ L to γ̇−1/2 previously reported in simulations of
amorphous solids [24, 25, 28]. From our scaling analyses, we
found that the linear relation D ∼ d0ξ γ̇ (Equation 1) holds
below jamming (for ∀γ̇ ) and in the plastic flow regime (for ∀φ),
indicating that the self-diffusion is enhanced by the rotation of
rigid clusters [3, 28].

In our MD simulations, we fixed the system size to L ≃

88d0. However, systematic studies of different system sizes are
needed to clarify the relation between D and ξ ∼ L above
jamming, especially in the quasi-static limit γ̇ → 0 [24, 25]. In
addition, our analyses are limited to two dimensions. Though
previous studies suggest that the diffusivity is independent of
the dimensionality [20–22], a recent study of soft athermal
particles reported that the critical scaling of shear viscosity
depends on dimensions [39]. Therefore, it is important to
check whether the critical scaling (Equations 4 and 5) is
different in three-dimensional systems. In addition, O’Hern et al.
found that the critical exponents near jamming are sensitive
to interaction potentials [32]. Therefore, it is important to
examine whether our exponents, ν and λ, are sensitive to
the details of numerical models, e.g., contact forces, particle
inertia, microscopic friction, particle size distributions, etc. with
the aim of testing universality class of the diffusivity and size
of rigid clusters. Moreover, the analysis of local structures
of instantaneous configurations of the disks is important to
investigate the rigidity of the clusters [40] and the relation
between the diffusivity and shear viscosity may be interesting
because it gives a Stokes-Einstein like relation for the non-
equilibrium systems studied here.

In our recent study of non-Brownian suspensions [15], we
found that the viscosity exhibits a crossover when the system
approaches the jamming transition. To describe such a crossover,
a correction term should be added to the conventional scaling
function as F(x) + G(x), where two different exponents are
introduced as F(x) ∼ x−z and G(x) ∼ x−w. This means that
the scaling collapse of the flow curves [3], where the scaling
function is given by a single power law, can be violated if the
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system is very close to jamming. Similarly, our scaling collapses
of D (Figure 3B) and ξ (Figure 5A) could break down by the
same reason. Therefore, it is necessary to examine whether
the crossovers of D and ξ exist in the case that the system is in
the vicinity of the jamming transition.
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