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Time-dependent Hartree–Fock (TDHF) method has been applied to various low-energy

nuclear reactions, such as fusion, fission, and multinucleon transfer reactions. In this

Mini Review, we summarize recent attempts to bridge a microscopic nuclear reaction

theory, TDHF, and a macroscopic aspect of nuclear reactions through nucleus–nucleus

potentials and energy dissipation from macroscopic degrees of freedom to microscopic

ones obtained from TDHF in various colliding systems from light to heavy mass regions.
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1. INTRODUCTION

Time-dependent Hartree–Fock (TDHF) method has been widely used in analyzing low-energy
nuclear reactions since Bonche and his coworkers applied TDHF to collision of slabs in
one-dimensional space as the first application of TDHF to nuclear physics [1]. Since then TDHF
has been improved in several respects, e.g., including all terms in recent energy density functionals
(EDF) such as Skyrme [2] and Gogny [3] functionals and breaking symmetries such as space (from
one-dimensional to three-dimensional space).

It is well-known that the coupling between relative motions of colliding nuclei (macroscopic
degrees of freedom) and internal excitations of them (microscopic degrees of freedom) plays an
important role for describing low-energy nuclear reactions at energies around the Coulomb barrier.
To include such couplings, coupled-channel models [4–7] have been developed and widely used.
TDHF automatically includes couplings between relative motion and internal excitations since
TDHF describes the dynamics of single particles. Moreover, TDHF provides an intuitive picture
of nuclear dynamics through the time evolution of one-body densities constructed from single-
particle wave functions in nuclei. Recently, TDHF has been applied to nuclear collective excitations
[3, 8–15] and to nuclear reactions such as fusion [16–22], quasifission [23–25], fission [26–29], and
multinucleon transfer reactions [30–34], some of which include pairing correlations.

In this Mini Review, however, we do not discuss the development of TDHF itself (see recent
review articles on the development of TDHF in [35–40]). Instead, we focus on amacroscopic aspect
of low-energy nuclear reactions described by TDHF. To this end, we show various applications
of the method called “dissipative-dynamics TDHF” (DD-TDHF) developed in Washiyama and
Lacroix [19], Washiyama et al. [20], and Washiyama [41].

2. DISSIPATIVE-DYNAMICS TDHF

The basic idea of DD-TDHF is to combine microscopic dynamics of nuclear reactions described by
TDHF and a macroscopic aspect of nuclear reactions through a mapping from microscopic TDHF
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evolution to a set of macroscopic equations of motion. We briefly
summarize DD-TDHF by the following steps: (1) We first solve
the TDHF equation to obtain time evolution of single-particle
wave functions for nuclear reactions:

ih̄
∂φi(t)

∂t
= ĥ[ρ(t)]φi(t), (1)

where φi(t) is the single-particle wave functions with index i

(including spin and isospin degrees of freedom), and ĥ[ρ(t)]
is the single-particle Hamiltonian as a functional of one-body
density ρ(t), obtained from an EDF E[ρ] by an appropriate

functional derivative ĥ[ρ(t)] = δE/δρ. (2) The next step is
to define macroscopic two-body dynamics from microscopic
TDHF simulations. Macroscopic two-body dynamics can be
constructed once collective coordinate is defined from TDHF
simulations. To do so in TDHF, we introduce a separation plane
which divides the density ρ(r, t) of a colliding system to two
subsystems, ρ1(r, t) and ρ2(r, t), corresponding to projectile-like
and target-like densities. This separation plane is perpendicular
to the collision axis, and at the position where the two densities
ρP(r, t) and ρT(r, t) constructed from the single-particle wave
functions initially in the projectile and in the target, respectively,
cross (see Figure 1 of [19] for an illustrative example). We then
compute the coordinate Ri and its conjugated momentum Pi
for each subsystem i = 1, 2 from ρ1(r, t) and ρ2(r, t). Also,
we compute the masses of the two subsystems by mi = Pi/Ṙi.
From these, two-body dynamics for the relative distance R as
a collective coordinate and its conjugated momentum P, and
reduced mass µ that may depend on R is constructed. (3) For the
case of central collisions, we assume that the trajectory of the two-
body dynamics obtained from TDHF follows a one-dimensional
equation of motion for relative motions,

dR

dt
=

P

µ
, (2)

dP

dt
= −

dV

dR
−

d

dR

(

P2

2µ

)

− γ
P

µ
, (3)

where V(R) and γ (R) denote the nucleus–nucleus potential and
friction coefficient expressing energy dissipation from the relative
motion of colliding nuclei to internal excitations in nuclei,
respectively. An important point is that these two quantities
V(R) and γ (R) are unknown in TDHF simulations. (4) To
obtain those two unknown quantities we prepare a system of
two equations from two trajectories at slightly different energies.
Then, we solve the system of two equations at each R to obtain
V(R) and γ (R). The details of numerical procedures for the
calculations described above can be found in Washiyama and
Lacroix [19], Washiyama et al. [20], and Washiyama [41]. In the
following results, we used the SLy4d Skyrme EDF [16] without
pairing interactions.

3. NUCLEUS–NUCLEUS POTENTIAL AND
ENERGY DISSIPATION

3.1. Light and Medium-Mass Systems
In light and medium-mass systems, whose charge product Z1Z2
is smaller than ≈ 1, 600, it is known that fusion occurs
once two nuclei contact each other after passing the Coulomb
barrier. Indeed, TDHF simulations for head-on collisions at
energies above the Coulomb barrier lead to fusion, keeping

a compound system compact for sufficiently long time. We

first provide selected results of nucleus–nucleus potential
and energy dissipation obtained from DD-TDHF and discuss
their properties.

In Figure 1A, we show obtained nucleus–nucleus potentials
as a function of relative distance R near the Coulomb barrier
radius for 40Ca + 40Ca. The lines show the nucleus–nucleus
potentials at different center-of-mass energies (Ec.m.) by DD-
TDHF, while the filled circles show the potential obtained by the
frozen-density approximation, where the energy of the system is
calculated with the same EDF except that the dynamical effect
during the collision is neglected and the density of each fragment
is fixed to be its ground-state one. Moreover, in the frozen-
density approximation, the Pauli principle is neglected between
nucleons in the projectile and in the target, leading to worse
approximation as the overlap of projectile and target nuclei
becomes significant. Important remarks from this figure are: (1)
Potentials obtained at higher energies (Ec.m. = 90, 100MeV)
agree with the frozen-density one, indicating the convergence of
the potentials obtained by DD-TDHF at higher energies. (2) DD-
TDHF potentials express an Ec.m. dependence at lower energies
Ec.m. = 55, 57MeV. (3) The height of DD-TDHF potential
decreases with decreasing Ec.m.. The Coulomb barrier height
decreases from ≈ 54.5MeV at Ec.m. = 90, 100MeV of DD-
TDHF and of the frozen-density approximation to ≈ 53.4MeV
at Ec.m. = 55MeV of DD-TDHF. The above remarks can
be understood by the dynamical reorganization of the TDHF
density profile of each TDHF trajectory. Figure 1B shows the
TDHF density ρ(x, y, z = 0, t) at each R for Ec.m. = 55 (top
panels) and 90MeV (bottom panels). At Ec.m. = 90MeV, the
shape of each 40Ca density keeps its shape spherical, while at
Ec.m. = 55MeV the shape of each 40Ca density deviates from
its ground-state spherical shape as R becomes smaller. This is
a dynamical reorganization of density during fusion reactions.
This dynamical reorganization changes the shape of each nucleus
when two nuclei approach sufficiently, then reduces the height
of the nucleus–nucleus potential obtained by DD-TDHF. This
dynamical reduction of the nucleus–nucleus potential is seen
in various light- and medium-mass systems in Washiyama and
Lacroix [19].

We would like to note that, in the density-constrained TDHF
(DC-TDHF) method [17], in which constrained Hartree–Fock
calculation is performed to obtain the nucleus–nucleus potential
under the condition that the density is constrained to the density
obtained from TDHF at each time, similar Ec.m. dependence of
nucleus–nucleus potentials is seen in various colliding systems
reported, e.g., in Umar and Oberacker [18], Umar et al. [42],
Oberacker et al. [43], and Umar et al. [44]. Moreover, in the
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FIGURE 1 | (A) Nucleus–nucleus potentials denoted by lines obtained by DD-TDHF at different energies and by the frozen-density approximation by filled circles with

the dotted line as a function of R in 40Ca + 40Ca. (B) Contour plots of density profile ρ(X,Y , 0) obtained from TDHF at Ec.m. = 55MeV (upper panels) and at

Ec.m. = 90MeV (lower panels), at R = 10.26 fm (left panels), 9.82 fm (middle), and 9.52 fm (right) in 40Ca + 40Ca. The isodensities (contour lines) are plotted at each

0.025 fm−3. (C) Same as (A) but for 96Zr + 124Sn. (D) Friction coefficient divided by reduced mass, γ /µ, from DD-TDHF. (E) Extra-push energy from experiments

(Eextra
expt. ) and from TDHF (Eextra

TDHF) together with potential increase 1V and dissipated energy Ediss for
90,92,94,96Zr + 124Sn (see text for detail). (A,B) adopted from

Washiyama and Lacroix [19], (C,D) adopted from Washiyama [41], and (E) adopted from Washiyama [41] with slight change with permission from APS and SciPris.

40Ca + 40Ca system, we find no significant difference in the
potential extracted by DD-TDHF and the one by DC-TDHF [44].

3.2. Heavy Systems
Contrary to light and medium-mass systems described in
section Light and Medium-Mass Systems, it was experimentally
observed that fusion probability at energies near the Coulomb
barrier is strongly hindered in heavy systems (Z1Z2 ≥ 1, 600)
[45, 46]. The main origin of this hindrance has been considered
as the presence of the quasifission process, where a composite
system of two colliding nuclei reseparates before forming an
equilibrated compound nucleus. This fusion hindrance indeed
has been observed in TDHF e.g., in Simenel [35], Washiyama
[41], Simenel et al. [47], and Guo and Nakatsukasa [48]. Namely,
TDHF simulations for head-on collisions at energies above the
Coulomb barrier lead to touching configuration of a composite
system, and then to reseparation after a while (several to tens
of zeptoseconds). In Washiyama [41], the extra-push energy
ETDHF
extra = ETDHF

thres
− VFD

B in TDHF was systematically obtained

in heavy systems, where ETDHF
thres

and VFD
B denote the fusion

threshold energy above which fusion occurs in TDHF and
the Coulomb barrier energy obtained in the frozen-density

approximation, respectively. We show in Figure 1E extra-push
energies in TDHF for 90,92,94,96Zr + 124Sn, compared with those
deduced from experimental data, Eextraexpt. , taken from Schmidt and
Morawek [49], where the Bass barrier VBass [50] was employed
as the Coulomb barrier height. We found that the difference
between VFD

B and VBass in 90,92,94,96Zr + 124Sn is at most ≈

1MeV. These obtained extra-push energies in TDHF reasonably
reproduce observations.

One may think why the fusion hindrance in heavy systems
appears in both experiments and TDHF simulations. In
Washiyama [41], we address this question and analyze where
finite extra-push energies arise. For the analysis, we first
derive the nucleus–nucleus potential and energy dissipation
by DD-TDHF because we think that these two quantities are
strongly related to the appearance of finite extra-push energy.
In Figure 1C, we show an example of nucleus–nucleus potentials
extracted in heavy systems, which is for the 96Zr + 124Sn system
for three different energies in DD-TDHF and the frozen-density
one. One can clearly see the difference between the potentials
in 40Ca + 40Ca (Figure 1A) and 96Zr + 124Sn (Figure 1C): the
potentials in 96Zr + 124Sn extracted by DD-TDHFmonotonically
increases as the relative distance decreases while the potentials in
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40Ca + 40Ca and by the frozen-density approximation in 96Zr +
124Sn show a barrier structure at a certain relative distance. We
have observed monotonic increase in potential in other heavy
systems [41]. We consider the increase in potential in heavy
systems as the transition from two-body dynamics of colliding
nuclei to one-body dynamics of a composite system with strong
overlap of the densities of colliding nuclei in TDHF and as the
appearance of the conditional saddle point inside the Coulomb
barrier in heavy systems [51–54].

We would like to note here that this is different property
from the one obtained from the DC-TDHF method in the
same colliding system in Oberacker et al. [43]. This difference
comes from a different interpretation of the nucleus–nucleus
potential between the two methods. In the DC-TDHF method
energy minimization is carried out at a given density of a system
obtained from TDHF to deduce a nucleus–nucleus potential
that eliminates internal excitations in this system. In the DD-
TDHF method the potential is deduced under the assumption
that TDHF evolution is reduced to a one-dimensional equation
of motion for relative motion. We consider that the DD-TDHF
potential can include a part of the DC-TDHF internal excitation
energy. We make a comment on the origin of the difference
between the two potentials in the following: In heavy systems
with larger Coulomb replusion, larger overlap of projectile
and target densities during a collsion in TDHF is achieved
at a short relative distance. In TDHF, diabatic level crossings
can occur more in larger overlap region, leading to a part of
internal excitations and to a transition from two-body to one-
body picture of a system. This part of internal excitations is
interpreted as potential energy in DD-TDHF, while this is treated
as excitation energy in DC-TDHF. In the DC-TDHFmethod, the
flattening of the potential at short distances inside the Coulomb
barrier radius is seen in heavier systems leading to the synthesis
of superheavy elements in Umar et al. [42].

In Figure 1D, reduced friction coefficient (γ /µ), the friction
coefficient divided by the reduced mass extracted from Equation
(2), are plotted for selected systems. The friction coefficient
increases as R decreases, and shows oscillations in heavy systems.
We consider that the fact that the friction coefficient becomes
negative indicates breakdown of the assumption that the TDHF
trajectory follows a macroscopic one-dimensional equation of
motion for relative motion of a two-body colliding system.

Finally, we consider the origin of the fusion hindrance
in heavy systems through the analysis with DD-TDHF.
As mentioned above, nucleus–nucleus potential and energy
dissipation are main contribution to the appearance of finite
extra-push energy. We evaluate the potential increase at short
distances and the accumulated dissipation energy from the
friction coefficient using the formula [41],

Ediss(t) =

∫ t

0
dt′γ [R(t′)]Ṙ(t′)2, (4)

up to time t when the kinetic energy of the relative motion of
the system is completely dissipated. In Figure 1E, we also show
the contribution of potential increase 1V and dissipated energy
Ediss to the extra-push energy in the 90,92,94,96Zr + 124Sn systems.

The result 1V > Ediss indicates that the potential increase is a
main origin for the appearance of the finite extra-push energy,
i.e., fusion hindrance. Though the energy dissipation is known to
play an important role in this fusion hindrance, it is not sufficient
to explain the amount of the extra-push energy in the analysis
with the DD-TDHF method.

3.3. Off-Central Collisions
So far, the applications of theDD-TDHFmethod has been limited
to central collisions. Here we discuss a possible extension of the
method to off-central collisions. Regarding (R, P) and (ϕ, L) as
sets of canonical coordinates, where ϕ represents a rotation angle
of the colliding system in the reaction plane and L = µR2ϕ̇ is
the angular momentum of the relative motion, we obtain a set of
macroscopic equations of motion:

dR

dt
=

P

µ
, (5)

dϕ

dt
=

L

µR2
, (6)

dP

dt
= −

dV

dR
+

1

2

(

P2

µ2
+

L2

µ2R2

)

dµ

dR
+

L2

µR3
− γR

P

µ
, (7)

dL

dt
= −γϕ

L

µ
. (8)

Here, γR(R) and γϕ(R) denote the radial and tangential (or
“sliding”) friction coefficients, respectively, where the former
already appeared in Equation (3), the case of central collisions,
and the latter governs the angular momentum dissipation (cf.
Equation 8).

At first sight, there are three unknown quantities: the nucleus–
nucleus potential V , the radial friction coefficient γR, and the
tangential friction coefficient γϕ . However, since time evolution
of ϕ(t) and L(t) can be obtained from TDHF, a single TDHF
simulation already provides the tangential friction coefficient by

γϕ(R) = −µ(t)
L̇(t)

L(t)
. (9)

Thus, there are only two unknown quantities in Equations (5)–
(8), i.e., V(R) and γR(R), and we can apply the same procedure
applied for central collisions.

In Figure 2, we show the results for the 16O+16O reaction at
E/VB = 1.4 including off-central collisions, as an illustrative
example. In Figure 2A, the nucleus–nucleus potential is shown
as a function of the relative distance, R. We also show the
potential in the frozen-density approximation by open circles, for
comparison. Figure 2A clearly shows that the method provides
almost identical nucleus–nucleus potentials V(R) irrespective
of the impact parameters. In Figure 2B, the effective potential
Veff(R), the sum of nuclear, Coulomb, and centrifugal potentials,
is shown. It can be seen that, for b = 6 fm, the closest distance
is achieved at around R = 10 fm, at which the effective potential
coincides with the incident relative energy. In Figures 2C,D, the
reduced radial and tangential friction coefficients, βR = γR/µ

and βϕ = γϕ/µ, are shown as a function of the relative distance.
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FIGURE 2 | Results of DD-TDHF calculations for the 16O+16O reaction at E/VB = 1.4 at various impact parameters. The nucleus–nucleus potentials and the effective

potential Veff (R) = V (R)+ L2/2µR2 are shown in (A,B), respectively, as a function of the relative distance, R. The reduced radial friction coefficients, βR = γR/µ, are

shown in (C), while the reduced tangential friction coefficients, βϕ = γϕ/µ, are shown in (D).

We found no significant dependence of the friction coefficients
on the impact parameters in this system. In this way, this
approach enables us to access the angular momentum dissipation
mechanism and a systematic calculation is in progress.

Note that non-central effects on nucleus–nucleus potentials
and effective mass parameters in fusion reactions have been
studied in TDHF and DC-TDHF in Jiang et al. [21]. It is
interesting to make detailed comparison between those and our
DD-TDHF in a future work.

4. SUMMARY

The macroscopic aspect of TDHF dynamics for low-energy
nuclear reactions at energies near the Coulomb barrier was
discussed within the DD-TDHF method. We showed that the
dynamical reorganization of single-particle wave functions inside
the colliding nuclei affects the macroscopic nucleus–nucleus
potential that leads to dynamical reduction of the potential
around the Coulomb barrier radius in light- and medium-mass
systems. In heavy systems, the dynamical reorganization leads
to the fusion hindrance, increase in potential compared with
the potential obtained from the frozen-density approximation
in which the dynamical reorganization effect is neglected. By
extending the DD-TDHF method to off-central collisions, the
tangential friction coefficient was extracted in the 16O+16O
reaction in addition to the nucleus–nucleus potential and the
radial friction. As expected, the nucleus–nucleus potentials
do not show a significant dependence of the initial angular
momentum. The strength of the tangential friction is in
the same order of magnitude as the radial one. From this
extension, one can access the mechanism of angular momentum

dissipation from microscopic reaction models. Possible future
extension would be a systematic study of angular momentum
dissipation mechanism in various systems, especially in heavy
systems to address the fusion hindrance problem. Another
possible extension would be a systematic study of collisions with
deformed nuclei. It is interesting to study an orientation effect,
a dependence of an angle between the collision axis and the
principle axis of a deformed nucleus, on the nucleus–nucleus
potential and the friction coefficient. It would be important to
investigate how orbital angular momentum dissipation couples
to a rotation of deformed nucleus during collision.
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