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Network approaches provide sensitive biomarkers for neurological conditions, such

as Alzheimer’s disease (AD). Mouse models can help advance our understanding of

underlying pathologies, by dissecting vulnerable circuits. While the mouse brain contains

less white matter compared to the human brain, axonal diameters compare relatively well

(e.g., ∼0.6µm in the mouse and ∼0.65–1.05µm in the human corpus callosum). This

makes the mouse an attractive test bed for novel diffusion models and imaging protocols.

Remaining questions on the accuracy and uncertainty of connectomes have prompted

us to evaluate diffusion imaging protocols with various spatial and angular resolutions. We

have derived structural connectomes by extracting gradient subsets from a high-spatial,

high-angular resolution diffusion acquisition (120 directions, 43-µm-size voxels). We have

simulated protocols with 12, 15, 20, 30, 45, 60, 80, 100, and 120 angles and at 43, 86,

or 172-µm voxel sizes. The rotational stability of these schemes increased with angular

resolution. The minimum condition number was achieved for 120 directions, followed by

60 and 45 directions. The percentage of voxels containing one dyad was exceeded by

those with two dyads after 45 directions, and for the highest spatial resolution protocols.

For the 86- or 172-µm resolutions, these ratios converged toward 55% for one and 39%

for two dyads, respectively, with <7% from voxels with three dyads. Tractography errors,

estimated through dyad dispersion, decreased most with angular resolution. Spatial

resolution effects became noticeable at 172µm. Smaller tracts, e.g., the fornix, were

affected more than larger ones, e.g., the fimbria. We observed an inflection point for

45 directions, and an asymptotic behavior after 60 directions, corresponding to similar

projection density maps. Spatially downsampling to 86µm, while maintaining the angular

resolution, achieved a subgraph similarity of 96% relative to the reference. Using 60

directions with 86- or 172-µm voxels resulted in 94% similarity. Node similarity metrics

indicated that major white matter tracts were more robust to downsampling relative to

cortical regions. Our study provides guidelines for new protocols in mouse models of

neurological conditions, so as to achieve similar connectomes, while increasing efficiency.
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INTRODUCTION

A growing body of evidence suggests that altered brain
connectivity is present in a variety of neurologic and psychiatric
diseases. For example neurological conditions such as AD [1,
2], autism spectrum disorders [3], and psychiatric conditions
such as schizophrenia [4] can be viewed as connectopathies.
Multimodal network analyses can help identify early alterations
associated with pathological processes both at the functional and
structural levels. Structural connectomes based on diffusion MRI
may produce sensitive biomarkers to monitor these conditions
since they integrate the effects of multiple pathologies (atrophy,
myelination, toxicity of the environment due to, e.g., oligomers,
microstructural changes) [5].

While studies on diffusion imaging in the human brain have
previously addressed the tradeoffs associated with spatial vs.
angular resolution, the mouse brain provides insight into white
matter connectivity at a vastly different scale and, thus, deserves
special attention. We need to compare 2-mm linear dimension
voxel sizes in humans (corresponding to 8-mm3 voxel volumes),
vs. 0.2–0.043-mm linear dimension voxel sizes (corresponding
to ∼8 × 10−2- 8 × 10−5-mm3 voxel volumes) required to
distinguish similar levels of anatomical detail in mouse brains [6–
11]. This increased resolution enables the observation of brain
architecture at the level of cellular layers, which, therefore, can
help us gain insight into the mechanistic drivers behind the
etiology and progression of disease, using animal models where
axonal dimensions are relatively similar to humans [12, 13].

Yet, using sensitive methods for identifying pathways affected
early on in animal models remains difficult. Difficulties in
optimizing diffusion imaging protocols arise from the need
for long acquisition times, to achieve sufficient signal to noise
for smaller voxels. These are required for dissecting vulnerable
pathways and networks, early on in the disease process, or subtle
changes in time or following interventions. The mouse brain
architecture, in contrast with the human brain, presents with
thin, relatively sparse white matter tracts. The imaging protocols
required for resolving small tract-based connections are, thus,
demanding a high spatial resolution. In addition, increasing the
angular sampling and the number of b values may reduce biases
and produce more accurate models. This translates into long
protocols, and subsequently costs in terms of time and money,
which need to be balanced against the desired increases in spatial
and angular resolution.

In this work, we have examined the balance between
spatial and angular resolutions and inferred suggestions for
recommended future protocols. In particular, we examined a set
of nodes/brain regions that are relevant for neurodegenerative
conditions such as AD. We used simulations based on
downsampling a high-spatial, high-angular data set, and assessed
the effect of relaxing these requirements/parameters on the
accuracy of the reconstructed tracts and connectome, when
compared against our reference protocol. We have focused our
analyses on regions expected to be affected in AD, such as fimbria,
fornix, and hippocampus, septum, hypothalamus, and also the
lateral geniculate nucleus. We evaluated how different protocols
led to increasingly more robust results and how fast errors change

with spatial and angular sampling resolution. Our results can
inform future population studies, in particular, for models of
neurodegenerative disease.

METHODS

Imaging was performed, as previously reported [14] on a 9.4-
Tesla small-animal imaging system controlled by an Agilent
VnmrJ 4 console. Diffusion imaging was accomplished using a
3D diffusion-weighted spin-echo pulse sequence with repetition
time (TR) = 100ms, echo time (TE) = 15ms, and b value =

4,000 s/mm2. The acquisition matrix was 568 × 284 × 228 over
a 24.4 × 12.2 × 9.8mm field of view, resulting in isotropic
43 × 43 × 43µm voxels (referred from now on as 43-µm
linear voxel dimension). The diffusion protocol included 120
diffusion directions [15, 16] and 11 non-diffusion-weighted (b0)
measurements (i.e., one b0 every 12 diffusion measurements).

Angular downsampling of the original diffusion data set was
performed by obtaining the optimal diffusion directions for each
angular subset [15, 16] and extracting the closest gradient vector
from the 120 unique diffusion directions. The closest gradient
orientation was chosen by maximizing the dot product between
the optimal gradient vector and the possible vectors found in the
original gradient table.

Spatial downsampling of the original diffusion data set was
performed by cropping the data in k space, resulting in three
levels of isotropic spatial resolution: 43-, 86-, 172-µm linear
voxel dimension.

The condition numbers for the gradient subset matrices,
defining angular sampling, were calculated in MATLAB (Natick,
MA), based on the ratio between the largest and smallest singular
values for each matrix. The stability of the condition numbers
was evaluated for each of the gradient subsets following 50,000
simulated rotations of these matrices.

Diffusion data processing was done on a high-performance
computing cluster with 96 physical cores and 1.5 TB of RAM. All
131 image volumes were registered to the first b0 image using
advanced normalization tools (ANTs) affine transformation
[17] to correct for eddy current distortions. Scalar image
volumes were reconstructed using FSL’s DTIFIT [18]. Fiber data
for probabilistic tractography were reconstructed using FSL’s
BEDPOSTX [19] with a maximum of four fiber orientations per
voxel. In-home written scripts and FSL were used to estimate
the numbers of tracts with one, two, three, or four dyads and to
estimate errors/uncertainty based on dyad dispersion.

Automated atlas-based segmentation was performed [20]
using an atlas, which combines the Waxholm Space atlas [21]
for subcortical labels, and the Ullmann atlas of the neocortex
[22], with a total of 332 regions—symmetrized relative to
the midsagittal plane. Connectomes were constructed using
SAMBA [23], and DSI Studio [24] for a subset of brain regions.
These include for simplicity, the connectivity matrices generated
pertaining solely to left-sided seed regions connecting to left-
sided targets. We next evaluated the similarity of connectomes
based on global Spearman correlation coefficients among 12
representative acquisition schemes (four angular sampling
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FIGURE 1 | The stability of the condition numbers increased, and the standard deviation decreased with angular resolution, although not monotonically, denoting that

some sampling schemes are more robust to rotational variance, due to their geometrical symmetry properties.

TABLE 1 | The smallest mean condition numbers (CN) ranked the 120-direction scheme as optimal, followed by the 60, then 45-direction schemes.

Angles CN CN (mean) STD STD (CN)/SQRT (Angles) Rank CN (mean) Rank STD

12 1.647 1.661 3.626E−02 1.047E−02 8 7

15 1.709 1.659 4.779E−02 1.234E−02 7 9

20 1.696 1.675 4.758E−02 1.064E−02 9 8

30 1.633 1.639 1.799E−02 3.285E−03 6 3

45 1.610 1.615 2.180E−02 3.250E−03 3 4

60 1.561 1.604 2.685E−02 3.467E−03 2 5

80 1.645 1.621 2.877E−02 3.217E−03 5 6

100 1.643 1.618 1.761E−02 1.761E−03 4 2

120 1.585 1.584 7.494E−04 6.841E−05 1 1
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FIGURE 2 | The effect of spatial resolution (horizontal axis) and angular resolution (vertical axis) on the number of voxels with one, two, three, or four fibers (dyads) per

voxels (A). (A) Effects for 12, 45, and 120 directions, chosen as examples for low-, medium-, and high-angular sampling. (B) Effects for sampling schemes between

12 and 120 at three spatial resolutions (43, 86, and 172µm). These results illustrated the advantages of high-angular and spatial-resolution protocols in terms of

sensitivity and stability.
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FIGURE 3 | The number of voxels with one, two, and three dyads varied per region, but differences relative to the reference protocol (high-spatial, high-angular

resolution) consistently decreased with increasing number of angular directions (only 12, 45, 60, and 120 directions are shown for simplicity) and with increasing

spatial resolution (i.e., smaller voxels; ranging from 43-µm linear dimension for the reference to 86 and 172µm).

schemes and three spatial resolution levels). Node wise similarity
was evaluated as in Blondel et al. [25]. Specifically, the similarity
matrices were obtained as the limit of the normalized even
iterates of Sk + 1 = BSkA

T
+ BTSkA, where A and B are the two

graph adjacency matrices, and S0 is a matrix whose entries are
equal to 1.

RESULTS

We have evaluated the effect of different angular diffusion
sampling schemes and spatial resolutions on mouse brain
connectivity, from the point of view of stability, with reference
to a published data set, and with the aim to identify balanced
acquisition schemes in terms of cost and accuracy.

First, we have evaluated nine angular sampling schemes from
the point of view of their stability, through their condition
numbers, as well as their standard deviations (Figure 1). The
condition numbers define the asymptotic worst-case relative
change in output for a relative change in input.

The highest spatial and angular resolution scheme had the
smallest condition numbers (1.58) and standard deviation (7.5×
10−4). The ranking in terms of condition number was followed
by the 60- and 45-direction angular sampling schemes, while
the standard deviation followed the ranking 100, 45, and 60
(Table 1).

We focused the rest of our analyses on the 45- and 60-
direction schemes and compared the results against the reference
120-direction scheme, at three different spatial resolution
levels throughout.

Downsampled diffusion data sets were used to estimate the
total number of fibers per voxel in each set (Figure 2). The
total fiber count increased from 7.4 × 106 for 12 directions to
1.07 × 107 for 45 and 1.13 × 107 for 60 directions and 1.23
× 107 for 120 directions. The steepest changes occurred below
45 directions.

Interestingly, while the number of voxels detected to have
one fiber direction was dominant for small angular sampling
schemes, this number was exceeded by the number of voxels
identified to have two fiber directions, if the sampling schemes
had more than 45 angular directions and at a spatial resolution of
43µm. The number of voxels with one dyad reached 42% for 45
directions, and 35% for 60 directions. The number of voxels with
two dyads increased with increasing angular sampling, reaching
55% for 45 directions and 60% for 60 directions. Thus, these
two curves intersected, and the ratio of one- to two-dyad voxels
changed after ∼45 directions. However, the two curves did not
intersect for the 86- and 172-µm spatial resolution scenarios. The
number of voxels with one fiber direction plateaued at ∼55%,
and the number of voxels with two fiber directions at ∼38%
for 86- and 172-µm spatial resolutions, with modest increases
between 45 and 60 angular samples, and <7% contribution
from voxels with three directions. These two data sets had very
similar behaviors in terms of the number of voxels with one or
two dyads.

These effects were found to be region dependent, although we
noted a consistent trend in the ratios between one, two, and three
dyads across all three resolution samples (Figure 3).

We next focused our analysis on the fimbria and fornix
because these tracts have been reported to be relevant in
neurodegenerative conditions such as Alzheimer’s disease.
Our qualitative evaluation showed that tract density maps
reconstructed from 12 directions did not capture the cortical–
cortical connectivity with the same sensitivity as the 45-, 60-,
or 120-direction schemes (Figure 4). While less striking, the loss
of spatial resolution also resulted in a change in the anatomical
definition for the projections, and loss of connectivity through
smaller regions (e.g., alveus).

The connectivity of the left hippocampus (Figure 5)
illustrated a striking similarity between the 120- and 60-
directions schemes and loss of similarity for lower angular
resolution schemes. In particular, cortical projections occupied

Frontiers in Physics | www.frontiersin.org 5 April 2020 | Volume 8 | Article 88

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Anderson et al. Optimizing Diffusion Imaging for Structural Connectomics

FIGURE 4 | The fimbria connectivity mapped as a function of spatial and angular resolution. The connectivity of the left fimbria was reconstructed for protocols with

12, 45, 60, and 120 directions, at the full 43-µm resolution, clearly illustrating limitations of smaller angular sampling protocols at capturing projections though the

hippocampus (white arrows) and amygdala (yellow arrows). Less clear were the effects of spatial resolution in the range 43–172µm where SNR and partial volume

effects both played a role. However, the projections through the hippocampus covered reduced areas, and projections into the alveus were partially lost in the lower

resolution protocol (blue arrows). L, left; R, right.

smaller areas, especially those requiring interhemispheric
connections. The loss of spatial resolution resulted in
some clusters appearing larger (e.g., in the amygdala),
or conversely, some of the connections were lost (e.g.,
hindbrain, cerebellum).

We based our quantitative error analysis on the dyad
dispersion for the first- (Figure 6A) and second-order dyads
(Figure 6B). Our results showed that errors decayed as the
number of angular samples increased both for white matter and
for gray matter regions, and the errors increased as we relaxed
the spatial resolution. This effect toward increased dispersion
was particularly important for thin regions such as the fornix
in dyad one (Figure 6A). An inflection point was noticed in
particular for gray mater regions for 45 directions, and the curves
tended to converge toward an asymptotic behavior starting
with 60 directions. The dispersion values were larger for the
second-order dyad (Figure 6B), but the trends were consistent
with those observed for dyad one, with an asymptotic behavior

predominantly observed in gray matter regions for schemes with
more than 60 directions.

Probabilistic tractography was used to generate connectivity
matrices, based on the number of streamlines connecting selected
regions that are likely to play a role in neurodegenerative
disease models. In general, the connectivity differences between
our reference and those of the 45- or 60-direction data
sets were considerably smaller relative to those involving 12
directions (Figure 7). The sensitivity to capturing connectivity
of smaller, and in particular, cortical gray matter regions was
evident in the chord diagrams (Figure 7), which appeared
sparser for 12 directions relative to 45, 60, and 120 directions.
The sparsity was evident for gray matter-to-gray matter
connections, in particular, for cortical domains. For small angular
resolutions, the connectomes were dominated by wide bands
involving myelinated white matter tract regions connecting
to the hippocampus or septum. Gray matter-to-gray matter
connections appeared more prominent with higher angular
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FIGURE 5 | The hippocampus connectivity mapped as a function of spatial and angular resolution. Hippocampal connectivity (the left hemisphere was seeded) was

affected more by angular resolution, especially for cortical regions (white arrows), but also in the ability to retrieve cross hemispheric projections (yellow arrows). L, left;

R, right.

sampling, in particular for schemes with more than 45 directions,
with a noticeable qualitative similarity between 60 and 120 angles.

To quantify the similarity between connectomes, we used
non-parametric correlation analysis. The Spearman correlation
among the connectivity matrices was significant (p < 0.001) for
all comparisons tested.

The highest global correlation overall was found among the
86-µm spatial resolution connectomes acquired with 60 and
120 directions, 0.97, while the correlation between connectomes
acquired at the same 86-µm spatial resolution with 45 and 120
directions was 0.92. When compared against the reference high-
spatial, high-angular resolution protocol (S1, A120), the highest

correlations were with (S2, A120) at 0.96, followed by (S1, A60)
and (S2, A60) at 0.94, then (S4, A120) at 0.93 (Figure 8, left).
When comparing the 45-direction protocols against the reference
(high-spatial, high-angular resolution) protocol (S1, A120), the
highest correlation was obtained with (S2, A45) at 0.91 followed
by (S1, A45) at 0.90 (Figure 8, right).

In our experiments (S1, A120) was robust to downsampling,
achieving a correlation of 0.96 with (S2, A120) and 0.93 with
(S4, A120). The angular resolution had a strong effect, with the
similarity dropping to 0.7 with (S1, A12), 0.9 with (S1, A45), and
0.94 with (S1, A60). The lowest similarity from our subgraph
comparison was between (S2, A120) and (S2, A12) at 0.64,
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FIGURE 6 | Dyad dispersion as a measure of error. The dyad one dispersion shows decreasing errors for higher angular samples, with an inflection point at 45◦ and

increasing stability after 60◦ (A). Similar errors were apparent for 43 and 86µm, but the errors were larger for 172µm. Dyad two showed a stronger effect of

resolution, and larger errors, which also tapered off after more than 60 directions were acquired (B). LGN, lateral geniculate nucleus.

followed by (S2, A120) with (S1, A12) and (S2, A12) with (S4,
A120) at 0.65. Our results suggest that higher-angular resolution
schemes are generally more robust to detecting changes in animal
models of neurological conditions.

Furthermore, we computed measures of similarity
between individual graph vertices. The vertex-wise graph
similarity pairwise for these subgraphs, shown in Figure 9

after thresholding at a 0.1 level, illustrated differences in

sparsity. Graphs were less sparse as the numbers of angular
samples/directions increased above 45 to 60 and 120 directions.
Based on the vertex score, the robustness of some nodes relative
to others became evident when undergoing downsampling, first
for fimbria, followed by the fornix. The similarity between the
hippocampus (Hc) and fimbria (fi) and fornix (fx) was 0.1 and
0.07. For the 45-direction scheme, the similarity between full
resolution and 86-µm resolution for fimbria was 0.45, while for

Frontiers in Physics | www.frontiersin.org 8 April 2020 | Volume 8 | Article 88

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Anderson et al. Optimizing Diffusion Imaging for Structural Connectomics

FIGURE 7 | Adjacency matrices shown as chord diagrams for a subset of 13 regions relevant to neurodegenerative diseases showed qualitatively greater similarity to

the reference connectome of 120 directions (A120) for 45 (A45) and 60 directions (A60) when compared to the similarity between 120 (A120) and 12 directions (A12).

Spatial resolution also had an effect on the chord diagrams, in particular, at the level four times downsampling (S4; 172µm), but this was less pronounced when

comparing two times downsampling (S2; 86µm) with fully sampled (S1; 43µm) protocols. The chord diagrams showed that all protocols can capture the connectivity

of the hippocampus (Hc) and its connecting fibers (fx, fornix; fi, fimbria), but shorter protocols have reduced sensitivity for smaller nuclei (LD, laterodorsal thalamic

nuclei; LGN, lateral geniculate nuclei; LPO, lateral preoptic nucleus) and lack sensitivity required for cortical connectivity, e.g., for the cingulate (Cg) and entorhinal

cortices (Ent).

the fx, it was 0.18, and for the hippocampus and septum, it was
0.16 indicating more robustness for larger regions. Hc with fi
and fx was 0.21 and 0.11, respectively. The similarity for fi (0.27)
and fx (0.24) decreased with downsampling spatial resolution
for the 120-direction schemes; however, more regions picked up
more similar connections across these two graphs. For example,
the hippocampus score was 0.21, and for septum, 0.15, with
Hc to fi and fx being 0.17 and 0.12, respectively. These results
suggest that while major white matter tracts were robust with
respect to changes in spatial and angular resolution, this needs
to be balanced against the vulnerability of smaller white matter
tracts and cortical domains to such changes, and sparsity of the
connectome and graph similarity matrices are important factors
to consider.

In conclusion, our results support that angular and spatial
resolution need to be balanced with respect to time- and cost-
imposed demands to enable population studies, and parameters
for efficient protocols with minimum loss of sensitivity should

be recommended, suggesting that an acquisition with 60
angular samples provides a good compromise in terms of
minimizing errors relative to a reference high-spatial, high-
angular resolution protocol. Halving both spatial and angular
resolutions yields an eight-time speed factor. When time is a
constraint, compromises in terms of spatial resolution may need
to bemade. Importantly, more efficient acquisitions are amenable
to future population studies.

DISCUSSION

Several studies using tractography-based connectomics have
reported abnormal network organization associated with
morphometric changes and AD pathologies [26, 27]. Still,
to understand the etiology of human neurodegenerative
diseases such as AD has proven difficult. This is due to AD’s
complex nature, multiple pathologies, and various associated
comorbidities. In spite of their limitations and simplicity,
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FIGURE 8 | Global connectome similarity. Spearman correlations among the connectomes obtained for three resolution levels (S1, fully sampled at 43-µm linear voxel

dimension; S2, downsampled by a factor of 2–86µm; S4, downsampled by a factor of 4–172µm; and each of the 12, 45, 60, and 120 angular resolution schemes

(A12, A45, A60, A120) indicated that the highest similarities were obtained between the 60 and 120 angular samples schemes for all spatial resolutions. While the

patterns were similar, similarities were lower for the 45 and 120 angular sample schemes for all resolutions relative to 60- and 120-direction schemes. When

comparing against the reference set, the median was 0.89 for sets with 45 directions, but 0.92 for sets with 60 directions; and the maximum for 45 directions was

0.91, but 0.94 for 60 directions. The global maximum 0.97 was obtained when comparing (S2, A60) vs. (S2, A120); or (S1, A45) vs. (S2, A45).

mouse models provide tools to examine the effect of singular
pathologies, and the interaction of multiple factors in a
well-controlled environment and, importantly, from early on.

Given the challenges in phenotyping mouse models of
neurological conditions, imaging protocols are required to
provide sensitive quantitative biomarkers with good spatial
mapping abilities. In a previous study, we have defined a diffusion
MRI data reference set with the highest reported resolution for
the whole mouse brain [11]. This data set was acquired using
120 angular samples and 43-µm spatial resolution, requiring a
scan time of 235 h. Replicating this acquisition for population
studies is prohibitive in terms of both time and cost. To address
this problem, we must define reduced protocols that ensure
sufficient fidelity and compare well with the reference data
set, but that can be acquired in a greatly reduced time. This
will enable population studies and give insight into vulnerable
networks that may provide early biomarkers and enable us
to quantify disease progression or response to interventions.
We, thus, performed a simulation study, examining subsets of
angular samples from the reference set, and the effect of reducing
spatial resolution.

We have focused on evaluating regions of interest in
Alzheimer’s research, from hippocampus, which represents 5%
of the mouse brain volume, to fimbria and fornix, which
represents only 0.05% of the mouse brain volume [13]. In our
simulations, we have extracted nine gradient subsets to evaluate
subsequent changes in several metrics. Our metrics evaluated the
stability/noise of the diffusion schemes through the condition
number; the relative number of detected voxels with one, two,

three, and four directions or dyads, globally and on a per-region
basis; the extent of projections for the fimbria and hippocampus;
the dyad dispersion and connectome similarity globally, and
on a per-node basis. Our results corroborated to support that
schemes with 45 angular samples started to approximate well the
reference connectome and that errors were substantially reduced
and started plateauing for 60 angular samples acquired with 43-
or 86-µm spatial resolution.

The performance of the 60-direction protocols was very
similar to the reference set, both qualitatively and quantitatively,
and executing such protocols would lead to substantial
reductions in acquisition time (eight times when combined with
a downsampled spatial resolution), providing a connectome
with 0.94 correlation with the reference set. Further reductions
in acquisition times come from compressed sensing [28],
which several groups have implemented for mouse MRI [29–
31]. Such advances can help translate diffusion protocols into
population studies [32] incorporating multiple biomarkers from
morphometry [33], microstructural properties based on diffusion
[13] or magnetic susceptibility [34], or network properties [35].
Such integrative studies may better predict changes in behaviors,
modeling those observed in humans with neurodegenerative
conditions [34].

Optimization studies are important when it comes to assess
newly proposed diffusion models, acquisition schemes, various
pathologies, and different animal models—to help understand
the human brain [36, 37]. In this study, we were limited
to a single specimen meta-analysis using extracted gradient
subsets, but this approach provided useful information to help
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FIGURE 9 | Vertex-based graph similarity showed that white matter tracts were more robust to downsampling relative to nodes representing gray matter and, in

particular, cortical domains. Our subgraph’s regions of interest include the cingulate cortex (Cg), insular cortex (Ins), temporal association areas (TeA), entorhinal cortex

(Ent), hippocampus (Hc), hypothalamus (Hyp), preoptic telencephalon (LPO), septum (Spt), lateral geniculate nucleus (LGN), fimbria (fi), fornix (fx), mamilothalamic tract

(mt), and laterodorsal thalamic nuclei (LD). When comparing graphs for different spatial resolutions, the fi was most similar between 43- and 86-µm resolutions with a

score of 0.85, and also relative to 172µm with a score of 0.82, but most other graph nodes were not. Among angular sampling schemes, the fimbria was also robust,

with a similarity score between the 12 and 120 directions of 0.5, followed by the fornix, hippocampus, and septum with 0.1. The cortical regions were most likely to be

dissimilar when changing spatial or angular sampling schemes. Median similarity scores are shown for each graph comparison.

devise future group-based analyses. We have used the condition
number for our acquisition schemes as a measure of noise
performance [38], but better schemes may be designed in the
future to increase rotational stability. Our recommendations
are based on a finite set of metrics for a subgraph selected
based on relevance to AD and a single b value acquisition.
More regions would need to be included to generalize the
recommendations; however, our results point to robustness of
major white matter tracts, in contrast to thin, small white matter
tracts and cortical–cortical connections, which are particularly
vulnerable to reduced acquisition schemes. Moreover, future
studies may be improved by the addition of multiple diffusion
shells and more complex diffusion models. A reduction by a
factor of eight in acquisition time for half the resolution and 60
directions provided an attractive avenue. However, the number

of voxels with more than one dyad could not be retrieved to the
same extent at lower spatial resolution. Still the similarity of the
subgraphs based on anatomical regions known to be involved in
pathological aging approached 0.94. Our study benefitted from
the use of high-performance computing, which enhances the
speed of optimization and quality control studies required before
establishing new protocols in both mice and humans [39].

Our methods are applicable to other DWI studies in rodent
models, and we expect that the conclusions will remain valid
in the same range of spatial resolutions and may change
as we approach resolutions used in human brain imaging.
Still, our results align with recommendations for human brain
studies, where angular sampling schemes with more than 30
directions [40] are recommended for a robust estimation of
the diffusion tensor orientations and mean diffusivity. More
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than 45 directions are required for spherical deconvolution
using spherical harmonics of order eight [41, 42]. Acquiring
more than 45 directions helps with fitting and avoiding issues
with imperfections in the uniformity of the diffusion gradient
directions and meet signal-to-noise requirements. Therefore, 40
directions or more are widely used for the human brain [26,
27], and state of the art protocols employ multiple diffusion
shells/b values, e.g., n = 3, and with 60 directions per shell [43].
Harmonization efforts [44] are currently under way to establish
diffusion imaging guidelines and/or translate among protocols,
such as those used for ADNI3 [45].

While the field of mouse imaging is much smaller,
and efforts for standardization are not yet widespread,
we hope that our study can inform the design of future
experiments using statistical connectomics in models of
neurological conditions, such as Alzheimer’s disease, and
that network biomarkers will provide enhanced sensitivity
to early and subtle changes arising due to multiple,
interacting pathologies.
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