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In this paper, we construct helicoidal surfaces in the three dimensional Galilean spaceG3.

The First and the Second Fundamental Forms for such surfaces will be obtained. Also,

mean and Gaussian curvature given by smooth functions will be derived. We consider the

Galilean 3−space with a linear density eφ and construct a weighted helicoidal surfaces

in G3 by solving a second order non-linear differential equation. Moreover, we discuss

the problem of finding explicit parameterization for the helicoidal surfaces in G3.
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1. INTRODUCTION

Due to its applications in probability and statistics, the study of manifolds with density has
increased in the last years after Morgan’s published his paper “Manifolds with density” [1]. As a
new field in geometry, manifolds with density appear in different ways in mathematics, for example
as quotients of Riemannian manifolds or as Gauss space [2].

Helicoidal surface is a natural generalization of rotation surface, of which many excellent works
have been done, such as Kenmotsu [3].

For helicoidal surface in R3, the cases with prescribed mean curvature or Gauss curvature have
been studied by Baikoussis and Koufogiorgos [4]. Also, helicoidal surfaces in three dimensional
Minkowski space has been considered by Beneki et al. [5]. A kind of helicoidal surface in
3−dimensional Minkowski space was constructed by Ji and Hou [6].

Construction of helicoidal surfaces in Euclidean space with density by solving second-order
non-linear ordinary differential equation with weighted minimal helicoidal surface was introduced
in Kim et al. [7]. For weighted type integral inequalities, one can see Agarwal et al. [8].

Mean and Gaussian curvature for surfaces are one of the main objects, which have geometers
interest for along time. A manifold with density is a Riemannian manifold Mn with a positive
function eφ , known as density, used to weight volume and hypersurface area [2, 9]. A nice example
of manifolds with density is Gauss space, the Euclidean space with Gaussian probability density

(2π)
−n
2 e

−r2

2 , which is very useful to probabilists [2].
On a manifold with density eφ , the weighted mean curvature of a hypersurface with unit normal

N is defined by

Hφ = H −
1

n

dφ

dN
(1)

where H is the Riemannian mean curvature of the hypersurface [9]. The weighted mean curvature
Hφ of a surface in E3 with density eφ was introduced by Gromov [10], and it is a natural
generalization of the mean curvature H of a surface. The curvature concept is not confined to
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continuous space, it has been intensively studied in discrete
mathematics including networks, for more details one can see
Shang [11].

A surface with Hφ = 0 is known as a weighted minimal
surface or a φ−minimal surface in E3 [12]. For more details
about manifolds with density and other relative topics, we refer
the reader to [1–3, 5–7, 9, 10, 13–16]. In particular, Yoon et al.
[17] studied rational surfaces in Pseudo-Galilean space with a log-
linear density and investigated φ−minimal rotational surfaces.
Also, they classified the weighted minimal helicoidal surfaces in
the Euclidean space E3 [7].

The purpose of this paper is to construct helicoidal surface
in Galilean space G3. Firstly, we choose orthonormal basis as
the coordinate frame and define helicoidal surface with density.
The first fundamental form ds2, the second fundamental form II,
the Gaussian and Mean curvature of helicoidal surface will be
obtained in section 3. Secondly in section 4, we prescribed the
parametrization of a weighted mean curvature Hφ = H − 1

2 <

N,∇φ > and solving the non-linear differential equation.

2. PRELIMINARIES

In this part, we give a brief review of curves and surfaces in the
Galilean space G3. For more details, one can see [12, 14–16, 18].

The Galilean 3−space G3 can be defined in the three-
dimensional real projective space P3(R) and its absolute figure is
an ordered triple {ρ, f , I}, where ρ is the ideal (absolute) plane,
f a line in ρ and I is the fixed elliptic involution of the points of
f . We introduce homogeneous coordinates in G3 in such a way
that the absolute plane ρ is given by xo = 0, the absolute line f by
xo = x1 = 0 and the elliptic involution by

(0 : 0 : x2 : x3) → (0 : 0 : x3 :−x2) (2)

A plane is said to be Euclidean if it contains f , otherwise it is called
isotropic, i.e., the planes x = const. are Euclidean, in particular the
plane ρ. Other planes are isotropic.

The Galilean distance between the points Qi = (ri, si, ti),
(i = 1, 2) is given by

d(Q1,Q2) =
{

| r2 − r1 |, if r1 6= 0 or r2 6= 0;
√

(s2 − s1)2 + (t2 − t1)2, if r1 = 0 and r2 = 0.
(3)

Moreover, the distance in the Euclidean space betweenQ1 andQ2

is given by

d(Q1,Q2) =
√

(r2 − r1)2 + (s2 − s1)2 + (t2 − t1)2

The Galilean scalar product between two vectors P = (p1, p2, p3)
and Q = (q1, q2, q3) is defined by

< P,Q >G=
{

p1q1, if p1 6= 0 or q1 6= 0;
p2q2 + p3q3, if p1 = 0 and q1 = 0.

(4)

For this, the Galilean norm of a vector P is ‖ P ‖=
√
< P, P >G.

Moreover, the cross product in the Galilean space is defined by

< P ×G Q >=
(

0,

∣

∣

∣

∣

p1 p3
q1 q3

∣

∣

∣

∣

,

∣

∣

∣

∣

p1 p2
q1 q2

∣

∣

∣

∣

)

A vector P = (p1, p2, p3) is said to be isotropic if p1 = 0, otherwise
it is known as non-isotropic. The following definitions will be
helpful [19].

Definition 1. Let a = (1, y2, y3) and b = (1, z2, z3) be two unit
non-isotropic vectors in general position in G3. Then an angle θ
between a and b is given by

θ =
√

(z2 − y2)2 + (z3 − y3)2

Definition 2. An angle ψ between a unit non-isotropic vector
a = (1, y2, y3) and an isotropic vector c = (0, z2, z3) in G3 is
given by

ψ =
y2z2 + y3z3
√

z22 + z23

Definition 3. An angle η between two isotropic vectors c =
(0, y2, y3) and d = (0, z2, z3) parallel to the Euclidean plane in
G3 is equal to the Euclidean angle between them. Namely,

cosη =
y2z2 + y3z3

√

y22 + y23

√

z22 + z23

Definition 4. The curve α(t) = (x(t), y(t), z(t)) in the Galilean
space G3 is said to be admissible if it has no inflection points
(α.(t)×Gα

..(t) 6= 0) and no isotropic tangents (x.(t) 6= 0).

Let C be an open subset of R2 and M a surface in G3

parameterized by

r :C ⊆ R2 → G3, r(u, v) = (x(u, v), y(u, v), z(u, v)) (5)

In order to specify the partial derivatives we will denote:

xu =
∂x

∂u
, xv =

∂x

∂v
and xuv =

∂2x

∂u∂v
(6)

Then r is satisfied admissibility criteria if no where it has
Euclidean tangent planes. The first fundamental form is given by

ds2 = (g1du+ g2dv)
2 + ε(h11du2 + 2h12dudv+ h22dv

2) (7)

where g1 = xu = ∂x
∂u , g2 = xv = ∂x

∂v , and h11 = y2u + z2u,

h22 = y2v + z2v , h12 = yuyv + zuzv, also

ε =
{

0 , if the direction du : dv is non-isotropic;
1 , if the direction du : dv is isotropic.

(8)

Now, consider the function

ω =‖ ru × rv ‖=
√

(xuzv − xvzu)2 + (xvyu − xuyv)2 (9)

hence the isotropic unit normal vector field N of the surface
r = r(u, v) is given by

N =
ru × rv

‖ ru × rv ‖
=

1

ω
(0, xuzv − xvzu, xvyu − xuyv) (10)
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The second fundamental form is obtained by

II = L11du
2 + 2L12dudv+ L22dv

2 (11)

such that

Lij =
1

g1
(g1(0, yij, zij)− (gi)j(0, yu, zu)) · N

=
1

g2
(g2(0, yij, zij)− (gi)j(0, yv, zv)) · N

where i, j = u, v.
Note that the dot “·” denotes the Euclidean scalar product.

Therefore, the Gaussian andmean curvature are given by.

K =
L11L22 − L212

ω2
and H =

g22L11 − 2g1g2L12 + g21L22

2ω2
(12)

3. HELICOIDAL SURFACES IN THE

GALILEAN SPACE G3

We will take a regular plane curve α(u1) = (g(u1), 0, f (u1)) with
g(u1) > 0 in the xz− plane which is defined on an open interval
I ⊂ R. A surface Ŵ2 in the Galilean space G3 is defined by

χ(u1, u2) = (g(u1)cos(u2), g(u1)sin(u2), f (u1)+ bu2) (13)

is said to be helicoidal surface with axis oz, a pitch b and the
profile curve α.

Without loss of generality, we assume that α(u1) =
(u1, 0, f (u1)) is the profile curve in the xz− plane defined on
an open interval I of positive real numbers (I ⊂ R+). So, the
helicoidal surface Ŵ2 in G3 is given by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (14)

where f (u1) is a differentiable function defined on I.

Theorem 5. Let Ŵ2 be helicoidal surface in G3 defined by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (15)

where f (u1) is a differentiable function defined on I. Then the unit
normal vector field N of the surface Ŵ2 is given by

N =
1

ω
(0, u1 f

′(u1) sin(u2)+ b cos(u2),−u1) (16)

The first and the second fundamental forms of the surface Ŵ2 in G3

are given respectively by

ds2 = cos2(u2)du
2
1 − 2u1sin(u2)cos(u2)du1du2 + u21sin

2(u2)du
2
2 (17)

and

II =
1

ω
(−u1 f

′′(u1)du
2
1 + 2b du1 du2 − u21 f

′(u1)du
2
2). (18)

Proof: Let Ŵ2 be helicoidal surface in G3 defined by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (19)

Then the unit normal vector field N of the surface Ŵ2 is an
isotropic vector field defined by

N =
1

ω
(0, xu1zu2 − xu2zu1 , xu2yu1 − xu1yu2 )

=
1

ω
(0, u1 f

′(u1) sin(u2)+ b cos(u2),−u1)

where the positive function ω is given by

ω =
√

(b cos(u2)+ u1 f ′(u1) sin(u2)2 + u21 (20)

Here the partial derivatives of the functions x, y, and z with
respect to ui (i = 1, 2) are denoted by xui , yui , and zui ,
respectively. On the other hand, let us define gi = xui , hij =
yuiyuj + zuizuj , i, j = 1, 2. So, the first fundamental form of the

surface Ŵ2 in G3 is given by

ds2 = ds21 + εds
2
2 (21)

where

ds21 = (g1du1 + g2du2)
2

= (cos(u2) du1 − u1 sin(u2) du2)
2

and

ds22 = h11du
2
1 + 2h12du1du2 + h22du

2
2

= (sin2(u2)+ f ′2(u1)) du
2
1 + 2(u1sin(u2)cos(u2)

+ bf ′(u1))du1 du2 + (u1cos
2(u2)+ b2) du22

Then

ds2 = cos2(u2)du
2
1 − 2u1sin(u2)cos(u2)du1du2 + u21sin

2(u2)du
2
2

(22)
In the sequel, the second fundamental form II of Ŵ2 is given by

II =
1

ω
(−u1 f

′′(u1)du
2
1 + 2b du1 du2 − u21 f

′(u1)du
2
2) (23)

where L11 = −u1
ω

f ′′(u1), L22 =
−u21
ω

f ′(u1) and L12 = b
ω
. �

Corollary 6. The Gaussian curvature K of the surface Ŵ2is
obtained by

K =
1

ω4
(u31f

′(u1) f
′′(u1)− b2) (24)

Moreover, the mean curvature of the surface Ŵ2 is given by

H =
1

2ω3
(−u31 f

′′(u1)sin
2(u2)+ 2bu1 sin(u2) cos(u2)

− u21 f
′(u1) cos

2(u2)) (25)
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Proof: Since the Gaussian curvature K is given by K =
L11L22−L212

ω2 , then

K =
1

ω2
(
u1 f

′′(u1)

ω
×

u21 f
′(u1)

ω
−

b2

ω2
)

=
1

ω4
(u31 f

′′(u1) f
′(u1)− b2)

The mean curvature of the surface is obtain from

H =
g22 L11 − 2 g1g2 L12 + g21 L22

2 ω2

By substituting, we get

H =
1

2 ω2
[(−u1 sin(u2))

2(
−u1 f

′′(u1)

ω
)

− 2 cos(u2)(−u1 sin(u2))(
b

ω
)+ cos2(u2) (

−u21 f
′(u1)

ω
)]

=
1

2 ω3
[−u31 f

′′(u1) sin
2(u2)+ 2bu1 sin(u2) cos(u2)

− u21 f
′(u1) cos

2(u2)] �

4. WEIGHTED HELICOIDAL SURFACES

IN G3

Let Ŵ2 be a helicoidal surface in G3 defined by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (26)

where f (u1) is a differentiable function defined on I. Suppose
that Ŵ2 is the surface in G3 with a linear density eφ , where φ =
αx+ βy+ γ z, α,β , γ not all zero.

In this case, the weighted mean curvature Hφ of Ŵ2 can be
expressed as

Hφ = H −
1

2
< N,∇φ >G3 (27)

where ∇φ is the gradient of φ. If Ŵ2 is the weighted minimal
surface, then

H =
1

2
< N,∇φ >G3 (28)

Theorem 7. Let Ŵ2 be weighted minimal helicoidal surface in G3

defined by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (29)

with a linear density eφ , then f (u1) will be one of the following

1. f (u1) = 2b cot(u2)
cot2(u2)−1

1
u1

+ c1 u
−cot2(u2)
1

2. f (u1) = 1
2B [ A ln(u1)− 2 ln( r(u1)

p(u1)
)+ ln(BD)+ ln(u1)]

3. f (u1) is the solution of the differential equation
f ′′(u1)+ [ Au1 +

B
u21
+C]f ′(u1)+ D

u1
f ′2(u1)+E f ′3(u1)+ [ F

u1
+

G
u21

+ H
u31
] = 0

4. f (u1) is the solution of the differential equation
f ′′(u1)+(B+ A

u1
+ C

u21
) f ′(u1)+(E+ D

u1
) f ′2(u1)+F f ′3(u1)+

(J + H
u1

+ G
u21

+ I
u31
) = 0

Proof: Let Ŵ2 be a helicoidal surface in G3 defined by

χ(u1, u2) = (u1cos(u2), u1sin(u2), f (u1)+ bu2) (30)

where f (u1) is a differentiable function defined on I. By
substituting in equation (27) we obtain

− u31 f
′′(u1)sin

2(u2)+ 2bu1 sin(u2) cos(u2)− u21 f
′(u1) cos

2(u2)

= ((b cos(u2)+ u1 f
′(u1) sin(u2))

2 + u21) < (0, u1 f
′(u1) sin(u2)

+ b cos(u2),−u1), (α,β , γ ) >

Now, we can distinguish two cases according to the value of α.
Case 1. If α 6= 0
In this case the vector (α,β , γ ) is non-isotropic, with some simple
calculation we can obtain the following differential equation

f ′′(u1)+
1

u1
cot2(u2) f

′(u1) =
2b

u21
cot(u2) (31)

To solve this equation, we make reduction of the order as: Let
f ′(u1) = y(u1) which gives f ′′(u1) = y′(u1), substitutes into
equation (31) we obtain the differential equation

y′(u1)+
1

u1
cot2(u2) y(u1) =

2b

u21
cot(u2) (32)

Integrating factor IF = u
cot2(u2)
1 and hence the solution is given by

y(u1) =
2b cot(u2)

cot2(u2)− 1

1

u1
+ c1 u

−cot2(u2)
1 (33)

i.e.,

f ′(u1) =
2b cot(u2)

cot2(u2)− 1

1

u1
+ c1 u

−cot2(u2)
1 (34)

which gives

f (u1) =
2b cot(u2)

cot2(u2)− 1
ln(u1) +

c1

1− cot2(u2)
u
1−cot2(u2)
1 + c2

(35)
Therefore, Ŵ2 is determined by

χ(u1, u2) = (u1cos(u2), u1sin(u2),
2bcot(u2)

cot2(u2)− 1
ln(u1)

+
c1

1− cot2(u2)
u
1−cot2(u2)
1 + bu2 + c2) (36)

where

z(u1, u2) =
2b cot(u2)

cot2(u2)− 1
ln(u1) +

c1

1− cot2(u2)
u
1−cot2(u2)
1

+ b u2 + c2 (37)
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c1, c2 are constants.
Case 2. If α = 0
In this case the vector (0,β , γ ) is an isotropic and as before,
we obtain

1

ω2
(−u31 f

′′(u1)sin
2(u2)+ 2b u1 sin(u2) cos(u2)

− u21 f
′(u1) cos

2(u2))

= βu1 f
′(u1) sin(u2)+ βb cos(u2)− γ u1

Case 2.1. If β = 0, therefore

1

ω2
(−u31 f

′′(u1)sin
2(u2)+ 2b u1 sin(u2) cos(u2)

− u21 f
′(u1) cos

2(u2)) = −γu1 (38)

which gives the following differential equation

f ′′(u1)+ A
f ′(u1)

u1
− B f ′2(u1) =

C

u21
+ D (39)

where A = cot2(u2)− 2b γ cot(u2) , B = γ , C = γ b2 cot2(u2)+
2b cot(u2) , D = γ

sin2(u2)
.

By using Bessel’s functions of first and second order, a simple
computations gives that the solution of Equation (39) can be
written in the form

f (u1) =
1

2B
[ A ln(u1)− 2 ln(

r(u1)

p(u1)
)+ ln(BD)+ ln(u1)] (40)

such that

r(u1) = B [c2 Yn(
√
BD u1)− c1 Jn(

√
BD u1)] (41)

p(u1) = [Jn+1(
√
BD u1) Yn(

√
BD u1)

− Jn(
√
BD u1) Yn+1(

√
BD u1)] (42)

and

n =
1

2

√

A2 − 4BC − 2A+ 1 (43)

with an arbitrary constants c1, c2. Therefore, in this case, the
surface Ŵ2 is given by

χ(u1, u2) = (u1 cos(u2), u1 sin(u2),
1

2B
[Aln(u1)

− 2ln(
r(u1)

p(u1)
)+ ln(BD)+ ln(u1)]+ bu2) (44)

Case 2.2. If γ = 0, then

−u31f
′′(u1)sin

2(u2)+ 2bu1sin(u2)cos(u2)− u21f
′(u1)cos

2(u2)

= ω2(βu1f
′(u1)sin(u2)+ βbcos(u2))

a simple computations gives the next differential equation

f ′′(u1)+ [
A

u1
+

B

u21
+ C]f ′(u1)+

D

u1
f ′2(u1)

+ E f ′3(u1)+ [
F

u1
+

G

u21
+

H

u31
] = 0 (45)

where A = cot2(u2), B = 3 βb2 cos(u2) cot(u2), C = β

sin(u2)
,

D = 3 βb cos(u2), E = βsin(u2), F = βb cot(u2)
sin(u2)

, G = −2 b cot(u2)

and H = β b3 cos(u2) cot
2(u2).

Case 2.3. If γβ 6= 0, therefore

−u31f
′′(u1)sin

2(u2)+ 2bu1sin(u2)cos(u2)− u21f
′(u1)cos

2(u2)

= ω2(βu1f
′(u1)sin(u2)+ βbcos(u2)− γu1)

which gives the following differential equation

f ′′(u1)+ (B+
A

u1
+

C

u21
) f ′(u1)+ (E+

D

u1
) f ′2(u1)+ F f ′3(u1)

+ (J +
H

u1
+

G

u21
+

I

u31
) = 0 (46)

where A = cot2(u2) − 2 γ b cot(u2), B = β

sin(u2)
, C =

3 βb2 cos2(u2)
sin(u2)

, D = 3 β b cos(u2), E = −γ , F = βsin(u2), G =

−(2 b cot(u2) + γ b2 cot2(u2)), H = βb cos(u2)
sin2(u2)

, I = βb3 cos3(u2)
sin2(u2)

,

and J = − γ

sin2(u2)
. �

5. CONCLUSION AND FURTHER

RESEARCH

In this work, we constructed helicoidal surfaces in the Galilean
3−space and studied the First and the Second Fundamental
Forms. Moreover, we calculated mean and Gaussian curvature
for such surfaces. Also, we considered the Galilean 3−space with
a linear density eφ , φ = αx + βy + γ z such that α, β , γ not
all zero and constructed a weighted helicoidal surface by solving
a second order non-linear differential equation. Moreover,

we discussed an explicit parametrization for the helicoidal
surfaces in G3.

Analogously to how a Minkowski 3−space relates
to a Euclidean 3−space, one has the notion of
Pseudo-Galilean 3−space G3

1. As known, G3
1 is similar

to G3, but the Pseudo-Galilean scalar product of
two vectors r = (r1, r2, r3) and s = (s1, s2, s3) is
defined by

< r, s >=
{

r1s1, if r1 6= 0 or s1 6= 0;
r2s2 − r3s3, if r1 = s1 = 0.

Therefore, there exist four types of isotropic vectors r = (0, r2, r3)
in G3

1: spacelike vectors (if r22 − r23 > 0), timelike vectors (if
r22 − r23 < 0) and two types of lightlike vectors (if r2 = ±r3)
[15]. Thus, one can define different types of Helicoidal surfaces
in G3

1.
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