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Ever since quantum field theory was first applied to the derivation of nuclear forces in

the mid-twentieth century, the renormalization of pion exchange with realistic couplings

has presented a challenge. The implementation of effective field theories (EFTs) in

the 1990s promised a solution to this problem but unexpected obstacles were

encountered. The response of the nuclear community has been to focus on “chiral

potentials” with regulators chosen to produce a good description of data. Meanwhile,

a successful EFT without explicit pion exchange—Pionless EFT—has been formulated

where renormalization is achieved order by order in a systematic expansion of low-energy

nuclear observables. I describe how lessons from Pionless EFT are being applied to the

construction of a properly renormalized Chiral EFT.
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1. INTRODUCTION

In the aftermath of the solution of the “problem of infinities” in Quantum Electrodynamics
(QED), an intense quest set in to renormalize nuclear forces, where pion exchange replaced
the photon exchange responsible for atomic forces. (For an early example, see reference [1].) It
was quickly understood that the only relativistic pion-nucleon coupling that is renormalizable is
pseudoscalar [2]. However, pseudoscalar coupling differs from pseudovector coupling by a large
nucleon-pair term, which was found to be in conflict with pion phenomenology [3]. For the favored
pseudovector coupling, the description of two-nucleon data depended sensitively on the high-
momentum (or short-distance) cutoff (see, for example, reference [4]). Efforts moved toward the
investigation of various prescriptions for handling short-range effects, including specific cocktails
of (usually single-)heavier-meson exchange, form factors with ad hoc shapes, and/or boundary
conditions at some finite distance. Nuclear theory acquired an increasingly phenomenological
character. Typically, the non-relativistic Schrödinger equation was solved with a two-nucleon (2N)
potential including one-pion exchange, some approximation to two-pion exchange, and a more
or less arbitrary short-range form, with sufficiently many parameters to fit data to the desired
accuracy. The end result was that potentials including quite different physics could produce very
good parameterizations of 2N data up to around the pion-production threshold, while typically
underpredicting three- and more-nucleon binding by more than 10%. A serious difficulty was to
infer a satisfactory form of three-nucleon (3N) forces and, for reactions, 2N currents. Reference [5]
recounts some of this history.

In contrast, by the mid-1970s renormalizable quantum field theories had won the day in particle
physics, leading to the formulation of Quantum Chromodynamics (QCD) as the theory of strong
interactions. Out of the attempts to make predictions for QCD at low energies and to understand
how the Standard Model (SM) can arise from a more fundamental theory, the concept of effective
field theory (EFT) was born [6]. An EFT comprises all the interactions among relevant degrees of
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freedom that are allowed by symmetries, including an arbitrary
number of fields and derivatives. For predictions, contributions
to observables must be ordered according to their expected size.
This “power counting” allows for an a priori error estimate
from neglected higher-order contributions. At each order in
the expansion, only a finite number of “low-energy constants”
(LECs)—the interaction strengths—appear. In a consistent
power counting, they are sufficient to ensure that any dependence
on the regulator can be made arbitrarily small by taking the
cutoff large. Thus, EFTs are renormalizable in the modern sense
that at each order a finite number of parameters generate results
for observables that are independent of details of the arbitrary
regularization procedure.

A successful EFT, Chiral Perturbation Theory (ChPT), was
developed in the 1980s to handle interactions among pions and
one nucleon below the characteristic QCD scaleMQCD ∼ 1 GeV
[7, 8]. Requiring renormalization in a perturbative expansion,
a consistent power counting was developed based on “naive
dimensional analysis” (NDA) [9]. Taking the typical external
momentum in a reaction to be of the order of the pion mass,
Q ∼ mπ ≪ MQCD, observables are expanded in a series of
powers of Q/MQCD times calculable functions of Q/mπ . When
Weinberg remarked [10, 11] that ChPT, now generalized as
“Chiral EFT” (ChEFT), could be used to derive nuclear forces,
he identified an infrared enhancement in nuclear amplitudes
by the nucleon mass mN = O(MQCD), which can lead to the
failure of perturbation theory—a good thing since nuclei are
bound states and resonances. He proposed that the ChPT power
counting could still be applied to the nuclear potential, defined as
the sum of diagrams lacking an explicit enhancement. Then, the
Lippmann-Schwinger equation, or equivalently the Schrödinger
equation, would be solved with a truncated “chiral potential.”

The potential defined by Weinberg contains pion exchange
diagrams where all LECs are fixed, at least in principle, from
ChPT. But it also includes shorter-range interactions with LECs
that can only be determined in nuclear systems. Implicit in
Weinberg’s proposal was that the short-range LECs would not
contain an implicit enhancement. This would be the case if the
solution of the dynamical equation does not generate cutoff
dependence beyond that which can be compensated by the LECs
already present up to that order according to NDA.

Whether this assumption is true was not immediately clear.
NDA says that the potential at leading order (LO) consists
of two non-derivative, chirally symmetric contact interactions
together with one-pion exchange (OPE). More-pion exchange
should come at higher orders together with more-derivative
contact interactions. Non-perturbative pion exchange prevents
an analytical solution even at the 2N level. The first numerical
solution of a chiral potential in the 2N system [12, 13] tested
renormalizability of the amplitude: a variation from 0.5 to 1
GeV in the cutoff of a local Gaussian regulator seemed to
be compensated by a refitting of the LECs at hand. However,
the fitting procedure was cumbersome as an over-complete
set of interactions was used and the local regulator mixed
different partial waves, limiting the range of cutoffs that could
be explored. Since then a large variety of chiral potentials have
been developed (for reviews, see for example references [14, 15]).

A landmark was a 2N potential [16] that was perceived to
match the accuracy of phenomenological potentials (for a recent
comparison between chiral 2N potentials and data, see reference
[17]). Chiral potentials have become the favorite input to “ab
initio” methods, which provide numerically controlled solutions
of the Schrödinger equation for multi-nucleon systems.

Unfortunately, pretty early on the first evidence appeared
[18] that Weinberg’s prescription does not provide amplitudes,
and thus observables, that are renormalized order by order.
In the 2N 1S0 channel at LO, a semi-analytical argument
shows that there remains a logarithmic dependence on the
cutoff proportional to the average quark mass. The only way
to eliminate it, at least with a momentum- or coordinate-space
cutoff, is to include at LO a non-derivative, chirally breaking
contact interaction, which according to NDA should appear two
orders down the expansion, that is, at next-to-next-to-leading
order (N2LO)1. More dramatically, it was later shown [20, 21]
that oscillatory cutoff dependence appears at LO in waves where
OPE is attractive, singular, and accounted for non-perturbatively.
A chirally symmetric LEC is needed for renormalization in each
wave, but again NDA assigns those in partial waves beyond S
to higher orders. Similar problems afflict processes with external
probes [22].

As I describe in section 3, the origin of these problems is the
renormalization of attractive singular potentials [23, 24]. NDA
might fail because exact solutions of the Schrödinger equation
depend on the cutoff differently than perturbative solutions.
The LECs needed for the renormalization of the amplitude are
enhanced by implicit powers ofMQCD.

How to account for this? In response to the renormalization
failure of Weinberg’s power counting a simpler nuclear EFT
[25–27] was developed in the late 1990s. In this “Pionless EFT”
pions are integrated out and only contact interactions remain.
The effects of loops in the Lippmann-Schwinger equation are
much easier to see, including the mN enhancement and a
further enhancement of 4π [26, 27] that was not pointed out
by Weinberg. The lessons of Pionless EFT for ChEFT are
summarized in section 2.

The first attempt to fix power counting using the insights
from Pionless EFT was initiated [28, 29] at the same time
as the main elements of the power counting of Pionless EFT
were being understood. Valid for sufficiently small values of
the pion mass and external momenta, this version of ChEFT
treats pion exchange in perturbation theory, removing the
renormalization problems mentioned above. Unfortunately, in
the 2N system at physical pion mass one cannot go in this
way to momenta much beyond those of Pionless EFT [30].
The alternative is partly perturbative pions: OPE is iterated
only in the low partial waves where it is sufficiently strong,
together with the contact interactions whose LECs are necessary

1A note on notation: It has become usual in the nuclear community to refer to a

subleading chiral potential of order n ≥ 2 as “Nn−1LO,” because with Weinberg’s

power counting the parity- and time-reversal-invariant potential of order n = 1

vanishes [19]. However, this usage is too provincial to accommodate experience

with other observables and power countings in ChEFT or other EFTs. Here, a

correction of order n in the expansion is denoted as NnLO, whether it is non-zero

or not.

Frontiers in Physics | www.frontiersin.org 2 May 2020 | Volume 8 | Article 79

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

for LO renormalization [20]. All subleading pion exchanges,
together with the remaining contact interactions, are treated in
perturbation theory [31]. This approach is discussed in section 4,
including what little has been done to confront it with data.

Section 5 offers the conclusion that this approach solves the
renormalization woes of nuclear forces while accounting for
the long-range interactions from pion exchange systematically.
Although they differ in detail from the field-theoretical
renormalization described below, renormalization-group
analyses of the Schrödinger equation [22, 32–34] support
this picture. How it can meet the accuracy requirements of
the nuclear community remains to be seen. My emphasis
here is on the internal consistency of ChEFT. I expand on the
renormalization issues summarized in reference [35], but I refer
the reader to the latter for a more complete review of ChEFT and
its relation to other nuclear EFTs.

2. SAY WHAT?

As reviewed in reference [35], defining the nuclear potential
as the sum of “irreducible” diagrams without the mN infrared
(IR) enhancement does indeed ensure that the cutoff-independent
parts of pion-exchange diagrams can be ordered according
to ChPT power counting. These components of the pion-
exchange potentials are in general non-analytic functions of
momenta and pion mass that can be calculated in terms of
pion-baryon interactions.

The ChPT power counting is designed for processes where
the typical external momentum is comparable to the pion
mass, Q ∼ mπ . A (relativistic) pion propagator scales as
Q−2. In contrast, a nucleon is heavy compared to Q and
thus non-relativistic. Moreover, energies and three-momenta
being comparable, nucleon recoil is suppressed by one power
of Q/mN = O(Q/MQCD)—that is, the nucleon is static, its
propagator scaling as Q−1. Because the Delta-nucleon mass
difference is (at physical quark masses) only about twice the pion
mass, a Delta propagator scales in the same way. In integrals from
the loops that make up the potential one picks poles from the
pion propagators, typically resulting in factors of (4π)−2. They
combine with factors of the pion decay constant fπ ≃ 92 MeV
from the pion-baryon interactions to produce inverse factors of
4π fπ = O(MQCD). The power counting explicitly relies on an
estimate, NDA [9], of the factors of 4π that distinguish between
fπ and the breakdown scaleMQCD, which appears in interactions
with derivatives and powers of the pion mass. In summary, the
ChPT rules (in momentum space) are:

(pion) loop integral ∼ (4π)−2Q4 , (1)

baryon, pion propagator ∼ Q−1,Q−2 , (2)

vertex ∼ Qdf
2−b−f
π M

2−d−f /2
QCD , (3)

where d, b, and f are the numbers of derivatives/pion masses,
pion fields, and baryon fields, respectively, in an interaction.

The expected size of any diagram can be found using the
identities I = L − 1 + ∑

i Vi and 2I + E = ∑

i Vi(bi + fi)
involving the number of loops (L), internal (external) lines I (E),

and vertices (Vi) having a set of values d = di, b = bi, and f = fi.
In particular,

2N potential ∼ 4πm−1
N M−1

NN

(

QM−1
QCD

)µ

, (4)

where [28, 29]

MNN ≡ 16π f 2π
g2AmN

= O(fπ ) (5)

in terms of the pion-nucleon axial-vector coupling gA ≃ 1.27
and [11]

µ ≡ 2L+
∑

i

Vi(di + fi/2− 2) . (6)

Because every additional loop (without increase in the number
of derivatives/pion masses at vertices) leads to a relative factor
O(Q2/M2

QCD), one gets the well-known ordering where p-pion
exchange starts at µ = 2(p − 1). Note that the NLO correction
vanishes due to parity and time-reversal symmetries [19].

This power counting applies to diagrams that make up the
long-range potential. Yet physics, as opposed to metaphysics,
is about observables. The meaning of Equation (4) is that
it indirectly orders the contributions to amplitudes. For the
direct link, we need to consider as well “reducible” diagrams
where intermediate states contain only nucleons. One picks
poles from the non-relativistic nucleon propagators, for which
energies are of the order of recoil—in those diagrams, one cannot
approximate nucleons as static. (This of course has nothing to
do with relativistic corrections, as sometimes misstated in the
literature.) These poles lead not only to anmN enhancement [10,
11], but typically also to different powers of (4π)−1. Experience
with Pionless EFT [35, 36], where these are all the loops one needs
to deal with, shows that the factors associated with reducible
loops are

nucleon propagator ∼ mNQ
−2 , (7)

reducible loop integral ∼ (4πmN)
−1Q5 . (8)

When one inserts the order-µ potential into a 2N diagram
we need one extra reducible loop with two nucleon
propagators (compare Figures 1A,B), leading to a relative factor
(Q/MNN)(Q/MQCD)

µ. This amount to an IR enhancement of
4πmN/Q over the factor that arises from Equations (1) and (2).
As a consequence, the series in the LO potential fails to converge
for Q ∼ MNN . This is what makes ChEFT different for A ≥ 2
nucleons compared to ChPT for A ≤ 1.

The factor of 4π in the IR enhancement had not been
recognized before Pionless EFT was developed, but it is
important to understand the failure of perturbation theory for
pions. The exact solution of the LO potential for Q ∼ MNN can
give rise to a binding energy per nucleon

BA

A
∼ M2

NN

MQCD
∼ fπ

4π
∼ 10 MeV . (9)

This is somewhat larger than observed for light nuclei, indicating
a certain amount of fine tuning in the 2N interactions. But it is on
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FIGURE 1 | Some diagrams discussed in the text. Inside a diagram, (A) two nucleons (solid lines) propagate; (B) two nucleons interact through the 2N potential

(blob); (C) a nucleons interact through the aN potential (blob), while another nucleon propagates; and (D) a+ 1 nucleons interact through the (a+ 1)N potential formed

from the aN potential and the exchange of a pion (dashed line).

the right ballpark for heavier nuclei, so chiral symmetry together
with the IR enhancement provides a natural explanation [36] for
the shallowness of nuclei compared to MQCD, BA/A ≪ MQCD,
long considered a mystery.

The same factor of 4π has implications for the natural size
of few-body forces, which were recognized by Friar [37]. To
see this, consider connecting a nucleon with OPE to an aN
potential to make an (a + 1)N potential, without changing
the number of derivatives, pion masses, and loops in the aN
potential. (See Figures 1C,D. For example, take the crossed-
box two-pion exchange 2N potential and connect one of the
intermediate nucleons to the third nucleon.) The additional
nucleon propagator inside the aN potential and the additional
OPE combine for a factor of 4πm−1

N M−1
NNQ

−1. At the same
time, at the amplitude level we are adding a reducible loop and
one propagator for the extra nucleon, that is, another factor
(4π)−1Q3. The contribution of the (a + 1)N potential to the
amplitude is, overall, of O(Q2m−1

N M−1
NN) compared to that of

its “parent” aN potential. For Q ∼ MNN , the suppression
from connecting a nucleon is thus of O(Q/MQCD), or one
order in the expansion of the potential [37]. In contrast,
missing the 4π in the IR enhancement would give an additional
(4π)−1 = O(MNN/MQCD), or a suppression of (Q/MQCD)

2

[11, 19, 38, 39]. In either case a hierarchy of many-body forces
arises, with perturbative 3N forces coming after the leading 2N
forces. Unfortunately, existing calculations do not question the
additional suppression of (4π)−1.

Note that when connecting the additional nucleon we might
not be able to maintain the number of derivatives or pion masses.
In particular, for the leading aN force, this can only be done
with an intermediate Delta isobar—for 3N, that is the Fujita-
Myiazawa force [40], which has been argued to be important for
convergence of the chiral expansion [41]. Keeping this in mind, a
contribution to the (connected) aN potential scales as

aN potential ∼ (4πm−1
N M−1

NN)
a−1Q2−a

(

QM−1
QCD

)µ

. (10)

To estimate the respective contributions to the AN amplitude,
one can first consider the LO (µ = 0), 2N potential: to produce a
connected diagram, we need at least A− 1 2N interactions linked
by A − 2 propagators. Next, one insertion of a subleading aN

potential between two LO amplitudes comes with A + a − 2
propagators and A + a loops. Another insertion of the same
subleading potential takes a additional propagators and a − 1
additional loops, and so on. The rules (7), (8) imply that an aN
potential of index µ gives, at Q ∼ MNN ,

AN amplitude ∼ (4π)A−1m−1
N M5−3A

NN

(

QM−1
QCD

)nν
, (11)

where

ν ≡ µ+ a− 2 (12)

and n is the order in perturbation theory. While ν is the
perturbative cost of one insertion of a subleading potential
characterized by µ (6) and a, n insertions cost nν as indicated by
the power of Q/MQCD in Equation (11). The presence of a − 2
[instead of 2(a − 2)] in ν reflects the suppression by (4π)−1

[instead of (4π)−2] in more-nucleon forces. A sample of pion-
range diagrams that contributes at various values of ν is shown in
Figure 2 (see reference [35] for more details).

The n in Equation (11) encodes the perturbative character of
any subleading interaction. A common fallacy is that the mere
definition of a potential means that the corresponding dynamical
(Lippmann-Schwinger or Schrödinger) equation must be solved
exactly. On the contrary, if there is a sense in which a subleading
potential can be treated non-perturbatively, then it should also
be possible to include it in distorted-wave perturbation theory,
where the distortion is caused by the LO potential. If that is not
the case, then at least part of that “subleading” potential is not
subleading. Such a consistency test is almost completely ignored
in the community. The one exception I am aware of is reference
[42], where it is shown that this test is not met by most available
chiral potentials.

“But surely,” you might be reasoning, “a subleading potential
can be treated non-perturbatively.” That is certainly the case
for a regular subleading potential, but not necessarily for a
singular potential, for which neither the perturbative series nor
the exact solution of the dynamical equation are well-defined
without (potentially distinct) counterterms. So far I have been
glossing over the cutoff dependence that usually arises in loops
and is, of course, present in the LECs. A regulator is nothing
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FIGURE 2 | Sample of pion-range diagrams in the aN nuclear potential ordered according to the expected size of their contributions to the amplitude (Equation 12).

NνLO denotes relative O(Qν/Mν
QCD). A solid (double) line stands for a nucleon (nucleon excitation), while a dashed line, for a pion. A circle (circled circle) represents an

interaction with d + f/2− 2 = 0 (= 1).

but a way to split short-range physics between loops and LECs.
If we increase a momentum cutoff 3 (or decrease a coordinate
cutoff R ∼ 3−1), we account, correctly or incorrectly, for
more short-range physics through the loops of the Lippmann-
Schwinger equation. As long as 3>∼MQCD, we can compensate
by changing the LECs present at the same order, without
increasing the relative truncation error of O(Q/MQCD). The
crucial point is that only the combination of the two effects
matter, and physics enters through the fitting of as many
observables as LECs—observables which are either calculated
in the underlying theory (when we speak of “matching” the
EFT to the underlying theory) or measured experimentally. This
process of renormalization is essential for amplitudes to be free of
detailed assumptions about short-range physics, and in general
only the sum of all contributions at a given order—loops and
LECs ensuring renormalization—can be said to be perturbative
or not.

If all we needed was to eliminate the cutoff-dependent parts
of pion exchange in the potential, the LECs for the job would be
given by NDA, by construction [9]. It is crucial to realize, though,

that reducible loops introduce further cutoff dependence, which
we need eliminate as well. The potential itself has to depend on
the cutoff so that observables do not. The LECs that renormalize

this part of the A ≥ 2 problem will not in general satisfy NDA.
We examine this aspect of renormalization next.

3. RENORMALIZATION OF SINGULAR
POTENTIALS

The difficulty we face is that EFT potentials are singular and,
because of additional derivatives and loops, they get more and
more singular as the order of the EFT expansion increases.
Singularities are apparent already in the LO (µ = 0, a = 2)
pion-range potential, OPE: labeling the two nucleons 1 and 2,

VOPE(Er) =
τ 1 · τ 2

mNMNN

[

e−mπ r

r3

(

1+mπ r +
m2
π r

2

3

)

S12(r̂)

+
(

m2
π

e−mπ r

r
− 4πδ(Er)

) Eσ1 · Eσ2
3

]

, (13)

where Er = rr̂ is the relative position, Eσi (τ i) is the spin (isospin)
Pauli matrix for nucleon i, and

S12(r̂) = 3 Eσ1 · r̂ Eσ2 · r̂ − Eσ1 · Eσ2 (14)

is the spin-tensor operator. While the delta function contributes
only to S waves, the tensor potential is non-vanishing for total
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spin s = 1 and can mix waves with orbital angular momentum
l = j ± 1. It is attractive in some uncoupled waves like 3P0
and 3D2, and in one of the eigenchannels of each coupled wave.
The regular Yukawa potential is attractive in isovector (isoscalar)
channels for s = 0 (s = 1). More-pion exchange leads to more
singular terms, p-pion exchange containing for example terms
∝ r−(2p+1) in addition to delta functions and their derivatives.

For Q ∼ MNN OPE is expected to be non-perturbative by
the argument of the previous section. It has been known for
a long time (see e.g., the review [43]) that attractive singular
potentials, treated exactly, do not fully determine the solution
of the Schrödinger equation [44]. This is a manifestation that
renormalization of a singular potential requires contact terms
that naturally exist in EFT [23, 24]. In contrast, pion-range
corrections to OPE are expected to be perturbative according to
the power counting embodied in Equations (11) and (12). From
an EFT perspective, additional contact interactions are needed to
make these corrections well-defined [31].

The issue I address in this section is how many, and which,
contact interactions must be present for the renormalization
of specific singular potentials. For simplicity, I consider central
potentials; we return to the nuclear potential in section 4.

3.1. Non-perturbative Renormalization
Renormalization is usually discussed at the level of loops in
Feynman diagrams for the Lippmann-Schwinger equation in
momentum space, but it can also be formulated in terms of the
Schrödinger equation in coordinate space. In the latter, which is
more familiar to many, renormalization deals with distances on
the order of those where the EFT breaks down, which I will call
Rund. The fall off of the potential at much larger distances is not
important, as it affects instead the near-threshold behavior. For
definiteness, let us take a central two-body potential

VL(r) = − α

2µrn
(15)

in the center-of-mass frame, where µ is the reduced mass, α is a
constant with mass dimension 2 − n, and n > 0 is an integer.
The long-range potential is characterized by an intrinsic distance
scale r0 ≡ |α|1/(n−2). For n = 2 the action is scale invariant.

In the radial Schrödinger equation the potential is
supplemented by the centrifugal barrier with orbital angular
momentum l, l(l + 1)/(2µr2). The uncertainty principle implies
the kinetic term scales similarly, as 1/(2µr2). For 0 < n < 2
the potential is relatively small at small distances and the
corresponding behavior of the wavefunction is determined by l:
we find ourselves in the familiar situation where one solution,
labeled regular, behaves as rl for small r, while the other, labeled
irregular and discarded, as r−(l+1). In contrast, for n = 2 and
|α| is sufficiently large, or for n ≥ 3, VL(r) dominates at small
distances. If α < 0, the strong repulsion prevents any short-range
approach; one can again keep just the regular solution, from
which the scattering amplitude can be calculated. But when
the potential is attractive, α > 0, observables are sensitive to
short-distance physics and renormalization is needed.

To see this in detail, consider first n ≥ 3 at zero energy. For
r<∼ [l(l + 1)]−1/(n−2)r0, where VL(r) dominates, the Schrödinger

equation becomes an ordinary Bessel equation, and the solution
is a combination of spherical Bessel functions. Both solutions are
equally irregular as r → 0 [44]. One can write the wavefunction
in the l wave at small distances as

ψl(r) ∝ rn/4−1 cos

(√
α r1−n/2

n/2− 1
+ φl

)

+ . . . , (16)

where φl is a phase that determines the relative importance of
the two irregular solutions and is not fixed by the long-range
potential VL. This is in strong contrast with the repulsive case,
where the solutions are regular and irregular modified Bessel
functions, which respectively decrease and increase exponentially
as r decreases.

The case n = 2 is borderline singular, the character of the
solution depending on the relative size of α and a combination of
l(l + 1) with a number O(1) coming from the kinetic repulsion.
It turns out that the critical value is αl = (l + 1/2)2. For
l ≥ lα ≡ √

α − 1/2, repulsion wins; one solution is more
singular than the other and can again be discarded [45]. For
l < lα the situation is similar to n ≥ 3: Equation (16) holds
with

√
α r1−n/2/(n/2 − 1) → √

α − αl ln(r/r0), where r0 is
an arbitrary dimensionful parameter and φl = φl(r0). This is
an example of an anomaly [46, 47] where the scale invariance
of the classical system is broken by the renormalization of the
quantum system.

Equation (16) is the quantum version of the “fall to the center”
in a classical singular potential [45, 48]. The phases φl determine
the asymptotic behavior of the wavefunction, from which the
zero-energy scattering amplitude is extracted. For example, the S-
wave scattering length is well-defined for a pure n ≥ 4 potential
[48] and given for n = 4 by

a0 =
√
α tanφ0 . (17)

If one imposes a particular value on ψl(R) at a chosen distance
R—for example, that the wavefunction ψl(R) = 0—the phases
are fixed. However, a different value of R leads to different
phases. In EFT, this arbitrariness is replaced by the values of
LECs. The minimal set of contact interactions is determined by
demanding renormalizability.

3.1.1. S Wave
Let us look into the S wave first. Choosing a sharp cutoff in
coordinate space at R, we replace the potential (15) by [23]

V(r) = VS(R) θ(R− r)+ VL(r) θ(r − R) . (18)

The depth VS(R) of the spherical well is related to the LEC C0 of
a contact interaction,

C0 δ(Er) =
C0

4πr2
δ(r) → 3C0(R)

4πR3
θ(R−r) ≡ VS(R) θ(R−r) . (19)

A solution of the Schrödinger equation for the augmented
potential requires the matching of the logarithmic derivatives of
outside and regular spherical-well wavefunctions at r = R,

√

−2µR2VS(R) cot
√

−2µR2VS(R) = r
∂

∂r
ln

(

rψ0(r)
)

∣

∣

∣

∣

r=R

.

(20)
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FIGURE 3 | Dependence of H4 ≡
√

−2µR2VS (R) for n = 4 on R (in units of r0).

Two analytical approximations, Equation (21) (solid lines) and Equation (22)

(dashed lines), are shown together with a numerical solution of Equation (20)

(bold lines) that interpolates between them. Reprinted figure with permission

from reference [23]. Copyright (2001) by the American Physical Society.

When n = 2 and α ≤ α0, or n = 1, we can solve this
equation with VS(R) = 0 if the admixture of the most singular
external solution tends to zero as R → 0. Thus the amplitude
is renormalized properly without a contact interaction as long
as we retain only the least singular wavefunction behavior, the
prescription offered in reference [45].

For n = 2 and α > α0, or for n ≥ 3, because the two
external solutions differ only by a phase, the contact interaction is
necessary. Substituting the wavefunction (16) into Equation (20),
yields a transcendental equation linking φ0 to VS(R) [23]. Two
approximate solutions are

√

−2µR2VS(R) ≃ mπ

{

1−
[

1− n

4
+√

α R1−n/2

tan

(

2
√
α

n− 2
R1−n/2 + φ0

)]−1}

, (21)

when the right-hand side of Equation (20) is large, and

√

−2µR2VS(R) ≃
(1+ 2m)π

2
− 2

(1+ 2m)π

[

n

4
−√

αR1−n/2

tan

(

2
√
α

n− 2
R1−n/2 + φ0

)]

,

(22)

when it is small, where in both cases m is an integer. Now one
can keep the scattering amplitude at zero energy fixed at its
experimental value by adjusting 2µR2VS(R), which displays an
periodic dependence on a power of the cutoff [23, 24, 49–54]. For
n = 2, the dependence is periodic in lnR, characteristic of a limit
cycle and a remaining discrete scale invariance. (For discussions
of limit cycles, see references [55, 56].) The n ≥ 3 oscillation
indicates a generalized limit cycle. The case n = 4 is displayed
in Figure 3 [23].

Having renormalized zero-energy scattering, an important
question is whether the problem is well-defined also at finite
energy E ≡ k2/(2µ). That this is the case can be shown [23]
with the WKB approximation, which applies to the region where
the wavelength is small compared to the characteristic distance
over which the potential varies appreciably. For distances where
|VL(r)| ≫ E, one recovers Equation (16) for the wavefunction,
up to energy-dependent corrections that are determined by
Equation (16) itself. In the absence of a short-range interaction,
decrease in R would lead to the repeated appearance of low-
energy bound states due to the unstoppable growth in attraction,
a phenomenon reflected in the never-ending oscillations of the
wavefunction [48]. With VS(R) preventing this collapse and
ensuring the description of one low-energy datum, bound states
can accrete only from negative energies, converging to finite
values as R decreases. How many of the bound states are within
the region of validity of the EFT depends, of course, on the
scales in the problem: the very low-energy spectrum will be
affected by the long-distance tail of the potential while states with
binding energies >∼ (2µR2

und
)−1 are irrelevant for the distances

of interest. For n = 2 and α > α0, which is equivalent [57] to
the three-boson systemwith short-range interactions at unitarity,
the bound states form a geometric tower (“Efimov states” [58])
that signals the remaining discrete scale invariance stemming
from the limit cycle in the contact interaction [59, 60]. While
the existence of the tower is a consequence of the symmetry, its
position is fixed by the LEC. It is remarkable that it is the proper
renormalization of the EFT that underlies the “Efimov physics”
intensely explored with cold atoms [61].

A particularly simple example of singular potential is the delta
function itself. In this case the external potential vanishes and the
external zero-energy wavefunction is replaced by

ψ0(r) ∝ r−1

(

1− r

a0
+ . . .

)

, (23)

where a0 determines the ratio between irregular and regular
solutions and is nothing but the scattering length. The solution
for Equation (20) can be written explicitly,

VS(R) = − 1

2µR2

[

(1+ 2m)2
π2

4
+ 2R

a0
+ . . .

]

, (24)

where m is an integer. It is apparent how a cutoff-dependent
C0(R) ∝ R softens the delta function. The scattering length enters
in the smaller R2 term. Of course, a similar result is obtained for
a momentum cutoff3 ∼ R−1 [27].

A subtlety arises when a regular potential with n = 1 in
Equation (15) is present together with the delta function, as is
the case for OPE. By itself, the long-range potential needs no
regularization; with the delta function, a new cutoff dependence
emerges in the irregular solution [24, 62]:

ψ0(r) ∝ r−1

{

1− r

[

1

a0
+ α

(

ln
r

R⋆
− 1

)]

+ . . .
}

, (25)
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where a0 and R⋆ are length scales that enter the zero-energy
scattering amplitude. Instead of Equation (24),

VS(R) = − 1

2µR2

[

(1+ 2m)2
π2

4
+ 2R

(

1

a0
+ α ln

R

R⋆

)

+ . . .
]

.

(26)
The main difference is the appearance of the lnR with a
coefficient∝ α.

In both these cases, where the outside potential is not singular,
it is easy to see that the amplitude at finite energy is well-defined.
The energy enters both internal and external wavefunctions as
(kr)2 and can only affect the depth of the spherical well by a term
of O(R0), an effect that disappears as R decreases. The multiple
branches in Equations (24) and (26) are a consequence of the
fact that a spherical well can have multiple bound states. The
zero-energy amplitude is essentially determined by the shallowest
state, and we can choose different well depths to place any
one state at the desired position. Deeper states have energies
∝ (2µR2)−1 and, again, are beyond the regime of the EFT for
R<∼ Rund. Differently from long-range singular potentials, the
three-dimensional delta function supports a single bound or
virtual state.

3.1.2. Higher Partial Waves
We can now look at higher partial waves. Amplitudes in these
waves have additional powers of Ep ′ · Ep, where Ep (Ep ′) is the relative
incoming (outgoing) nucleon momentum. Just as for k2 in the
S wave, in the absence of a long-range potential, dimensional
analysis implies that Ep ′ · Ep must come together with R2: the no-
derivative contact interaction contributes in the small-R limit
only to the S wave. For the n = 1 external potential, the l ≥ 1
phase shifts then converge as R → 0. A long-range singular
potential of the type (15) contains an intrinsic scale r0 and Ep ′ · Ep
comes in general with a factor r20 and does not disappear as
R → 0. There is a phase φl in Equation (16) for every l, which
can only be fixed by higher-derivative interactions.

To see this, let us first stick to the potential (18). The k = 0
matching equation that generalizes Equation (20) is

Rl(R) ≡
√

−2µR2VS(R)
jl+1(

√

−2µR2VS(R))

jl(
√

−2µR2VS(R))

= l+ 1− r
∂

∂r
ln

(

rψl(r)
)

∣

∣

∣

∣

r=R

, (27)

where jl is the spherical Bessel function of the first kind. Using the
recurrence relation for Bessel functions,

Rl(R) = 2l+ 1+ 2µR2VS(R)

Rl−1(R)
. (28)

In the absence of an external potential, the external wavefunction
is a combination of the regular jl and the irregular yl, the spherical
Bessel function of the second kind. By direct calculation we find
that at small R

Rl(R) = 2l+ 1+O(R2l+1/al) , (29)

where al is the l-wave scattering “length” (e.g., volume for l = 1),
the zero-energy limit of the ratio of the yl and jl coefficients. Using
R0(0) = 1 in Equation (28) gives

R1(0) = 3−
[

(2n+ 1)
π

2

]2
. (30)

which implies, together with Equation (29), that a1 = O(R3). The
argument repeats for l ≥ 2 with different finite pieces, leading
to al = O(R2l+1). As anticipated by dimensional analysis, the
effect of the non-derivative contact interaction disappears from
l ≥ 1 waves as R → 0. A similar argument for a regular outside
potential leads to the same conclusion. For the argument with a
delta-shell regularization, see reference [63].

In contrast, when the external potential is attractive and
singular with n ≥ 3,

Rl(R) = l+ 1− n

4
+√

α R1−n/2 tan

( √
α

n/2− 1
R1−n/2 + φl

)

.

(31)
Matching in the S wave makes φ0 R-independent. Since
2µR2VS(R) is approximately cutoff independent as can be seen
from either of the two approximate solutions (21) and (22),
Equation (28) gives

R1(R) = 3−11(R) , (32)

where11(R≪ r0) is finite. Comparison with Equation (31) then
shows that φ1 ∝ R1−n/2. Continuing to larger l we find

φl(R≪ r0) = −
√
α

n/2− 1
R1−n/2 . (33)

The phases are thus angular-momentum and energy independent
[63] in this limit, but cutoff dependent [48].

What is needed for renormalization is a single contact
interaction with a minimum number of derivatives in each wave,
with LECsC′

2l
. The interaction is non-local, for example for l = 1,

C′
2

4πr2

(

∂δ(r)

∂r

)

∂

∂r′

∣

∣

∣

∣

r′=0

→ C′
2(R)

4πR3

[

2

r
θ(R− r)− δ(r − R)

]

∂

∂r′

∣

∣

∣

∣

r′=R

,

(34)
where C′

2(R) is determined so as to keep the phase φ1, and thus
one P-wave low-energy datum, fixed. The contact interactions
are all determined by the underlying interactions, but without
additional dynamical assumptions we do not know how they
relate to each other. Model independence requires we keep
them free.

3.1.3. Implications
Much of the above had been understood without EFT. The use
of boundary conditions, for example, goes back at least to the
work of Breit [64]. In EFT, a boundary condition corresponds
to a specific regulator. At the two-body level, in the S wave
we have simply traded the dependence in R by that of VS(R).
Renormalization means that, as far as observables are concerned,
the regulator choice is irrelevant (within the error of the
truncation); only the unobservable cutoff dependence of the
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LECs depends on the regulator. What matters is that a LEC
encodes one parameter. The LO EFT in coordinate space is in the
spirit of atomic Quantum-Defect Theory, where the interaction
of far-away electrons with an ionic core or molecule is solved for
exactly and a few parameters (“defects”) account for short-range
interactions [65].

The model independence of the EFT is manifest in the fact
that the same two-body contact interactions that renormalize the
two-body problem contribute to other processes. For example,
the three-boson system was considered in reference [54], where
binding energies and the particle-dimer scattering length were
calculated. Convergence was observed in a range of cutoffs, with
asymptotic values representing model-independent predictions.
The role of D and higher waves in these results was, however,
not discussed.

The contact interactions can also be seen as providing a self-
adjoint extension of the Hamiltonian. As stressed in reference
[66], the so-called deficiency index for a singular potential is
(∞,∞), i.e., an infinite number of parameters—the phases φl in
Equation (16) for all values of l—are needed to determine the
self-adjoint extension uniquely. In the EFT this translates into the
existence of an infinite number of contact interactions, one with
the minimal number of derivatives for each wave (of course, the
EFT contains also contact interactions with an arbitrary number
of derivatives).

While mathematically the problem looks hopeless, on physical
grounds this is clearly a red herring. As remarked in reference
[20], increasing l strengthens the centrifugal barrier and shrinks
the distances r<∼ [l(l + 1)]−1/(n−2)r0 where the attractive n ≥
3 potential takes over. The distance of closest approach at
momentum k can be estimated from the point where the energy
is comparable to the centrifugal barrier, or r>∼ [l(l + 1)]1/2k−1.
For k<∼Mund, the breakdown scale, we are only interested in

distances r>∼ Rund ∼ [l(l + 1)]1/2M−1
und

. We might then expect
that only in waves with l<∼ lcr does a singular potential need to be
treated exactly and Equation (16) apply, where [32]

lcr
(

lcr + 1
)

∼ r0

Rund
. (35)

A more precise semi-analytical estimate comes from the
investigation of the critical strength α where a Bessel series
solution of the Schrödinger equation exhibits a square-root
branch point characteristic of non-perturbative behavior. For
n = 3 [32], it is described pretty well for large l by the estimates
above. For n = 2, consideration of the first two orders in the
perturbative expansion suggests lcr = (π |α| − 2)/4 [31]. An
attractive singular potential defined with a step function at lcr has
a finite deficiency index (lcr, lcr).

The situation is different in the case of n = 1. The potential
is larger than both centrifugal barrier and kinetic repulsion for
r>∼ n2(l) r0, where n(l) is O(1) for l = 0 and grows as l for
large l. Balance among these terms leads to bound states of sizes
rn ∼ 2n2r0 and binding energies Bn ∼ α2/(8µn2). (Taking as
an example the Coulomb interaction, where α = 2µαe in terms
of the fine-structure constant αe, we get the proper result B ∼
µα2e/(2n

2) if we interpret n as the principal quantum number.)

These estimates are in any case affected by the long-range tail of
the potential, which we are not considering in this section. But at
distances Rund <∼ r<∼ r0, we expect lcr ≈ 1: while the Swavemight
be non-perturbative and perhaps require a short-range potential
(26) to generate a bound state at the observed location, higher
waves should be perturbative.

3.2. Perturbative Corrections
EFT provides a framework where we can systematically
incorporate corrections to the leading interactions, which can
be checked with the method developed in reference [67]. We
pair subleading long-range interactions with the subleading
short-range interactions needed for renormalization order by
order. As stressed in reference [68], renormalization at a given
order contains clues about the relative importance of higher
corrections. Just as a negative power of R indicates at least one
missing LEC, so positive powers of R point to the order before at
least one new LEC should appear. If the error in an observable
not used in the fit of LECs at NiLO (with some integer i) scales
as a positive power of the coordinate cutoff, say Rx, then we
may expect that corrections appear at Ni+jLO, where j ≤ x is
an integer (not necessarily the largest integer). This constraint
comes from the demand that the regulator error should not
exceed the truncation error when R<∼ Rund. (It does not exclude
the presence of a LEC at a lower order than that estimated by the
cutoff dependence, corresponding to boundary conditions of the
RG equation [22].) We will see examples below.

The next renormalization challenge arises from the more-
singular corrections to the long-range potential. An almost
automatic reflex is to simply add the correction to the LO
potential, as Weinberg prescribed, and solve the Schrödinger
equation. For a regular potential, adding a regular correction that
is small everywhere can be done in perturbation theory, but it
can also be done by solving the Schrödinger equation exactly.
For amore-singular correction, however, the perturbing potential
will be larger than the LO potential at sufficiently small r. One
risks destroying the systematic character of the EFT unless one
keeps R relatively large. Whether this risk materializes needs to
be checked explicitly. As we will see, renormalization requires
distorted-wave perturbation theory around the LO solution
[20, 31]. Implications for nuclear interactions are discussed
in section 4.1.

3.2.1. Distorted-Wave Perturbation
A pedagogical toy model that nicely illustrates the need for
perturbation theory on singular corrections was presented in
reference [69]. The model consists of two separable, regular
potentials, one of range m−1

L , the other of range m−1
S ≪ m−1

L .
Because the potentials are separable, exact answers can be found
for the effective-range parameters. The potential parameters are
fine-tuned so that each potential separately produces a natural
scattering length, that is, a0 ∼ m−1

L (a0 ∼ m−1
S ) in the absence

of the short-range (long-range) potential. Next, the short-range
potential is expanded in powers of k/mS, creating a series of
singular interactions. While for k ∼ mL the long-range potential
is non-perturbative, the singular corrections should be treated in
distorted-wave perturbation theory. Lo and behold, the results up
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to N2LO obtained with a standard subtraction scheme are found
to reproduce the exact results. In contrast, when a truncation of
the expanded short-range potential is solved exactly, similar to
the “peratization” of Fermi theory [70, 71], one can no longer
take a large momentum cutoff. Reference [69] concludes that
removing the cutoff dependence is impossible, which is indeed
true when one insists on iterating subleading corrections.

The situation is not significantly different for the case of
interest in nuclear physics where not only corrections, but
also the LO potential is singular. Again, the simplest example
is provided by the delta function without external potential,
VL(R) = 0 in Equation (18). As discussed above, the energy
dependence first affects the matching between internal and
external wavefunctions at relativeO(k2R2). The ratio of irregular
and regular solutions, which determines k cot δ0(k) where δ0(k) is
the S-wave phase shift, starts atO(R). Thus, at LO

k cot δ0(k) = − 1

a0

(

1+O(Ra0k2)
)

, (36)

which means that the fractional error in δ0 is

1δ0(k)

δ0(k)
= O(Ra0k2) . (37)

For example, the effective range r0 ∼ R. This again can be easily
obtained with a momentum regulator [27]. In ChEFT, where
away from the chiral limit the delta function is accompanied in
the singlet S wave by the Yukawa potential, the situation is not
substantially different [24]. Aside the O(αR lnR) dependence in
Equation (26), the argument does not change and Equation (37)
still holds with a0 → a0. Despite the presence of pions, the error
is still ∝ R. It can be removed in first-order perturbation theory
by a two-derivative contact interaction

δVS = C2

{

[

∇2δ(Er)
]

+ 2
[

E∇δ(Er)
]

· E∇ + 2δ(Er)∇2
}

, (38)

whose LEC C2(R) ∝ R2 fixes r0 ∼ Rund. For R<∼ Rund, this
contact interaction is an NLO correction to the LO interaction
with LEC C0. This is in fact one of the elements in the power
counting in Pionless EFT [35]. Note that, if we were to impose
that C2/C0 scaled with R2

und
as implied by NDA, we would

obtain an effective range that scaled the same way, in contrast
to what one obtains for typical short-range potentials [27]. Once
again, renormalization automatically enforces a general property
of short-range interactions.

But what if we solved the Schrödinger equation exactly
following Weinberg’s prescription? In the simpler case without
a long-range potential, it has been shown explicitly [72–74] that
this can be done in a renormalized way only if r0 <∼ R, which
is arbitrarily small. In other words, the two-derivative contact
interaction is non-perturbatively renormalizable only if the
theory satisfies a “Wigner bound” [75] r0 ≥ 0. In contrast, when
the two-derivative contact interaction is treated in perturbation
theory, at second order and higher, which contain loops
involving two or more powers of C2, four- and higher-derivative
contact interactions appear to guarantee renormalization. When

we resum the two-derivative contact interaction we generate
diagrams with an arbitrary number of loops, but lack the
counterterms to remove the cutoff dependence. A calculator
committed to exact solutions might be tempted to eschew
renormalization (and thus model independence) and live with
a relatively large R. Still, such stubbornness in resumming what
needs no resummation might be rewarded by results that are
worse than those of the perturbative expansion. An example is
provided by a calculation [76] of the S-wave scattering phase
shifts for a harmonically trapped unitary system, where the
regulator was implemented in the form of a maximum number
of shells. One can see explicitly how in first-order perturbation
theory the derivatives in Equation (38) give a contribution to
the NLO energy which is proportional to the LO energy, apart
from a shift in the LO LEC. The result of resumming the NLO
interaction is not only cutoff dependent but also gives rise to a
larger violation of unitarity than even NLO.

Note that one can introduce an auxiliary “dimeron” field in
the EFT Lagrangian [77] whose kinetic term provides an energy-
dependent correction to the potential. Exploiting the redundancy
of interactions in the enlarged Lagrangian, one can remove
the momentum-dependent corrections (38). Renormalization
changes with an energy-dependent potential and, in particular,
a resummation does not restrict r0. However, unless there is
evidence for r0 ≫ Rund, this is still an NLO correction and
the resummation does not affect observables up to higher-order
terms [27].

Resummation of subleading interactions can lead to an even
more paradoxical situation. The problem is that subleading
singular potentials are not in general attractive in all the same
waves as OPE. If the corrections are iterated together with OPE,
the cutoff behavior of the amplitude will change completely:
channels that required a counterterm at LO may not require, or
even tolerate, one at subleading order [24]. Take a wave where
the LO potential is singular with a power n and attractive, thus
requiring a counterterm, but the subleading potential is repulsive
(strength α′) with a power n′ > n. The exact solution of
the Schrödinger equation for the sum of the external potentials
is now dominated at short distances by the irregular solution
of the subleading potential, which grows exponentially as r
decreases. Matching to the short-range potential VS will force
a non-vanishing irregular solution, which in turn leads to an
exponentially increasing dependence of the fractional phase shift

error in R, ∝ R1+n′/2 exp[2
√
−α′ R1−n′/2/(n′/2 − 1)] [24]. The

only solution is to remove the LO LEC at subleading order! There
is hardly a way to keep the systematic expansion of the EFT.

Another toy model [78] illustrates this paradox. This time
the underlying potential consists of a repulsive r−3 component
associated with a mass mL together with an attractive r−3 from
a heavier mS ≫ mL, as well as less singular terms. Its exact
S-wave results are compared to those of a potential consisting
of the repulsive r−3 potential plus a delta-function interaction.
Parameters are chosen so that the repulsive potential is non-
perturbative. Despite the fact that the phase shifts of the
repulsive component are well-defined by themselves, reference
[78] includes the delta function non-perturbatively, fixing it to
reproduce the scattering length of the underlying potential. For
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R−1 <∼mS the phase shifts are in reasonably good agreement
with those of the underlying potential. However, agreement
deteriorates as R decreases. Disregarding conceptual differences
in renormalization of attractive and repulsive singular potentials
[23, 24], reference [78] concludes that cutoff dependence cannot
be removed in general, rather than in the particular case of
resumming the subleading delta function. In response, reference
[79] included the 2n-derivative delta functions, which account for
the short-range potential, at N2(n+1)LO in perturbation theory.
Calculations up to N8LO show convergence to the exact phase
shifts up to at least k ∼ 2mL without significant restriction on
R. (Reference [80] nevertheless points to some ambiguity in the
values of the NLO phase shifts, apparently implying that it is
suffcient reason to abandon renormalization.)

Thus the singular nature of the potentials that we want
to treat in an EFT expansion of the amplitude requires the
use of perturbation theory on corrections, as implied by the
power counting of section 2. This in fact ensures small changes
in amplitudes after renormalization [31]. But then one might
wonder to which extent the singular nature of the LO potential
affects the order of the corrections. As we have seen, when the
only singular part of the LO potential is a delta function, the first
correction comes at NLO. When the outside potential is singular
and attractive, the situation is different. For an LO singular
attraction, one finds [24] that after fixing the phase φ0 the S-wave
phase shifts scale as

1δ0(k)

δ0(k)
∝ R1+n/2 . (39)

This means that corrections are expected at (or before) N2LO for
n = 2, 3, N3LO for n = 4, 5, etc.. It is unclear why the results
reported in reference [54] indicate higher sensitivity to R than
given by Equation (39).

Now, the power counting for nuclear interactions in section
2 says that at N2LO there are corrections to the long-range
potential with an r−(n+2) singularity. The additional singularity
can be removed in first-order perturbation theory by additional
contact interactions with two derivatives. This can be shown
relatively simply in a toy model where a ±r−4 potential is added
to an n = 2 attractive LO potential [31]. The analysis was carried
out in momentum space with a sharp cutoff 3. At N2LO, where
the ±r−4 potential is considered as a first-order perturbation,
two forms of additional, oscillating cutoff dependence appear:
one proportional to 32, reflecting the stronger singularity of
the perturbing potential, the other proportional to k2. In the
S-wave, a two-derivative potential (38) is sufficient, together
with an N2LO shift in the C0 of Equation (19), to remove the
two additional divergences. This argument can presumably be
continued at higher orders and repeated for l ≥ 1 waves by
considering interactions of type (34) with two more derivatives.
One tentatively concludes that NDA holds in distorted-wave
perturbation once it has been corrected at LO.

3.2.2. Simple Perturbation
In partial waves l>∼ lcr where the LO potential is perturbative
and particles are free in zeroth approximation, corrections are

included in simple perturbation theory. The first task in this
case is to quantify the angular-momentum suppression for the
long-range potentials so as to establish the orders they come
in. The second need is to find the orders the associated contact
interactions appear at.

For the µ = 0 long-range potential, rules (7) and (8) indicate
that a contact interaction is needed for renormalization at nth
order in perturbation theory, where n ≥ 2l+ 1. This is consistent
with the inference from the residual cutoff dependence of the
non-derivative contact interaction. As we saw in section 3.1.2,
l-wave scattering “lengths” al are induced through matching at
finite R. Just as for the S-wave effective range, they can be made
arbitrarily small by taking R → 0. However, the higher power of
R, R2l+1, suggests that contact interactions in higher waves enter
in perturbation theory at N2l+1LO or lower, another element of
Pionless EFT power counting [35].

The increased singularity of subleading potentials asks for
counterterms at lower orders in perturbation theory. The
first-order perturbative correction due to subleading potentials
involving pion loops is renormalized with LECs assigned by
NDA. Making further general statements about the order contact
interactions are needed is cumbersome without an explicit
angular-momentum suppression factor.

If one were to solve the Schrödinger equation exactly in one
of these waves, renormalization would require a LEC, which
then determines the asymptotic properties of the wavefunction.
The tail of the non-perturbative wavefunction can be reproduced
with increasing accuracy as the order of perturbation theory
increases [23]. Being a series in α, the perturbative expansion
cannot reproduce the oscillations found in Equation (16), which
are tied to the non-analytic dependence

√
α. This is no problem

because, by definition of lcr, these oscillations take place at
distances smaller than those probed by the EFT. Their effects
can be “averaged out” and appear through contact interactions
at subleading orders. If one wants to save all the perturbative
work by sticking to a non-perturbative solution, one loses
some predictive power at LO but, because it is a single LEC
(in one wave), this is perhaps acceptable. Alternatively, one
could simply not include the LEC if l is sufficiently high
for oscillations to happen below R, which might be limited
in numerical calculations anyway. In this case R is in the
region where perturbation theory works and the result will be
relatively insensitive to R. Unnecessary iteration in high waves
is thus relatively harmless, other than obscuring the systematic
EFT expansion.

4. RENORMALIZATION OF CHIRAL EFT

By this point in the manuscript it should be clear how to
proceed with ChEFT in the nuclear sector. The power counting
of ChPT is based on NDA, which comes from demanding
that the EFT expansion be renormalized order by order so as
to ensure model independence. In the more general ChEFT
we continue to insist on model independence, but now LO is
non-perturbative. The results of the previous section apply to
pion-exchange potentials, where the spin-isospin factors and
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the exponential fall-off at large mπ r do not substantially affect
renormalization. Perhaps not surprisingly in hindsight, NDA
is violated.

Since the OPE tensor force is singular and attractive in
an infinite number of channels, the first task (section 4.1)
is to estimate up to which relative angular momentum l
OPE needs to be considered at LO. In sections 4.2 and 4.3
renormalized results for, respectively, two and more nucleons
are described.

4.1. Partly Perturbative Pions
The simple power counting of Equations (7) and (8) does not
capture factors of l−1, just as it misses other dimensionless
factors. More realistically, OPE in the radial Schrödinger

equation is an expansion in Q/M
(l,s)
NN , where M

(0,s)
NN ∼ MNN but

M
(l,s)
NN increases with l depending in general also on the spin s.

Once M
(l
(s)
cr ,s)

NN ∼ MQCD, OPE is perturbative. What do we know

aboutM
(l,s)
NN and l

(s)
cr ?

The bold suggestion was made in references [28, 29] that

l
(s)
cr ≈ 0, so that pion exchange would be amenable to
perturbation theory in all waves. The estimate in Equation (5)
assumed NDA for the one-nucleon quantities mN = O(MQCD),
fπ = O(MQCD/(4π)), and gA = O(1), plus neglected any
dimensionless factors. Numerically, MNN ≃ 290 MeV. What
if the various spin/isospin factors and other numbers floating
around, each of O(1), conspire to make OPE more perturbative,
so thatMNN is effectively comparable toMQCD?

In that case, at LO ChEFT would be formally the same as
Pionless EFT [35, 36], where the binding of light nuclei rests on
the shoulders of non-derivative 2N and 3N contact interactions
[81, 82]. But because pions are explicit, the range of validity of the
EFT is enlarged—at least near the chiral limit where integrating
out pions becomes a very restrictive condition. An attractive
feature of this proposal is that it could potentially explain why
Pionless EFT works better than expected, for example for binding
energies [35].

This proposal also neatly solves the renormalization issues
of the last section. OPE is now an NLO effect of relative
O(Q/MNN), so no problems associated with its singularity
emerge. Being perturbative, it brings NLO cutoff dependence
only to S waves. Because at LO the external potential vanishes,
Equation (36) requires at NLO one chirally symmetric two-
derivative contact interaction in each S wave. Then Q ∼ mπ
implies the concomitant presence of a chiral-symmetry-breaking
non-derivative interaction with LEC proportional to the quark
masses, m2

πD2. In the background of an LO wavefunction of the
type (23), OPE generates an m2

π ln3 cutoff dependence which
can be absorbed in D2. The 2N amplitude is renormalized and
in good agreement [28, 29, 83] with the Nijmegen partial-wave
analysis (PWA) [84] up to Q ∼ mπ .

Alas, calculations at O(Q2/M2
NN) have shown [30, 85] that in

the low, spin-triplet partial waves, where the OPE tensor force is
attractive, the expansion fails for Q ∼ 100 MeV. In partial waves
with l = j≫1, where counterterms are needed only at a very large
number of loops L ≥ 2l, the breakdown of perturbation theory

FIGURE 4 | Two-nucleon 3P0 phase shift δ as function of the center-of-mass

momentum kc.m.. The NLO (blue), N2LO (green), N3LO (orange), and N4LO

(red) bands from a perturbative treatment of pion exchange correspond to

cutoff variation from 0.8 to 2.4 GeV. (LO in a perturbative expansion vanishes

for this channel.) The empirical phase shifts from the SAID program [88] (solid

circles) are shown for comparison. Reprinted figure with permission from

reference [87]. Copyright (2019) by the American Physical Society.

was estimated in the chiral limit to be at a critical momentum [86]

pcr ≈
l3√

27|2(−1)l + 1|
MNN . (40)

If we impose pcr ∼ MQCD, we get l
(1)
cr ≈ 2.5. The radius of

convergence of the perturbative series is not as large in waves
with l = j ± 1. In both cases the first few orders were found
[86] not to be representative of the large-order convergence. For
low partial waves counterterms enter already at low orders.When
they were assigned arbitrary but natural values, all waves except
3S1-

3D1,
3P0, and perhaps 3P1 were found to converge up to

pcr ≈ MNN . An example of failure, 3P0, is given in Figure 4

[87], where OPE is NLO, n-iterated OPENnLO, leading two-pion
exchange (TPE) N3LO, and subleading TPE N4LO. The LECs are
assumed to be given by NDA instead of being introduced only at
the order where they are first needed for renormalization. These
signs of the breakdown of perturbative pions are consistent with

an expansion inQ/M
(l,1)
NN withM

(l≈1,1)
NN ∼ fπ as indicated byNDA.

It seems inevitable that pions must be treated non-
perturbatively in the low partial waves if we want to go beyond
Pionless EFT at physical quark masses. Still, based on the general
arguments of section 3.1.3 we expect pions to be perturbative
for sufficiently high partial waves. The n = 3 tensor force, for
which r0 ∼ M−1

NN , does not vanish for spin s = 1. Equation (35)

with Rund ∼ [l(l + 1)]1/2M−1
QCD provides an estimate l

(1)
cr ≈ 2

for the critical angular momentum in attractive triplet waves.
This conclusion is made firmer by a generalization to the tensor
potential of the analysis of the onset of square-root branch points
in the Bessel series solution of the Schrödinger equation [32].
Given that the strength of OPE is fixed by MNN , it translates
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TABLE 1 | Estimate of the critical values pcr of the relative momentum in the

lowest 2N triplet channels above which the OPE tensor force cannot be treated

perturbatively [32].

Partial wave pcr/MeV

3S1-
3D1 66

3P0 182

3P1 365

3P2-
3F2 470

3D2 403

3D3-
3G3 382

3F3 2860

3F4-
3H4 2330

3G4 1870

into an upper bound on the critical momentum pcr, including
repulsive waves. The results, listed in Table 1, are obtained in
the chiral limit; a realistic pion mass could affect the smaller
values by factors of O(1) but is not expected to be important
for the larger values. They indicate that OPE in 3S1-

3D1 and
3P0

likely fails to converge already below MNN . In contrast, OPE in
high waves, such as F and higher, converges beyond MQCD. The
gray zone is the D and P waves other than 3P0. Given the low
values of pcr on the scale set by MQCD, one might conclude that

l
(1)
cr ≈ 3. An analysis of spin-triplet phase shifts where OPE and
TPE are removed in distorted-wave perturbation [89] supports
this conclusion.

A different but closely related estimate for l
(1)
cr comes from

the cutoff values where the first bound state crosses threshold
in the absence of contact interactions. The very early work
on ChEFT and much of its phenomenological improvements,
which continue to this day, have used Weinberg’s prescription.
Unfortunately this prescription assigns to triplet waves a single
non-derivative contact interaction at LO, which is incapable to
determine more than one phase in a model-independent way.
In particular, for a separable regulator the contact interaction
contributes only to the S wave. Spurious low-energy bound states
can be kept at bay at LO in the 3S1-

3D1 coupled channel [62, 90–
93], but only in this channel [20, 21]. In triplet waves where OPE
is repulsive there is no need for counterterms at LO [20, 94],
but without them bound states repeatedly cross threshold in
attractive waves and lead to wild variations in the phase shifts
at energies within the realm of ChEFT [20, 21, 93, 95]. With a
super-Gaussian separable regulator, bound states first emerge at,
roughly, 3 ∼ 0.5, 1, 2, 4, and 6 GeV in respectively 3S1-

3D1,
3P0,

3D2,
3P2-

3F2, and
3D3-

3G3 channels [20, 93]. Except for
3D3-

3G3, this sequence is similar to that of the attractive channels in
Table 1. The lowest two channels would display shallow states
when 3 ∼ MQCD, indicating that OPE is non-perturbative,
while the higher waves are less clear—numerical experimentation
suggested [20] their effects were not negligible, which can be
understood from the results of reference [32].

Perhaps even more seriously, in Weinberg’s scheme more-
pion exchange and other contact interactions, which should be
treated perturbatively, are not. This leads to the pathologies

discussed in section 3.2. Indeed, renormalization problems
have been reported [21, 96–100] within Weinberg’s prescription
also for higher-order potentials. These renormalization failures
prevent taking a momentum-space cutoff at the breakdown scale
MQCD or higher. A “physical cutoff” 3phys

<∼ 1 GeV, before
3P0 would develop a bound state [20], is needed, and results
are sensitive to the choice of regulator. No wonder then that
much effort in phenomenology with chiral potentials has been
dedicated to finding the “best” regulator. The limitation to
small cutoffs leads to startling dependence on what should
be equivalent forms of interactions in the Lagrangian, see for
example reference [101].

One concludes that, while it seems well-established that to
handle triplet waves beyond MNN pions are non-perturbative in
at least 3S1-

3D1 and 3P0, there is some uncertainty as to the
partial wave up to which this is so. Part of the uncertainty comes
from the presence of LECs in lowest orders of the amplitude,
which require a closer comparison with data (section 4.2). What
is clear is that there is an angular-momentum suppression. The
perturbative expressions in reference [86] suggest

M
(l,1)
NN ∼ l2MNN , (41)

apart from an overall suppression of l2. In contrast, the analyses
of reference [32] leads to l2 → [l(l+ 1)]3/2.

Singlet channels are somewhat simpler, but not devoid of
subtleties. Since the tensor force vanishes for s = 0, OPE has
n = 1 and r0 ∼ MNN/m

2
π . The general argument from section

3.1.3 indicates that only in the S wave should we expect non-

perturbative effects, l
(0)
cr ≈ 1. In higher waves, the OPE potential

dominates over kinetic and centrifugal repulsion only at large
distances, and there the exponential fall-off of OPE leads to
further suppression.

The perturbative convergence of the l ≥ 1 channels was
studied in reference [102]. This is particularly easy because the
Yukawa potential is well-defined for an arbitrary number of
loops. The phase shifts are seen to converge quickly already for
1P1, and faster as l increases. The suppression factor M

(l,0)
NN can

be estimated from the critical strengthM−1
NNcr needed to generate

a zero-energy bound state in the corresponding l wave, shown
in Table 2. There are two sequences of channels that alternate
because of the factor of −3 in the ratio between isospin singlet
and triplet: if we multiply the isosinglet entries in Table 2 the
results form a single monotonous sequence. Assuming Q ∼ mπ ,
we find that in each sequence increasing l by 2 roughly suppresses
OPE by one order in the expansion, starting with 1P1 at NLO and
1D2 at N

2LO. Moreover,

M
(l,0)
NN ∼

[

l(l+ 1)+ 1
]

MNN , (42)

in the isosinglet waves, with a factor 3 larger in isotriplets.
If one insists on the full solution for the Yukawa potential

in higher partial waves, there are no renormalization problems
[20, 94], as the potential is regular. In the S wave, however,
interference with the delta function leads to an unexpected
violation of NDA. As first noticed in reference [18] and
confirmed many times since—for example, references [62,
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TABLE 2 | Estimate of the critical strength M−1
NNcr of the Yukawa potential in the

lowest 2N singlet channels above which OPE cannot be treated

perturbatively [102].

Partial wave MNN/MNNcr

1P1 −6.4

1D2 45.8

1F3 −27.9

1G4 133.1

1H5 −64.6

1 I6 265.9

1J7 −116.4

1K8 440.0

1L9 −183.3

1M10 667.4

1N11 −265.4

96, 103]— cutoff dependence proportional to m2
π emerges

through the lnR term in Equation (26). Renormalization
therefore requires the non-derivative chiral-symmetry-breaking
interaction with LEC m2

πD2. With Weinberg’s prescription,
where this LEC is missed at LO, the cutoff dependence
can be seen in the 2N system only if quark masses are
varied, as one does to match lattice QCD results. From the
perspective of phenomenology, the main effect of the absence
of the m2

πD2 contact interaction is in processes sensitive to its
associated pion interactions, which are generated by the way
chiral symmetry is broken explicitly in QCD. Regardless of its
phenomenological (ir)relevance, this is the simplest example
where the renormalization of observables in ChEFT is not
guaranteed by NDA.

Clearly, dimensionless factors stemming from spin
and isospin make the transition from non-perturbative to
perturbative OPE somewhat fuzzy. Moreover, virtually nothing
has been done to estimate the angular-momentum suppression
for multiple-pion exchange. Multiple-pion exchange is amenable
to perturbation theory in all waves, but presumably further
suppressed in higher waves. That is sufficient to start comparing
with data.

4.2. Two Nucleons
Let us now take a closer look at how a renormalized approach
works at the 2N level. I continue to consider Q ∼ mπ ∼ MNN .
Since the OPE tensor force survives in the chiral limit, if we take
mπ <∼MNN we can perform an additional expansion around the
chiral limit [62], but such an expansion inmπ/MNN has not been
fully explored.

Leading order at the 2N level consists of the exact solution of

the Schrödinger equation up to l
(s)
cr with OPE and the required

counterterms, not all of which were accounted for by NDA:

• Two non-derivative, chirally symmetric contact interactions
with LECs C0(s), one for each S wave (s = 0, 1). They are
needed to renormalize OPE even in the chiral limit, and were
anticipated [10, 11] to appear at LO already on the basis of
NDA, which estimates C0(s) ∼ 4π/(mNMNN).

• A non-derivative, chiral-symmetry-breaking contact
interaction with LEC m2

πD2(0) if OPE is treated
non-perturbatively in the 1S0 channel. This LEC is
D2(0) ∼ C0(0)/M

2
QCD on the basis of NDA, and thus

N2LO. Renormalization of non-perturbative OPE instead
requires D2(0) ∼ C0(0)/M

2
NN [18].

• One chirally symmetric contact interaction with the minimum
number of derivatives for each wave where attractive tensor
OPE is iterated. The most dramatic effect is in 3P0,
where a contact interaction C′

2(1)
Ep ′ · Ep with C′

2(1)
∼

C0(1)/M
2
NN is needed [20]. NDA would give instead C′

2(1)
∼

C0(1)/M
2
QCD. The two-order enhancement comes from the

running of pion exchange, and similar enhancements apply
for the LECs in other attractive, singular waves where OPE
is non-perturbative.

These counterterms are schematically displayed in Table 3,

assuming l
(1)
cr = 3.

Results can be found in references [20, 62, 93, 95] for cutoff
values as high as 10 GeV in super-Gaussian separable regulators.
In comparison with the Nijmegen PWA, one finds:

• In the 3S1-
3D1 coupled channels, where Weinberg’s

prescription is consistent with renormalization, phase
shifts come out well with one fitted LEC. Results improve
for 3>∼MQCD; even the mixing angle, which is somewhat
overpredicted with a small 3 ∼ 500 MeV, agrees with the
Nijmegen PWA to within 1◦ up to a laboratory energy
Elab ≃ 200 MeV for3>∼ 4 GeV. When the scattering length is
used to fix the LEC, the deuteron binding energy is BLO2 ≃ 2.0
MeV, which is essentially the same as for lower cutoffs [106].

• For low uncoupled, attractive triplet channels (3P0,
3D2)

iterating pions with one fitted LEC works equally well. As
an example, Figure 5 [20] shows 3P0, which comes out much
better than in Weinberg’s prescription with 3 ∼ 500 MeV
(compare this also with Figure 4 where pions are treated
perturbatively). The vanishing of the amplitude beyond Elab ≃
200 MeV can be described, because attraction from OPE is
compensated by the contact interaction. Again, agreement
improves with increasing cutoff.

• For low coupled triplet channels (3P2-
3F2,

3D3-
3G3)—see

Figure 5 [20] again for an example—iterated pions with the
associated LEC do not improve significantly over Weinberg’s
prescription with 3 ∼ 500 MeV. While 3D3 is much
better, changing from repulsion to attraction, 3P2 goes from
underprediction to considerable overprediction.

• In triplet channels without free parameters (3P1,
3F3,

3F4-
3H4,

3G4) iterated pions tend to work well, whether they are
expected to be perturbative or not. In these channels results
are the same as in Weinberg’s prescription; there is not much
change as3>∼MQCD.

• In l ≥ 1 singlet channels (1P1,
1D2,

1F3,
1G4), iterated pions

undershoot data except in 1F3. Again results essentially agree
with Weinberg’s prescription at small3 ∼ 500 MeV.

• In 1S0, the phase shifts resemble those of Pionless EFT,
where after the fast rise due to the existence of a virtual
state, they remain essentially flat as Elab increases. Weinberg’s
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TABLE 3 | Schematic momentum dependence of the lowest-order contact interactions in the 2N system up to D waves, according to references

[20, 31, 62, 68, 104, 105].

1S0
3S1 ǫ1 3P0,

3P2
1P1,

3P1 ǫ2 3D2,
3D3

LO 1 1 p′p p′2p2

NLO p′2 + p2

N2LO p′4 + p4 p′2 + p2 p2 p′p
(

p′2 + p2
)

p′p p′pp2 p′2p2
(

p′2 + p2
)

N3LO p′6 + p6

FIGURE 5 | Two-nucleon 3P0 and 3P2-
3F2 phase shifts (δ) and mixing angle (ε2) as functions of the laboratory energy TL. The LO results (solid lines) at a cutoff

3 = 3.94 GeV are compared with the Nijmegen PWA [84] (dashed lines). Reprinted figure with permission from reference [20]. Copyright (2005) by the American

Physical Society.

prescription applies, and renormalization allows us to increase
the cutoff beyond MQCD, but agreement with the Nijmegen
PWA deteriorates as we do so.

Thus, a renormalized approach where the regulator is
unimportant gives a qualitative guide to 2N data at LO, which
is slightly better than Weinberg’s prescription with specific
regulators and small momentum-cutoff parameters. It has been
shown recently [107] that, with a non-separable regulator, a
specific combination of the four possible spin-isospin non-
derivative contact interactions that yields only one 3S1-

3D1

bound state simultaneously prevents bound states in other
channels. While this is not true for an arbitrary regulator, it
does allow to extend LO results with Weinberg’s prescription to
higher cutoff values, in general improving agreement with the
Nijmegen PWA. However, results are not clearly better than the
renormalized approach, particularly in the 3P0 channel which
lacks the repulsion to produce the amplitude zero.

In addition to simple perturbative corrections in higher partial
waves, one needs to account in subleading orders for potential
corrections via distorted-wave perturbation theory in the lowest

partial waves. The residual3−1 dependence of the LO amplitude
means that at NLO—relativeO(Q/MQCD)—there is also:

• A two-derivative, chirally symmetric contact interaction
with LEC C2(0) in the 1S0 channel. In order to render
cutoff effects on the effective range no larger than N2LO,
C2(0) ∼ C0(0)/(MNNMQCD) [68]. NDA gives instead
C2(0) ∼ C0(0)/M

2
QCD, or N2LO (confusingly denoted NLO

in the nuclear community), which produces a short-range
contribution to the effective range smaller than pion’s by two
powers of the expansion parameter. Yet, only about half of the
1S0 effective range comes from OPE.

The cutoff dependence in other channels is milder, in
agreement with the discussion of section 3.2. The NLO
interaction is shown in the second line of Table 3. At NLO in the
amplitude, the NLO interaction should be included in first order
in the distorted-wave expansion.

At higher orders, corrections to the long-range potential
enter according to the power counting of section 2. Barring

unforeseen renormalization issues, at O(Qµ/M
µ

QCD) we need
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FIGURE 6 | Two-nucleon 3P0 phase shift δ(3P0 ) as function of the laboratory

energy Tlab. The N2LO (red dashed line) and N3LO (blue solid line) results at a

cutoff 3 = 1.5 GeV are compared with the Nijmegen PWA [84] (black points).

Reprinted figure with permission from reference [104]. Copyright (2011) by the

American Physical Society.

to include LECs with up to µ derivatives more than the LECs
appearing at LO [31], except in the 1S0 channel where the
Yukawa/delta-function interference takes place. The momentum
structures of the LECs up to N3LO are shown in Table 3, again

under the assumption l
(1)
cr = 3. They are:

• In each triplet channel where attractive OPE is iterated at LO
(3S1-

3D1,
3P0, etc.), a contact interaction with two derivatives

more than the contact interaction at LO [104, 105]. While for
3S1-

3D1 this coincides with NDA, for other channels NDA
would say these contact interactions only appear at N4LO
or higher.

• Contact interactions with two derivatives [68] for singlet (1P1)
and triplet P waves where OPE is repulsive (3P1). This is the
NDA scaling.

• Four- and six-derivative contact interactions in the 1S0
channel at N2LO and N3LO, respectively [68]. Again, NDA
would have these contact interactions at N4LO or higher.

Up to N3LO in the amplitude, their contributions are
included in first order in the distorted-wave expansion.
Meanwhile, the NLO interaction must be included in
second and third orders, either by itself or with one
N2LO interaction.

The phase shifts have been calculated up to N3LO along these
lines in references [68, 104, 105], together with Deltaless TPE:

• In the 3S1-
3D1 coupled channels, where LO already yielded

very good results at LO, results improve only marginally
at N2,3LO.

• In 3P0, which was also relatively well-described at LO, results
improve quite a bit around the maximum phase shift at N2LO.
Not much improvement, if any, is seen at N3LO. Results from
reference [104] are shown in Figure 6, to be compared with LO

in Figure 5. Other uncoupled, attractive triplet channels (3D2

etc.) were not calculated.
• The coupled 3P2-

3F2 wave with OPE iterated at LO shows no
real improvement at N2LO, and only mildly better agreement
with the Nijmegen PWA at N3LO. No results are available for
higher coupled triplet channels (3D3-

3G3 etc.).
• In 3P1, which works well at LO with no free parameter, results

deteriorate at N2,3LO. Higher repulsive triplet channels (3F3
etc.) were not considered.

• In 1P1, agreement with the Nijmegen PWA improves at
N2,3LO, although results are very sensitive to the pion-nucleon
parameters that enter the µ = 3 TPE. Higher singlet partial
waves were not studied.

• The 1S0 phase shift improves considerably at NLO but is still
not very close to the Nijmegen PWA. N2LO improves further,
but the zero of the amplitude is still poorly described.

Overall, there is some improvement at N2LO but not much at
N3LO. This is perhaps an indication that a better description
of the pion-nucleon subamplitude with an explicit Delta isobar
is needed.

Note that subleading corrections have also been calculated
in references [108, 109] with a slightly different accounting of
higher orders. For example, TPE is taken to start three orders
higher than OPE, which is contrary to the power counting of
section 2 and difficult to conciliate with the power counting
used in ChPT. Still, results are generically not much different
from those described above. A third power-counting variant
has been proposed [32] with similar features. It has not been
tested in detail, perhaps because no clear prescription is given for
handling the LO cutoff dependence in a channel like 3P0 where a

counterterm is assigned relative O(Q1/2/M
1/2
QCD). Reference [67]

discusses these alternatives.
The main phenomenological shortcomings of the

renormalized approach are 3P1,
3P2 and singlet partial waves. For

most of these channels, subsequent work indicates OPE might be
perturbative. Equation (42) shows that OPE should be included
in 1P1 at NLO, in

1D2 at N
2LO, and so on. On the basis of NDA,

contact interactions with the minimal number of derivatives
are expected at respectively N2LO, N4LO, and so on. Under the
assumption that the angular-momentum suppression of TPE
is the same as OPE, reference [87] provided evidence that the
perturbative expansion converges for singlet waves up to k ≈ 300
MeV and N4LO without explicit Delta isobars. Reference [87]
goes further by showing that under NDA for the LECs also triplet
waves converge in the same range, except for 3P0 and possibly
3D3. For illustration, results for the

3P2-
3F2 coupled channels are

shown in Figure 7 [87], which should be compared to Figure 5

where OPE was treated non-perturbatively at LO. The maximum
momentum k ≈ 300 MeV seems tied to the absence of an
explicit Delta isobar [87] but no similar calculation is available in
Deltaful ChEFT. Earlier studies [110–112], which indicated that
pions are perturbative in high waves, sometimes included Deltas
but did not take into account the IR enhancement in iterated
pion exchange. Clearly a more comprehensive study of higher
orders with Deltas is needed to confront this renormalized
approach with phenomenology.

Frontiers in Physics | www.frontiersin.org 16 May 2020 | Volume 8 | Article 79

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

FIGURE 7 | Two-nucleon 3P2-
3F2 phase shifts (δ) and mixing angle (ε2) as functions of the center-of-mass momentum kc.m.. The NLO (blue), N2LO (green), N3LO

(orange), and N4LO (red) bands from a perturbative treatment of pion exchange correspond to cutoff variation from 0.8 to 4.8 GeV. N2LO results for 3→ ∞ are also

shown (triangles) (LO in a perturbative expansion vanishes for these channels.) The empirical phase shifts from the SAID program [88] (solid circles) are shown for

comparison. Reprinted figure with permission from reference [87]. Copyright (2019) by the American Physical Society.

The situation is particularly unsatisfactory in the 1S0 channel,
where LO—same as in Weinberg’s prescription at fixed pion
mass—is far off, just as in Pionless EFT [35]. In particular, the
Nijmegen PWA displays a zero at a relative low momentum
k0 ≃ 340 MeV, which is absent at LO. It is possible that the
inclusion of an explicit Delta isobar (separated in mass from
the nucleon by ∼300 MeV) improves the convergence in this
region, as a large part of the central potential moves from N3LO
to N2LO. However, the expansion will in any case converge
at best very slowly for k>∼ k0, as all subleading orders have to
conspire to cancel against LO. Since numerically k0 ∼ MNN ,
only for a fully perturbative-pion approach is this of no concern.
Note that also 3S1 and 3P0 have amplitude zeros at relatively
low energies, but in both cases they arise at LO from the
combination of non-perturbative OPE and contact interactions
need for renormalization.

The 1S0 channel is special also for the presence of an
unnaturally shallow virtual state that requires a fine-tuning of
the short-range interaction. It is the interference between the
non-derivative contact interaction and the Yukawa potential that
causes a violation of NDA in this channel. It also leads to the
piling up of higher-order counterterms seen in Table 3. Given
the uniqueness of this channel, it is perhaps not surprising that
power counting might require refinement. In reference [113]
it was shown that short-range interactions show strong energy
dependence. To ameliorate the expansion in 1S0, it was suggested
in references [62, 114] that the chirally symmetric two-derivative
interaction with LEC C2(0) should be promoted from NLO to
LO, following an earlier suggestions for Pionless EFT [115]
and ChEFT with purely perturbative pions [116]. To avoid the
Wigner bound, this is done through a dibaryon field [77] whose
kinetic term is taken to be LO together with its residual mass. This
promotion induces promotions at higher orders of the contact
interactions with more derivatives. Results of course improve at
LO and further at NLO, but not at N2LO, in particular near k0.
In reference [117] it was then proposed—similarly to an earlier
attempt [118]—that the zero be included at LO by a combination
of dibaryon field and contact interaction (or alternatively two
dibaryon fields, the kinetic term of one of which is higher order).
Again this induces the promotion of contact interactions with
more derivatives at higher orders. Phase shifts come out great

FIGURE 8 | Two-nucleon 1S0 phase shift δ as function of the laboratory

energy Tlab in an expansion that incorporates the amplitude zero at LO. The

LO (green) and NLO (blue) bands correspond to cutoff variation from 0.6 to 2

GeV. The results from the Nijm93 potential [119] (black squares) are shown for

comparison. Reprinted figure with permission from reference [117]. Copyright

(2018) by the American Physical Society.

at LO and essentially on the nose at NLO, even beyond k0 (see
Figure 8). Unfortunately these reorganizations of the expansion
produce energy-dependent potentials at LO, which complicate
few-body calculations.

A further proposed reorganization of ChEFT arises from
treating selected relativistic corrections, which are small for
the momenta of interest, as LO—see, for example, reference
[120]. A modified nucleon propagator ensures less dependence
on the regulator, but a 3P0 LEC still has to be promoted
compared to NDA, as in the purely non-relativistic context [20].
By resumming higher-order terms into LO whether they
are relativistic corrections or not, one can soften the large-
momentum behavior of loops and alter the cutoff dependence.
This is no different than picking a regulator, which effectively
includes an infinite number of higher-derivative interactions.
Results then depend on the corresponding cutoff parameter 3.
Renormalization exchanges this dependence for the minimal
number of parameters allowed without dynamical assumptions.

Frontiers in Physics | www.frontiersin.org 17 May 2020 | Volume 8 | Article 79

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

FIGURE 9 | Triton binding energy E3H and doublet neutron-deuteron scattering length 2and as functions of the cutoff 3. Results at LO (solid lines) and NLO (dashed

and dotted lines) for various 2N fitting procedures are compared with experiment (horizontal red lines). Reprinted figure with permission from reference [93]. Copyright

(2019) by the American Physical Society.

Achieving cutoff independence with a resummation of a
selected interaction merely replaces 3 by the mass parameter
characterizing this interaction, call itM′. IfM′≪MQCD is inferred
from data, this resummation is justified because the interaction
is not of higher order. However, when resumming relativistic
corrections M′ >∼mN : it corresponds to one fixed cutoff value
and convergence cannot be used to demote interactions that are
needed for renormalization without resummation. As long as no
LECs are promoted or demoted, a resummation of higher-order
corrections is safe. There is growing interest in the development
of a covariant version of ChEFT, which could perhaps be
used as input to relativistic formulations of nuclear physics
[121, 122].

4.3. More Nucleons
There is not much known about renormalized ChEFT beyond
2N. The power counting of section 2 shows that the 3N force is
expected to start at NLO from two-pion exchange when Delta
isobars are included explicitly, and at N2LO when they are
not. The crucial issue is whether shorter-range interactions are
enhanced as in the 2N system. Such an enhancement does take
place in Pionless EFT [81] and it has been suggested for ChEFT
on phenomenological grounds in reference [123].

In calculations for more than two nucleons in the
renormalized approach, one needs to truncate the LO 2N

potential for l<∼ l
(s)
cr , which is reminiscent of the truncation in

total 2N angular momentum typically invoked in solutions of
the Faddeev and Faddeev-Yakubovski equations for 3N and 4N
systems with phenomenological potentials. As we have seen

the optimal values for l
(0,1)
cr are uncertain and the l dependence

of M
(l,s)
NN is not fully determined. Of course, as in the 2N

system, subleading orders should be treated in distorted-wave
perturbation theory.

Existing calculations are limited to the 3N system and took

l
(0,1)
cr = 3. At LO [20, 93] and, without explicit Deltas, also
at NLO [93], observables converge as the cutoff increases to
at least 10 GeV without 3N forces (see Figure 9) [93]. The
triton binding energy is BLO3 ≃ 4 MeV and BNLO3 ≃ 6
MeV, quite different from results for a low cutoff in Weinberg’s
prescription, ≃ 11 MeV (≃ 6.5 MeV) at LO (N2LO) [106].
Results were shown not to change significantly when waves
beyond lcr = 3 were included. Conversely, if it turns out that

l
(0,1)
cr < 3, results might change quantitatively, but qualitative
statements should stand. In particular, one concludes there is no
renormalization justification in ChEFT to take the non-derivative
3N contact interaction as LO. Most likely the same conclusion
holds for higher-body forces, but no calculations have been
carried out.

The tendency for underbinding at LO seen in the deuteron and
triton seems to persist for symmetric nuclear matter. In a cutoff-
converged Brueckner pair approximation [124], nuclear matter
was found to saturate, but with significant underbinding. This
is in contrast to Weinberg’s prescription, where Deltaless [125]
or Deltaful [126] potentials of O(1) and O(Q2/M2

QCD) do not
yield saturation within the EFT domain. Yet higher potentials
do lead to saturation with this prescription [125–127]. Although
usually presented as a success, the emperor has no clothes: it
means that, if nuclear matter is within the regime of ChEFT,
interactions that are formally of higher order according to NDA
must actually be LO to balance against other LO interactions.
Presumably it is the extra repulsion from 3P0 in a renormalized
approach that saturates nuclear matter. It is not clear how
saturation in Chiral EFT would relate, if it can be related at all,
to the proposal of reference [128] where saturation arises from
the 3N parameter that appears at LO in Pionless EFT. What
is clear is, more EFT calculations beyond the 2N system are
sorely needed!
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5. CONCLUSION

The longstanding problem of renormalization of chiral nuclear
forces has been solved at the 2N and 3N levels. Perhaps not
surprising in hindsight, this solution is a middle ground between
Weinberg’s original prescription and Kaplan, Savage, and Wise’s
suggestion of fully perturbative pions. One-pion exchange is
iterated in lower waves together with the necessary contact
interactions, while all corrections are included in distorted-wave
perturbation theory.

That is not to say that the best solution has been found. Issues
remain regarding exactly how strong the angular-momentum
suppression is and where the non-perturbative/perturbative
boundary lies. Whether the ordering of few-body forces holds
similar surprises is also unknown. A high-quality fit to 2N data
is missing, and there are very few studies of heavier systems.
The extent to which Weinberg’s phenomenologically successful
prescription with a low cutoff can be reproduced remains an

open question, although the first step in grounding it on a
renormalized approach has been made [42]. Fortunately, there
is still plenty to learn.
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