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Ordinary differential equation (ODE) models are frequently applied to describe the

dynamics of signaling in living cells. In systems biology, ODE models are typically defined

by translating relevant biochemical interactions into rate equations. The advantage

of such mechanistic models is that each dynamic variable and model parameter

has its counterpart in the biological process which potentiates interpretations and

enables biologically relevant conclusions. A disadvantage for such mechanistic dynamic

models is, however, that they become very large with respect to the number of

dynamic variables and parameters if entire cellular pathways are described. Moreover,

analytical solutions of the ODEs are not available and the dynamics is nonlinear which

proves to be challenging for numerical approaches as well as for statistically valid

reasoning. Here, a complementary modeling approach based on curve fitting of a tailored

retarded transient function (RTF) is introduced which exhibits amazing capabilities in

approximating ODE solutions in case of transient dynamics as it is typically observed

for cellular signaling pathways. A benefit of the suggested RTF is the feasibility of

self-explanatory interpretations of the parameters as response time, as amplitudes,

and time constants of a transient and a sustained part of the response. In order to

demonstrate the performance of this approach in realistic systems biology settings, nine

benchmark problems for cellular signaling have been analyzed. The presented approach

can serve as an alternative modeling approach of individual time courses for large

systems in the case of few observables. Moreover, it not only facilitates the interpretation

of the model response of traditional ODE models, but also offers a data-driven strategy

for predicting the approximate dynamic responses by an explicit function that, in

addition, facilitates subsequent analytical calculations. Thus, it constitutes a promising

complementary mathematical modeling strategy for situations where classical ODE

modeling is cumbersome or even infeasible.
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1. INTRODUCTION

Mathematical modeling is applied in many scientific fields in
order to characterize and understand the behavior of dynamical
systems. In systems biology, a major aim is the establishment of
such models for describing and predicting the behavior of certain
processes at the cellular level in living systems. An important
area of research is the investigation of cellular signaling pathways
because they control the response of cells to external signals and
regulate cell division, migration and cell death. Consequently, a
dysfunction of these cellular signaling pathways is a major reason
for many diseases.

The traditional approach for deriving mathematical models
is based on translation of known biochemical interactions by
applying rate laws like the law of mass action in its dynamic
form [1]. This leads to ordinary differential equation (ODE)
models which are termed mechanistic since each dynamic
variable and parameter has its counterpart in the described
process. Typically, dynamic variables represent concentrations
of biochemical compounds, parameters are used for unknown
initial conditions and for rate constants.

Mechanistic models facilitate explicit interpretations,
e.g., unknown regulators or interactions can be postulated.
Another advantage of mechanistic models is the ability to
comprehensively translate existing knowledge about molecular
interactions. On the downside, all relevant processes have to
be included in order to obtain a realistic and unbiased model
which is an elaborate task. Since each cell type features a distinct
protein expression pattern which might be regulated in a growth-
and environment-specific manner, the set of relevant molecular
interactions is typically unknown. Therefore, proper model
structures have to be deduced from experimental data and a large
number of parameters have to be estimated. To this end, in order
to establish an ODE model a rather large and comprehensive
amount of experimental data is a critical prerequisite, even if
the major focus of a study is on a few compounds or merely an
input-output relationship.

Another disadvantage of ODE models is the fact that
they cannot be integrated analytically and that their solutions
depend non-linearly on parameters. As this impedes analytical
mathematical calculations, sophisticated numerical tools become
necessary for their analyses. Up to now, the typical model size in
the case of data-based modeling is in the range of 10–40 dynamic
compounds and 10–50 dynamic parameters [2]. The currently
available methodology might be able to handle models with up
to around 102–103 parameters or model states. However, the
availability of single-cell data as well as the attempt to establish
whole cell, tissue, organ, or even whole body models demands
for complementary modeling techniques that can be applied for
large systems and are capable of integrating different temporal
and spatial scales.

In the scientific literature, several approaches for function
estimation can be found. On the one hand, there are
nonparameteric regression methods that do not rely on the
specification of a model structure, for instance smoothing
approaches [3] like smoothing splines [4], Gaussian processes
regression [5], kernel regression [6] or locally weighted scatterplot

smoothing [7]. On the other hand, there are parametric
regression approaches that require the specification of a model.
Prominent examples are polynomial regression [8], all non-linear
regression techniques [9], and regression based on fractional
polynomials [10].

In systems biology, some approaches have been suggested
that can be applied instead of ODE models in order to describe
and investigate the dynamics of biochemical interactions or
as approximations of ODE models. Gaussian processes have
been proposed, e.g., for learning unknown differential functions
[11] or for inference of latent biochemical species [12]. In
addition, Booleanmodels and representations of cellular signaling
networks have been introduced [13, 14]. Such Boolean models
can be transformed into continuous ODEs and thereby serve
as approximations [15]. In Liu et al. [16], an approximation of
ODEs by dynamic Bayesian networks (DBNs) has been suggested
that enables parallelized simulations on graphical processing
units (GPUs). Moreover, fuzzy logic models were suggested
for modeling of the dynamic response of cellular signaling
pathways [17].

In this manuscript, a novel modeling approach is presented
that is based on curve fitting of a non-linear explicit function
in order to describe the dynamics of biochemical networks. For
transient responses as typically observed for cellular signaling
pathways, it will be demonstrated that the approximation error,
i.e., the difference between the suggested function and an ODE-
basedmodel, is much smaller than commonmeasurement errors.
The described function can be readily applied to integrate the
approximate behavior of ODE systems into multi-scale models.
It also offers a possibility to fit input output behavior of a system
of interest in a less elaborate manner by a phenomenological,
non-mechanistic mathematical description.

2. METHODOLOGY

In section 2.1 of this chapter, the traditional ODE-based
modeling approach is briefly summarized. Then, a transient
function (TF) is introduced in section 2.2 which can be applied
to describe immediate responses. In order to describe delayed
responses as commonly observed for signal transduction models,
the retarded transient function (RTF) is introduced in section
2.3 For simplicity, hereinafter, I will not distinguish between
mathematical symbols representing scalars or vectors.

2.1. Traditional ODE Modeling
The dynamics ẋ(t) of concentrations x ∈ R

nx of molecular
compounds can be modeled using ordinary differential equations

ẋ(t) = d(x(t), u, θd) . (1)

which can be derived from known or hypothesized biochemical
interactions based on the rate equation approach [1]. Unknown
initial values θx : = x(0) ∈ R

nx and rate constants θd ∈
R
nθd are termed as dynamic parameters. u denote externally

controlled inputs [18] such as the stimulation with a ligand or
knockdowns andmight either be represented by a scalar or a time
dependent function on the right hand side of (1). For all realistic
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systems biology applications, the ODEs (1) cannot be integrated
analytically. Therefore, there exists only a numerical solution

x(t) = D(t, u, θD) (2)

that can be calculated by generic solvers for initial value
problems, for instance from the SUite of Nonlinear and
DIfferential/Algebraic equation Solvers (SUNDIALS) [19]. θD ∈
R
nx+nθd aggregates all dynamic parameters, i.e., unknown rate

constants θd and initial values θx.
Since the concentrations x(t) of molecular compounds usually

cannot be measured directly, observation functions Oi(x(ti), θO)
containing additional observation parameters θO ∈ R

nθO such as
offsets or scaling factors have to be introduced in order to link
data points

yi = Oi(x(ti, ui, θD), θO)+ εi. (3)

to dynamic states. In this notation, i = 1, . . . ,Ndata is the
index of the data point yi and each data point has its respective
observation function Oi, measurement time ti, input functions
ui and measurement error εi. If the system is evaluated for
several distinct inputs or initial conditions, the ODEs have to be
integrated for each combination individually. Hereinafter, these
combinations are referred to as conditions.

2.2. The Immediate Response Function
After stimulation, typical non-oscillating response curves consist
of two major components: a sustained, i.e., saturating permanent
contribution, and a temporary fraction. Such immediate
responses can be mathematically described by the sum

fTF(t) = Asus

(

1− e
− t

τ1

)

︸ ︷︷ ︸

fsus(t)

+Atrans

(

1− e
− t

τ ′1

)

e
− t

τ2

︸ ︷︷ ︸

ftrans(t)

+ p0 (4)

of a sustained term fsus(t) with a time constant τ1 and a transient
term ftrans(t) with two time constants τ ′1 and τ2. Moreover, an
offset parameter p0 is used. The transient function fTF described
by (4) has six independent parameters

θf : = {Asus,Atrans, τ1, τ
′
1, τ2, p0} . (5)

The parameters τ1, τ ′1 have common meanings in terms of time
constants, e.g., if the system is stimulated at t = 0, the system has
reached half of the maximal sustained response at t = τ1.

The second term ftrans(t) accounts for transient, i.e., decaying
up- or down-regulation with amplitude Atrans. The transient
response relaxes with a second time scale τ2 toward zero. The last
term, i.e., parameter p0 represents a constant offset. While both
amplitudes Asus,Atrans and the offset p0 can have a negative sign,
the times scales are strictly positive, i.e., τ1, τ ′1, τ2 ∈ R>0.

Figure 1A illustrates (4) as well as the decomposition into
sustained and transient parts. Function fTF describes immediate
responses at time-point zero and can be applied if an immediate
response after stimulation at t = 0 is supposed.

2.3. The Retarded Transient Dynamics
Depending on the application setting, the transient dynamics of
the modeled compounds do not immediately set in at t = 0
but with some delay. I therefore suggest to account for this by
applying a non-linear transformation

t(treal) = log10(10
treal + 10Tshift )− log10(1+ 10Tshift ) (6)

of the real measurement time-axis treal with a single parameter
Tshift. This transformation is of the following qualitative form:

t(treal) = logb(b
treal + bTshift )− logb(1+ bTshift ) (7)

= logb(b
treal + c1)+ logb(c2) (8)

= logb(c2treal + c1c2) (9)

where b denotes the basis of the logarithm. In addition, the two
constants c1 : = bTshift and c2 : = (1+ bTshift )−1 are introduced.

Rewriting the transformation (6) as (7)-(9) shows that
the suggested transformation basically corresponds to a linear
transformation of the time axis at the log-scale. As logarithm
base, b = 10 in (6) is chosen. The transformation (6) is
illustrated in Figure 1B and shows that the time shift Tshift in the
suggested parametrization determines the location of the kink.
This position of the kink is the time point for the real time
axis treal, where the response time becomes linear, i.e., where the
immediate response (4) kicks in. Thus, it can be interpreted as the
response time.

The curvature of the kink in the transformation (6) is depend
on treal and therefore, the transformation is not invariant with
respect to unit transformation

treal 7→ const.× treal (10)

of the time axis. Thus, (6) is modified by rescaling with the
observed time interval trange = max(treal)−min(treal) to the time
interval [0,10], as depicted in Figure 1B. The transformation of
the time axis, then finally reads

t(treal) = log10(10
treal×10/trange+10Tshift )−log10(1+10Tshift ). (11)

Plugging the non-linear time transformation (11) into
the immediate response function (4) yields the retarded
transient function

fRTF(treal, θRTF) = Asus

(

1− e
− t(treal ,Tshift)

τ1

)

+Atrans

(

1− e
− t(treal ,Tshift)

τ ′1

)

e
− t(treal ,Tshift)

τ2 + p0 (12)

with θRTF : = {Asus,Atrans, τ1, τ ′1, τ2, p0,Tshift} which will be
applied in the following to approximate solutions of ODEs
which in the systems biology setting often have transient
temporal shapes.

Figure 1C illustrates how the shape of f (treal, θRTF) depends
on the response time parameter Tshift: the larger the response
time parameter Tshift, the later the response. The colors coincide
with Figure 1B. Finally, Figure 1D illustrates the transient and
sustained parts of the response for Tshift = 2.
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FIGURE 1 | (A) Illustrates decomposition of the response function (4) into sustained fsus and transient ftrans parts. (B) Illustrates the transformation of the time axis

which is introduced to retard the response curve. The impact on the response function is depicted in (C). Decomposition of the retarded response function

f (treal) = fsus(treal)+ ftrans(treal) is shown in (D) for Tshift = 2.

2.4. Fitting to ODE Solutions
In systems biology, ODE modeling is currently the state-of-
the-art approach for the mathematical modeling of regulatory
networks. The RTF approach (11), (12) can complement the
ODE approach in two ways: first, by applying the RTF approach
to already existing ODE models in order to provide an
approximating mathematical representation which is easy to
handle computationally, for instance for integration into a multi-
scale model. Second, the RTF can be used instead of an ODE-
based model. For both purposes, it is important to assess the
abilities of the RTF for approximating ODE solutions.

The abilities of the RTF (11), (12) for approximating the
dynamics of ODE models are evaluated by fitting the function
to a component xj of the ODE solutions. For this task, least-
squares estimation

θ̂(xj) = argmin
θRTF

∑

i

(

fRTF(ti, θRTF)− xj(ti)
)2

(13)

was performed. Moreover, the root-mean-square error

RMSE(xj) =

√
√
√
√

1

n

n
∑

i

(

xj(ti)− fRTF(ti, θ̂)
)2

(14)

is calculated. Finally, the scaled RMSE

Approx. err: = RMSE

maxi(xj(ti))−min(xj(ti))
(15)

is interpreted as an approximation error.

2.5. Fitting to Data
For experimental data, the parameters of the transient
function fi ≡ fRFT(ti, θRTF) or of an ODE-based model
fi ≡ Oi(x(ti, ui, θD), θO) are estimated by maximum likelihood
estimation. For data

yi = fi + εi , εi ∼ N(0, σ 2
i ) (16)

with independently distributed Gaussian errors with variances
σ 2
i , the likelihood is given by

L(θ) = ρ(y|θ) =
∏

i

ρ(yi|θ)

=
∏

i

1√
2πσi

exp

(

− (yi − f (ti, θ))
2

2σ 2
i

)

. (17)
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Then, the negative log-likelihood is

− 2 log(L(θ)) = −2
∑

i

log

(
1√
2πσi

)

+
∑

i

(
yi − f (ti, θ)

σi

)2

.

(18)
As a result, maximum likelihood estimation

θ̂ = argmax
θ

L(θ) (19)

coincides with least-squares

θ̂ = argmin
θ

χ2(θ) (20)

where the least-squares objective function

χ2(θ) : =
∑

i

(
yi − f (ti, θ)

σi

)2

= −2 log L(y|θ)+ const. (21)

is minimized for parameter estimation.

2.6. Reducing Overfitting
If a small number of data points is available, it is essential
to prevent overfitting. Overfitting is excessive adaptation of
the model and its parameters to measurement errors [20]. In
the following, three strategies for diminishing the overfitting
problem are suggested.

2.6.1. Parameter Constraints
To prevent overfitting which is recommended if a limited amount
of data is available, the same time constant τ1 ≡ τ ′1 for induction
of the transient response and for the sustained response can
be assumed. We used the resulting five-parameter transient
function TF in Lucarelli et al. [21] previously for analyzing
the transcription of TGFβ target genes. In that application, the
analyses were performed for pairs of time-courses for treated and
untreated cells and the resulting time dependencies were used for
clustering of genes.

Moreover, it is possible to specify bounds for the parameters
as a restriction to reasonable ranges. These bounds should be
independent of physical units, i.e., they should be invariant
under scaling of the data or sampling times. Technically,
bounds are also required for making reasonable initial guesses
for the numerical optimization of equation (21). Moreover,
setting parameter bounds strongly improves the convergence
behavior in the course of numerical non-linear least squares
optimization [22].

Assuming that the sampling times treal 1, . . . , trealN of the data
points used for fitting were reasonably chosen, the minimal
sampling interval mini(treal i+1 − treal i) can be utilized to define
a lower bound for the time scales. In addition, the amplitudes
can be restricted based on the range (max(y) − min(y)) of the
data points y = {y1, . . . , yN}. Likewise, the data offset can be
constrained by the minimal and maximal data point.

Table 1 summarizes my suggestions for the setting of
parameter bounds. These recommendations were derived by
manual inspection of the fitted function for experimental data.

If overfitting is a minor issue, these bounds can be relaxed,
e.g., if existing ODE models are approximated and these bounds
turn out to be too stringent.

2.6.2. Model Reduction
The second strategy for diminishing overfitting is reduction of
the number of fitted parameters in an automatic data-driven
manner. This means that the complexity of the model is reduced
because the available data can be sufficiently described with a
simplified model. Such a data-driven simplification of the model
equations has been termedmodel reduction [23].

For model reduction of the RTF and, in turn, decreasing
overfitting issues, the likelihood ratio test is utilized. The
likelihood ratio test is a well-established statistical test for
assessing whether additional parameters yield a significant
improvement [24]. The likelihood ratio test is interpreted in a
reverse manner as it is commonly done in backward elimination
procedures [25]. As test statistic, the log-likelihood ratio of two
models is evaluated which in my notation corresponds to

LLR = χ2
(1)(θ̂)− χ2

(2)(θ̂) (22)

where χ2
(1) denotes the least-squares objective function of the

reduced model and χ2
(2) denotes the objective function of the

full model.
Here, the following backward elimination procedure is

suggested:

1. Testing whether there is time retardation, i.e., if Tshift

parameter is significantly different from the lower bound. If
not significant, Tshift is set to the lower bound which is Tshift =
−2 by default.

2. Testing whether the model is in agreement with a constant. If
not significant, we set Tshift = τ1 = τ2 = Asus = Atrans = 0.

3. Testing whether the offset p0 is significantly different from
zero. If not significant, we set p0 = 0.

Application-specific prior knowledge can be utilized on top of
this. As an example, if the data is pre-processed and the minimal
value is subtracted, the offset parameter p0 might be omitted in
advance. If the responses are, furthermore, known to be strictly
positive, the lower bounds of the amplitudes Atrans and Asus can
then be set to zero.

2.6.3. Enhancing and Attenuating Responses
The RTF according to (12) allows amplitudes Asus and Atrans

with positive or negative signs. In many application settings,
however, it might be a reasonable assumption, that the sustained
and transient part of the response have the same direction, i.e., are
both either enhancing, or both attenuating. This presumption
also reduces the amount of overfitting and often yields much
more realistic outcomes. It can be achieved by restricting both
amplitudes to positive numbers and introducing a sign-constant.
If such a model is fitted, two optimization runs are required for
both signs and the better fit is selected.
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TABLE 1 | Suggested default values and parameter bounds.

Parameter Description Lower bound (lb) Upper bound (ub) Default initial guess

τ1 Time constant of the sustained response mini (t
′
i+1-t

′
i )/2 2(t′max-t

′
min) 0.5 lb+ 0.5 ub

τ ′
1 Time constant of the transient response τ1 τ1 τ1

τ2 Time constant of the transient decay mini (t
′
i+1-t

′
i )/2 2(t′max-t

′
min) 0.5 lb+ 0.5 ub

Asus Amplitude of the sustained response -2(max(y)-min(y)) 2(max(y)-min(y)) 0.1lb+ 0.9ub

Atrans Amplitude transient response -2(max(y)-min(y)) 2(max(y)-min(y)) 0.1 lb+ 0.9 ub

p0 Data offset min(y) max(y) 0.5 lb+ 0.5ub

Tshift Response time -(max(t′)-min(t′))/5 (max(t′)-min(t′))/2 -(max(t′)-min(t′))/10

Since the sustained and the transient part of the response are usually triggered together, τ1 ≡ τ ′1 is assumed by default. The times t
′ = 10 treal/trange denote the rescaled experimental

measurement times to the interval [0, 10].

2.7. Implementation
The RTF approach can be implemented in any modeling or
curve fitting software based on equations (11) and (12). An
implementation of the presented RTF approach is provided
within the Data2Dynamics (D2D) modeling environment
[26] which is freely available. In order to guide custom
implementations, some important technical aspects of my
implementation are discussed in the following.

Since the transient function is non-linear, −2 log L(θ) is
not convex and local optima can occur. Therefore, multi-start
optimization [27] is suggested and has been performed to find
the global optimum, i.e., the best possible fit. For fitting the six
parameters of the RTF, ten random initial guesses were drawn
which turned out as sufficient for finding the global optimum
based on visual inspection of the outcomes.

In order to fit responses with positive and negative
signs, two subsequent fits are required. Moreover, model
reduction as described in section 2.6.2 might be desired. For
multi-start optimization, both tasks have to be performed
for each initial guess. In D2D, this functionality has been
implemented in arFitTransient.m. If D2D’s standard
multi-start optimization function is intended to be utilized,
the standard function in Advanced/arFits.m has to be
replaced by TransientFunction_library/arFits.m
by modifying Matlab’s search path properly.

Further implementation details and examples for applying the
RTF approach are provided at the website of the D2D github
repository https://github.com/Data2Dynamics/d2d/wiki/RTF.

3. RESULTS

In this chapter, in section 3.1 it is first demonstrated that the
retarded transient function (RTF) can accurately describe the
dynamics of ODE models as they commonly occur in systems
biology. Specifically, two aspects will be addressed. First the
abilities for accurate approximations are investigated and proven
which is a prerequisite for applying the RTF as mathematical
modeling approach directly to data. Second, it will be
demonstrated that established ODEmodels can be approximated
if required, e.g., as components of a multi-scale model, which
might require explicit functions for technical reasons.

In section 3.2, the RTF approach is then evaluated and
compared with ODE models for predicting the dynamics from
measurements. For this purpose, simulated data is generated and
the accuracy of the estimated time courses is assessed by the
comparison to the known dynamics (“ground truth”).

3.1. Approximation of ODE Models
The dynamics of biochemical interactions can be translated into
ODE models in order to describe the time-dependency of the
concentrations of molecular compounds. In this publication, the
accuracy of the RTF approach for modeling of such time courses
is assessed based on a subset of nine benchmark models [2] that
do not comprise discontinuities, i.e., so-called events [28]. The
ODEs published in the original papers are application specific
special cases of (1).

1. The Bachmann model [29] describes the JAK2/STAT5
signaling pathway in murine blood forming cells. The model
comprises 25 biochemical species representing EPO receptors
states, STAT5 activation and translocation to the nucleus, as
well as activation of SOCS and CIS proteins that act as negative
feedback regulators. In total, these compounds were evaluated
in 23 experimental conditions. In addition, the ODE model
has 29 dynamic parameters.

2. The Becker model [30] describes the binding of EPO to EPO
receptors as well as receptor turnover and degradation in a
murine proB cell line and has ten dynamic parameters. The
model comprises ODEs for different configurations of EPO
and EPO receptors. The ODEmodel describes a binding assay
with six EPO doses and the dynamics of eight compounds for
one default EPO dose.

3. The Boehm model [31] has been published for the evaluation
of homo- and hetero-dimerization of the transcription
factor isoforms STAT5A and STAT5B. The model has seven
dynamic parameters and describes nine compounds for one
ligand concentration.

4. The Bruno model [32] has been used for investigation of
the activity of Arabidopsis carotenoid cleavage dioxygenase
4. It describes carotenoid biosynthesis and the formation
of carotenoid-derived signaling molecules. The model
comprises 13 dynamic parameters and contains seven
dynamic compounds which are evaluated for six different
experimental conditions.
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5. The Crauste model [33] describes CD8 T cell differentiation
after a viral infection. The model describes several
differentiation stages (naive, early effector, late effector
and memory cells). The model contains twelve dynamic
parameters for the description of five dynamic compounds in
one experimental condition.

6. The Fiedler model [34] describes Raf/MEK/ERK signaling in
synchronized HeLa cells upon stimulation with two MEK
and ERK inhibitors (Sorafenib and U0126). The model has
15 dynamic parameters for the dynamics of six biochemical
species evaluated in three different experimental conditions.

7. The Raia model [35] describes the interleukin-13 induced
activation of JAK/STAT signaling in B-cells and lymphoma
cell lines. The pathway consists of interleukin receptors, JAK2
and STAT5 as signaling mediators as well as of two feedback
regulators (SOCS3 and CD274) that are described at the
mRNA and protein levels. The model comprises 18 dynamic
parameters and incorporates 16 biochemical compounds in
four different experimental conditions.

8. The Schwen model [36] is a dynamic model for insulin binding
to receptors in mouse hepatocytes. This ODE model has 13
dynamic parameters and describes eleven dynamic variables
in seven experimental conditions.

9. Finally, the Swameye model [37] has been published to
demonstrate shuttling of STAT5 from the nucleus back to
the cytoplasm. This model has ten dynamic parameters and
contains twelve dynamic variables in a single experimental
condition. It describes the activation and dimerization of
STAT5 upon EPO treatment as well as the translocation of
dimers between cytosol and nucleus.

The retarded transient function (RTF) was fitted to the dynamics
of the ODE solutions of all these models resulting in 797 fits in
total. In addition to a single fit using the initial guess specified
in Table 1, multi-start optimization with ten random initial
guesses was performed for approximation errors larger than 5%.
Figure 2 shows representative examples in panel (A) as well
as worst case scenarios (B) and the overall distribution of the
approximation error.

In 83.8% of all evaluated cases, the approximation error,
i.e., the normalized RMSE (15) between RTF and x(t) is
smaller than 5%. In 58.3% of cases the approximation error
is even smaller than 2% and the difference between the RTF
approximation and the ODE solution is hardly visible.

In order to assess the quality of the RTF approximation,
it should be kept in mind, that accuracy and reproducibility
of experimental data is a major limitation and characteristic
of cell biology. This is due to the fact that living cells with
individual and unique histories and attributes are investigated.
Depending on the cell system, the experimental conditions
and the measurement technique, relative errors of 10–
20% are common [38]. Moreover, in many applications
a minimum concentration change by a factor of 1.5
is requested as a minimum effect size with biological
relevance. In light of these aspects, the RTF approach
exhibits a convincing performance for describing the major
shape characteristics.

All 797 fits are available as Supplementary File 1 to
demonstrate the abilities of the RTF approach for the
approximation of the typical dynamics of cellular signaling
models. Since a few cases where optimization of the RTF
parameter did not converged to the global optimum are
suspected, the agreement could even be improved by increasing
the number of random initial guesses. Moreover, the bounds
specified in Table 1 could be relaxed in order to further improve
the agreement between ODEs and RTF. However, since this
analysis is used as a foundation for the analysis of experimental
data, the same bounds as in the next section were chosen at
this point.

In some few cases, the RTF approach has limited performance,
e.g., for time courses with multiple response peaks. Panel (B)
shows five worst case scenarios resulting in approximation
errors between 9% and 11%. For the second plot, “Bachmann
EpoRpJAK2 Conditon1,” the ODE solution has two distinct
response peaks, but the fitted RTF can only describes the first
peak. The ODE model shown in the third plot of panel (B),
“Crauste EarlyEffector Condition1,” is initially zero and then
shows a rather quick and strong peak around t = 10 min. This
peak is again only roughly approximated by the RTF with an
overall approximation error of around 10%.

The forth and fifth plots in panel (B), “Swameye npSTAT
Condition1” and “Swameye pSTATCondition1,” exhibit a second
delayed response which cannot be captured by the RTF. For
pSTAT activation “Swameye pSTAT5 Condition1,” the RTF
approach fails to describe an initial fast and short activation. This
result could be improved by using additional prior knowledge,
i.e., by utilizing the fact that prior to stimulation, pSTAT is
known to be zero and only positive response amplitudes Asus

and Atrans are biologically reasonable. All trajectories of the
Swameye model contain a second, more or less pronounced
response which originates from the shuttling of STAT5 through
the nucleus and cannot be closely approximated by the RTF
approach. In the original publication [37], this shuttling process
has been described by a delay differential equation (DDE), i.e., a
model which is not within the primary scope of this paper.
Later, the delay was approximated in Schelker et al. [18] by an
ODE model utilizing the so-called linear chain trick [39]. This
model version was published in Hass et al. [2] as a benchmark
model and therefore analyzed in this manuscript. Taking these
circumstances into account, it is not surprising that the RTF
exhibits limited capabilities. On the other hand, this model nicely
exposes some limitations of the RTF approach.

3.2. Fitting of Data
In the previous section, it has been demonstrated that in most
cases the presented RTF approach can accurately approximate
the dynamics of pathway models based on ODEs. In the
current section, the capabilities for the fitting of data is
evaluated. Compared to traditional data-based ODE modeling,
this approach is a complementary and convenient modeling
strategy especially for cases where either too little data is available
for building a comprehensive network model, or in situations
where only a single or a few outputs are of interest.
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FIGURE 2 | The dynamics of 797 numerical ODE solutions x(t) from the nine different benchmark models were fitted by the RTF in order to assess and illustrate the

capacity of the RTF (11), (12) for approximating ODE solutions (black lines). The underlying equations of the ODE models originate from the original publications and

were taken from the benchmark collection [2]. The fitting has been performed based on (13), (18)–(21). The histogram in the center shows the distribution of the

resulting approximation errors (15). These errors are also plotted as gray bands and their magnitudes are indicated in the figure legends. In more than half of all fits, the

difference between both approaches is hardly visible. For the other cases, the RTF most of the time describes the dynamics qualitatively. (A) Shows typical scenarios

for approximating ODE solutions by the RTF. Limitations of the approach are pointed out in (B). Here, five representative fits with large approximation errors are plotted.

In systems biology, the availability of experimental
data is usually strongly limited because analysis of living
cells is elaborate and expensive. Time course data, as
an example, rarely comprise more than ten time points.
However, the dynamics is usually evaluated for several
“conditions,” e.g., for multiple stimulation strengths and/or
different genetic backgrounds. These experimental conditions
correspond to distinct initial conditions or parameters in the
ODE model.

The Bachmann model, as an example, contains 23
experimental conditions. These conditions represent different
combinations of 14 doses of ligand treatment, with/without
Actinomycin co-treatment of wild type cells or cells where CIS
or SOCS3 is over-expressed. In order to evaluate the abilities of
the RTF approach on a wide variety of possible dynamic shapes,
all combinations of these conditions were evaluated, i.e., all 14
EPO doses for all eight wild-type/over-expression settings.

For each of the resulting 112 conditions, a single time course
data set was simulated with 10 equidistant different time points
between 0 and 100 min for one out of all 25 dynamic variables
x. In total, this results in 2,800 simulated data sets which
are individually fitted using the ODE model and the RTF. As
measurement error, a typical relative error of 10% was assumed.
If 10% was below 1e-5, the standard deviation was set to 1e-5.

For fitting the ODEmodel, the true parameter values that were
used for simulation were also taken as initial guess. Moreover, a
local multi-start optimization with ten different starting points
around the true parameters was applied. For this purpose, each
parameter vector was randomly perturbed by adding uniform
numbers from the range [−1, 1] at the log10-scale.

Figure 3 shows typical outcomes for the ODE model and the
RTF approach in panel (A). RMSEs (14) between the fitted time
course and the time course for the true underlying ODE model
were calculated for both approaches for the fine time grid with
300 time points which was also used for plotting the solid lines.
In order to obtain comparable numbers for all fits, the RMSEs
were divided by the mean measurement error

σ̄ = 1

10

10
∑

i=1

σi (23)

over ten simulated data points.
Histograms and boxplots of the scaled RMSEs are displayed

in panel (B) and (C). The ODE model, which has been used
to generate the data, shows a slightly superior performance,
i.e., smaller RMSEs. The median of the scaled RMSE is 0.465 for
the ODE model and 0.608 for the RTF. If constant time courses
with RMSEs close to zero are omitted, the median is 0.662 for
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FIGURE 3 | (A) Shows six typical outcomes for fitted RTF models (blue lines) (11), (12) and ODE models (brown lines) in order to compare the outcomes of both

modeling approaches for fitting of data. Fitting has been performed based on (13), (18)–(21). The black lines represent the solutions of the ODE equation models

which are taken from Hass et al. [2] for published parameter values and presumed as true dynamics for the simulation of the data. In most cases, both approaches

provide estimated curves which are close to the true dynamics and the performances coincide. Moreover, there are some examples, where either one or both

approaches provide biased outcomes. (B) Shows the resulting RMSEs (14) as histograms. All values above 10 are plotted in the rightmost bin. On average, the ODE

approach results in smaller RMSEs but the RTF is only slightly inferior. This qualitative outcome is confirmed by the boxplot shown in (C). It shows that the differences

between the individual fits are much larger than the average performance loss of the RTF.

the ODE model and 0.926 for the RTF approach. In both cases,
the median performance benefit of the ODE model is by a factor
of 20–40 smaller than the differences between individual data
sets/time courses because the standard deviation of the RMSEs
over all fits is 5.26 for the ODE model and 5.44 for the RTF.

For the same analysis, Figure 4 shows the scaled RMSE as
a scatterplot. The RMSEs of both approaches are correlated.
All points above the diagonal have larger RMSEs for the RTF
approach. For all points below the diagonal, the RTF approach
outperforms the ODE model. Figures 4A–J illustrate extreme
cases, i.e., scenarios where both approaches have small or
large RMSEs, or fits where one approach strongly outperforms
the other. This illustration, again, confirms that the average
difference in performance is much smaller than the difference
between individual fits.

Supplementary File 2 provides the results for all 2,800 fits
of the RTF without the true dynamics and without the fitted
DE model. This file can be inspected in order to obtain an
unbiased impression about the fitted dynamics of the RTF
approach. According to the subjective appraisal of the author,
the results are very close to solutions which would be guessed
by an experienced user. In Supplementary File 3, the same fits
are plotted together with the true and fitted ODE solutions which

illustrates the underlying dynamics as well as the results of both
modeling approaches.

Nevertheless, on average the ODE model proves to be
advantageous due to the knowledge and utilization of the
model structure which has been used to generate the data. This
benefit, however, is a factor of 20–40 smaller than the difference
between individual fits and might therefore be acceptable in
practice. Moreover, in real application settings the advantage
of the ODE model is even smaller because in this case the
underlying regulatory network is unknown and is also an
imperfect approximation of the real biological process. Based on
these findings, the RTF approach seems to be a very promising
complementary mathematical modeling strategy for settings
where comprehensive data, which is required for establishing a
comprehensive pathway model, is not or not yet available.

4. DISCUSSION AND SUMMARY

Mechanistic ordinary differential equation (ODE) models are
the state-of-the-art approach for modeling cellular processes
because models can be defined by translating interactions
between cellular compounds. The Biomodels database [40, 41],
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FIGURE 4 | Comparison of both, the fitted RTFs (11), (12) and the fitted ODEs from Bachmann et al. [29] to simulated data with published parameter values. Again,

fitting has been performed based on (13), (18)–(21). The scatterplot in the middle shows RMSEs (14) between fitted and true dynamics (black lines) for both modeling

approaches. For all points above the diagonal, the ODE model outperforms the RTF. However, there are also several examples where the RTF result in smaller RMSEs.

Ten fits for extreme scenarios are plotted in (A–J).

TABLE 2 | Comparison of major characteristics of RTF- and ODE-based modeling.

ODE-based modeling RTF-based modeling

Applicability Expert knowledge required in mathematics, numerics and

statistics

Knowledge about curve fitting required

Analytical calculations Not feasible Feasible

Computational efforts Dependent on the complexity of the model, typically high Low and independent of the complexity of the studied system

Number of parameters Dependent on the complexity of the studied system, typically

10–1,000

7 per time course

Required data Measurement of multiple compounds Single time courses

Feasible interpretations Mechanistic, including rate constants of individual

biochemical processes

Response amplitudes, time-scales and retardation

Feasible predictions Unobserved time points, compounds and stimuli Unobserved time points

Prediction uncertainties Typically large and strongly dependent on the information

provided by the data

Small since only predictions of measured compounds are feasible

Transfer to other applications Complicated Simple
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FIGURE 5 | Summary of the presented approach. As a first step, the retarded transient function (RTF) can be applied to approximate ODE solutions (A) or can be

fitted to data directly (B). My implementation can generate Matlab code with the fitted parameters (“Step 2”). Then, these function can be called conveniently to

evaluate the dynamics of a specific compound in a specific experimental condition (“Step 3”). Moreover, the explicit form of a fitted RTF enables an easy transfer to

other applications and modeling frameworks.

for instance, currently contains 762 ODE models, i.e., more than
83% of the models which are assigned to amodeling approach are
classified as an ODE model. Since for such models each model
component has its counterpart in the real biological process, this
approach provides strong abilities for interpretations and also for
predictions of the system’s behavior.

In the presented study, the ODE model has been assumed
as the truth, e.g., data has been generated based on published
ordinary differential equation models. Hence, ODE modeling
has been considered as gold-standard and the fitted outcomes
of the ODE models have to outperform alternative modeling
approaches since all available knowledge, i.e., model structure
and data is entirely exploited.

One drawback of ODE-based models is the need for rather
large and comprehensive amounts of experimental data for
calibration of the unknown model parameters. This is true even
if only a few, specific components are of interest, for example
the input-output behavior of a signaling pathway. Moreover,
elaborate model discrimination procedures are required in order
to find a proper model structure. In addition, the models typically
increase in size because all relevant states, compounds and
interactions have to be considered.Model reduction [23, 42, 43] is
a non-trivial task and since usually all dynamic states are coupled,
reduced representations describe the dynamic behavior only in
an approximate manner.

Some alternative modeling approaches have been suggested
as a replacement for ODE models, e.g., if the system is

too large, if only a specific input-output behavior is of
interest, or if the amount of available data is too small.
However, all these approaches have serious limitations.
Logical models, as an example, describe the input-output
behaviors only in a discrete manner. Constraint-based
models neither provide unique predictions nor statistical
confidence intervals. Traditional functional estimation
methods, like smoothing splines or polynomials are not
tailored to the shape of typical temporal responses. Such
approaches require densely sampled time-courses in order
to provide realistic curves. Moreover, tuning parameters
that control the amount of smoothing are difficult to
choose. Therefore, these approaches are not yet available
as applicable tools for the modeling of the dynamics of
cellular compounds.

In contrast, the retarded transient function (RTF) approach
suggested in this publication is tailored to typical dynamic
response curves observed in cellular signaling pathways. Some
basic differences between the RTF approach and ODE-based
models are summarized in Table 2. The parameters of the RTF
can be nicely interpreted as response time and amplitudes and
time constants of a transient and a sustained response fraction.
Based on nine benchmark models, it was possible to show that
the suggested function can accurately describe the dynamics of
solutions of ODE models. Moreover, for fitting simulated data,
it could be shown that in terms of root-mean-squared-errors the
fitted RTF is almost as good as the true underlying ODE model.
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As summarized in Figure 5, the presented implementation
allows for fast and simple evaluations of the systems
dynamics. First, the RTF is fitted to either an existing ODE
model or to experimental data. In a second step, the fitted
functions are translated to executable Matlab functions. Those
functions, then, can be conveniently called for evaluating
the time dependency of the concentration of a dynamic
compound. This facility is very valuable for integrating
mathematical models of cellular processes into multi-scale
models, i.e., computational models describing the behavior
at the tissue-, organ- or even whole body level based
on the processes at the level of individual cells which is
currently a major methodological challenge in systems biology
[44, 45].

Of course, the presented approach also has its limitations.
On the one hand, the RTF approach does not provide
mechanistic insights. On the other hand, the scope of dynamic
shapes is restricted. By construction, the RTF cannot describe
several peaks or oscillations and the RTF approach should,
therefore, only be applied if such features do not occur or
do not play a prominent role. If the RTF is applied for the
approximation of existing ODE models, the performance can
be evaluated and tested, e.g., in terms of the RMSE. The RTF
might then turn out to be inappropriate for ODE models
which exhibit an oscillating behavior, delays, or discontinuous
dynamics subsequent to multiple perturbations. If the RTF
approach is applied for the fitting of data, the measurements
should neither be too sparse nor should they be sampled at
improper time scales in order to reduce the risk of biased
estimation or that important dynamic features are not captured
by the model.

The problem of biased estimation and the risk for
wrong predictions, however, is a general issue of all
modeling approaches, especially in the case of small
amounts of experimental data. In my analysis, the median
performance loss was 20–40 times smaller than the
standard deviation between different fits. The presented
RTF approach tends to produce smooth outcomes because
only a single maximum/minimum can be captured.
This seems to be a reasonable solution for the general
trade-off between bias and variance, since the predicted
dynamics tend to be plain instead of hypothesizing intricate
temporal behavior.

Some tasks remain and are intended to be tackled in the
future. First, a theoretical justification for the amazing abilities
of the suggested RTF approach is desirable. For this purpose,
the class of ODE systems which are exactly solved by the RTF
or where the RTF occurs as approximate solution, e.g., for
calculations of perturbations, has to be derived and linked to
classical rate laws.

Another task consists of linking multiple experimental
conditions which originate from different initial conditions,
e.g., doses of a ligand. In the current formulation, each initial
condition is treated independently and fitted RTFs has distinct
and unrelated parameters. Instead, one could describe the dose
dependency of individual parameters of the RTF by other
explicit functions, e.g., by hill equations which are frequently

applied for describing dose dependencies in systems biology
[46]. This would then allow for predictions of the time and
dose dependency using explicit functions. As a final task,
the potential of the RTF approach for multi-scale modeling
has to be investigated in order to evaluate its applicability
and suitability.

5. CONCLUSION

A major goal of systems biology is the establishment of
mathematical models that describe the behavior of living cells
at the level of molecular compounds. Here, the retarded
transient function (RTF) has been introduced as a curve
fitting approach which is tailored to dynamic modeling of
cellular compounds. It has successfully been shown that the
approach both provides accurate estimates of the underlying
dynamics and facilitates valuable interpretations and, thus,
serve as a valuable complement of the traditional ODE-
based modeling.
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Supplementary File 1 | RTF approach (blue lines) for all 797 ODE solutions

(black lines) from the nine benchmark models. The approximation error is denoted

in the legends and plotted as gray band.

Supplementary File 2 | RTF approach for the 2,800 simulated data sets. The

plots are provided in order to give readers an unbiased impression about the

results of the RTF approach.

Supplementary File 3 | RTF approach together with the fitted ODE model and

the true ODE solution for all 2,800 simulated data sets. These plots indicate

differences between the RTF and the ODE modeling approaches.

The plots of the three supplementary files are also available in
higher resolution at https://github.com/clemenskreutz/RTF.
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