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Laser-induced breakdown spectroscopy (LIBS) is fast, on-line, causes little sample

damage, and can be applied in remote field locations. In recent years, LIBS has been

widely used in many fields of scientific research for element detection. Further application

of LIBS is limited by the strong matrix effect, poor repeatability, and relatively weak

detection sensitivity. The detection sensitivity is an important factor and needs to be

improved for LIBS detection of minor or trace elements in samples. A variety of methods

have been developed to improve detection sensitivity of LIBS. In this invited review

paper, we discuss improvements in the LIBS detection sensitivity achieved with physical

enhancement methods, chemical enhancement methods, mathematical methods, and

combinations of multiple methods.We discuss the enhancement mechanisms, sensitivity

improvements, configurations, and effects of key factors for various methods. The

advantages, disadvantages, and real-time capabilities of these methods are reviewed.

Finally, new trends and future perspectives for LIBS as an efficient analytical tool

are discussed.

Keywords: laser-induced breakdown spectroscopy, detection sensitivity, physical enhancement, chemical

enhancement, mathematical method

INTRODUCTION

Laser-induced breakdown spectroscopy (LIBS) is an effective technique for rapid elemental
analysis. Quantitative and qualitative results are obtained from the emission spectra of various
elements using plasma generated by laser ablation of the sample [1]. LIBS is increasingly used in
multifarious on-site inspections, such as nuclear waste detection [2], molten steel analysis [3–5],
and examination of fruit pesticide residues [6], heritage [7], environment [8], biology [9], and
agriculture [10]. In addition to solid samples, LIBS can be used with liquids [11], gases [12, 13],
and aerosols [14] because it is flexible, fast, and causes little damage to samples [15]. Because of
these characteristics, the application range of LIBS has continued to expand.

Further application of LIBS is limited by a strong matrix effect, poor repeatability, and relatively
weak sensitivity [16]. The elimination of matrix effect and improvement of repeatability have
been investigated in many studies [17–23]. However, the sensitivity still restricts the application of
LIBS in both qualitative and quantitative analyses. Compared with X-ray fluorescence, the limit of
detection (LOD) of LIBS is usually approximately an order of magnitude higher [24]. For detection
of elements in most solids, the LOD of LIBS is 1–100 parts per million [25], which cannot meet the
demands for detection of many trace substances.
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To improve the sensitivity, a variety of methods have been
developed. Some of these methods improve the LIBS signal
intensity by changing the LIBS setup, such as adding a second
laser pulse for secondary heating of the plasma [26–30]. In
other methods, the sensitivity is improved by chemical treatment
of the sample, such as chemical replacement to preconcentrate
the element of interest in the sample [31–34]. Furthermore,
mathematical methods, such as multivariate analysis instead of
univariate analysis [35, 36], can be used to improve the sensitivity
of the predictive model.

This review presents a brief overview of recent methods used
for improving the LIBS detection sensitivity. We discuss the
advantages and disadvantages of these methods in consideration
of the sensitivity improvement, simplicity, and real-time
capability. This paper provides a reference for rational use of
these methods.

PHYSICAL ENHANCEMENT METHODS

Double Pulse Method
Conventional LIBS uses a strong laser to break down a sample
into plasma. However, the detection sensitivity is poor. A double-
pulse LIBS (DP-LIBS) method has been proposed to improve
the sensitivity of LIBS. There are several possible mechanisms
could explain the signal enhancement of DP-LIBS, such as pulse-
plasma coupling effects, sample heating effects, and atmospheric
effects [37, 38]. At the same time, the plasma temperature and
electron density were increased due to the re-ablation of second
laser in DP-LIBS [39]. Accordingly, the spectral intensity and the
detection sensitivity were increased. Spectral intensity and LOD
improvements achieved with DP-LIBS in recent years are shown
in Table 1. Because the plasma lifetime is often <10 µs, which is
far less than the minimum interval between two laser pulses at
present, a double pulse system must use two lasers, which greatly
increases the cost of the LIBS system.

In the DP-LIBS configuration, the physical positions and
angles of the two lasers greatly affect the spectral intensity.
The two laser beams can be combined in collinear, orthogonal,
and crossover modes. The orthogonal mode includes orthogonal
preheating and orthogonal reheating [46]. Figure 1 shows a
schematic diagram of several laser positions. In addition to the
physical location of the laser, the laser wavelength also affects the
signal enhancement. For example, Ahmed et al. [47] studied the
enhancement effect of iron in orthogonal measurements using
first (λ1) and second (λ2) wavelengths of λ1 = λ2 = 532, λ1 =

λ2 = 1,064, and λ1 = 532 and λ2 = 1,064 nm. The enhancement
factors obtained using different wavelength combinations varied
and the maximum enhancement factor was 30 times.

With the development of solid-state lasers, two fast pulses
can be output by one laser, which greatly reduces the cost and
complexity of DP-LIBS. For instance, some researchers have
obtained a 3-fold signal enhancement with collinear dual-beam
detection of lunar mimics [48]. The drawback of this method
is that the two laser pulses can only work in a collinear mode
and the focus position has to be consistent. Therefore, better
signal enhancement can be obtained by using two lasers than one
in double pulse system. For the above three modes, secondary

heating of the plasma or ablation of the sample was completed
using a different laser. The inter-pulse delay of the two lasers was
mainly realized by a timing controller. However, Liu et al. [49]
used the method for reheating plasma and adjusting the inter-
pulse delay by adjusting the optical path difference. The laser
output from the ordinary laser was split into two beams, and one
of them was used to complete the first breakdown on the sample
surface. The second beam was then focused on the sample to
achieve a second breakdown after the optical path was increased
for the second beam. In this way, a DP-LIBS measurement was
achieved with one laser. An enhancement factors of 2–32 times
was obtained for the ionic and atomic lines as compared to the
single pulse LIBS.

Besides, a method of long-short DP-LIBS was proposed to
improve the sensitivity of LIBS. Compared with traditional DP-
LIBS, a laser with a wider pulse (µs) was used as second laser
in long-short DP-LIBS. The Deguchi’s team have been done
deep research about long-short DP-LIBS. For example, they
proposed the collinear long and short DP-LIBS to detect the
solid sample. The results showed that the plasma became more
stable and sustained when using a long pulse-width laser (pulse
width of 60 µs) as external energy, and marked enhancement
were obtained compared to single-pulse LIBS [50]. Further, the
spectral signal was enhanced about 3–7 times by long-short DP-
LIBS comparing to conventional SP-LIBS when detecting the
standard steel samples [51]. In the subsequent study, they used
long-short DP-LIBS to detect the Mn content in steel. The results
showed that the R2 of calibration curve was improved from 0.810
to 0.988 using long-short DP-LIBS compared to SP-LIBS. In
addition, the RSD was reduced from 29.3% (SP-LIBS) to 10.5%
(long-short DP-LIBS) [52].

Furthermore, an interestingmethod named resonant DP-LIBS
has been proposed to achieve spectral enhancement. In this case,
the second laser is replaced by an optical parametric oscillator
wavelength-tunable laser to reheat the plasma. When the laser
wavelength is equal to an excited line of a target element, the
atoms of the target element absorb laser photons and then emit
strong fluorescence [53]. The spectral intensity achieved using
resonant DP-LIBS is approximately 1–2 orders of magnitude
higher than that with signal pulse LIBS. In one study, the resonant
DP-method was used to analyze aluminum alloy and decrease
the LODs of Mg and Si to 0.7 and 50 fg, respectively [54]. This
method has also been used to detect TiO2 aerosols, achieving a
signal enhancement of 220 times [55].

Atmosphere Control Method
When the laser ablates the sample, the surrounding gas is ablated
simultaneously to produce a plasma plume. The composition
of the gas greatly affect formation and diffusion of this plasma
plume. Thus, the LIBS signal can be enhanced and the detection
sensitivity increased by changing the atmosphere in which the
sample is placed. The enhancement method under ambient
atmosphere is to use an inert gas (e.g., N2, Ar, and He). An
inert gas has a lower conductivity and specific heat than air, so
its breakdown threshold is low. For example, Kim et al. [56]
injected argon (25 L/min) into a sample chamber to increase
the signal intensities of the main elements by 2–3 times when

Frontiers in Physics | www.frontiersin.org 2 March 2020 | Volume 8 | Article 68

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fu et al. Improving the Detection Sensitivity for LIBS

TABLE 1 | The applied examples of DP-LIBS in recent years.

Samples Elements Configuration of DP-LIBS System parameters

(1t: inter pulse delays)

Results References

Aluminum alloy Al, Mg Pre-ablation orthogonal Pre-ablation laser:

1,064 nm,100 mJ;

ablation laser: 50 mJ;

1t: 30 µs.

Eh factor∼

15 with

SNR

[40]

Al 6463 Al, Mg Orthogonal Ps laser: 1,064 nm, 50 mJ;

Ns laser: 1,064 nm, 100 mJ;

1t:150 ns.

Eh∼

6-fold

[41]

Brass Fe, Cu Crossed beam (5◦) Laser 1:

1.064µm, 2–100 mJ;

Laser 2: 10.6µm, 400 mJ.

Eh∼

S/N: 14 times,

S/B: 15 times.

[28]

Copper Cu Collinear and orthogonal 1,064 + 532 nm. Eh∼

Collinear: 50 times,

Orthogonal: 15 times.

[42]

Mica Al, Si, Mg, Na Orthogonal Laser 1: 266 nm; Laser 2:

213 nm, 64 mJ.cm−2;

1t:10 ns.

Eh∼2 order of magnitude [27]

Soil, plant and fertilizer C, Mg, Si, Fe, Ca, P, Sr Orthogonal Laser 1: 532 nm, 1–32 mJ;

Laser 2: 1,064 nm, 50 mJ;

1t:10 µs, 0.6 µs.

Eh∼

155-fold (4 mJ, 1t:10 µs);

3-fold (≥16 mJ, 1t: 0.6 µs).

[43]

Steel Fe, Cr Collinear 800 + 400 nm;

1t:2 µs.

Eh∼

10 times

[44]

Metallic and oxide materials Cu, Ti, Sr Crossed beam (45◦) Laser 1: 800 nm, 150 mJ;

Laser 2: 400 nm, 30 µJ;

1t:300 ps.

Eh∼

IDP/ISP = 2–30

[45]

Ps, picoseconds; Ns, nanoseconds; LOD, limit of detection; Eh, enhancement; RSD, relative standard deviation; SNR, signal-to-noise ratio; IDP, spectral intensity from double-pulse

LIBS; ISP, spectral intensity from single-pulse LIBS.

FIGURE 1 | Various configuration of DP-LIBS: (A) collinear; (B) dual pulse

crossed beam; (C) orthogonal preheating; (D) orthogonal reheating; Labels

(P-1) and (P-2) indicate the plasma produced by pulse1 and pulse 2,

respectively.

detecting Cu(In,Ga)Se2 samples. Son et al. [57] researched the
signal improvement of Al under Ar gas environment of 0.5 MPa.
The results showed that the spectral intensity of Al I increased by

6 times, and the maximum spectral intensity of Al II increased
by more than 12 times. Lin et al. [58] studied the enhancement
effect of different atmospheres (1–80 kPa pressure, He and Ar)
using femtosecond laser to detect Al. The experimental results
showed that the intensity of Al I was enhanced by 4 times in Ar
gas, which was higher than in air and He [59]. In addition, Jiang
et al. [60] investigated the signals of steel samples at different
pressures (vacuum: 10–6 mbar; N2: 1.0 mbar and 0.3 mbar; Ar:
2.1 and 1.5 mbar; He: 25 and 28 mbar). The LODs of C in N2, Ar,
He, and vacuum were 2.9, 3.6, 5.7, and 13.6 ppm, respectively.
And the LODs of S were 1.5 ppm (N2), 2.4 ppm (Ar), 3.4 ppm
(He), and 8.9 ppm (vacuum), respectively. However, because the
gas protection enhancement method often requires a closed air
chamber based on the traditional LIBS structure, as shown in
Figure 2, this method increases the complexity and cost of the
system hardware.

Spatial Constraint Method
In addition to modification of the LIBS hardware and control
of the ambient atmosphere, external field assistance can also
be used as a physical enhancement method to improve the
sensitivity of LIBS detection. Spatial constraint is one external
field assistance method. A spatial constraint device can be added
on the periphery of the sample to achieve spectral enhancement.
Then, a shockwave can be generated after the generation and
expansion of the laser-induced plasma in air. The shockwave will
be reflected back when it encounters obstacles such as a plate wall
or a cylindrical wall and will compress the plasma plume during
expansion [61]. Therefore, a higher plasma temperature and
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electron density, and a stronger spectral signal will be obtained.
Figure 3 shows a morphological comparison of plasma with and
without constraint devices. It can be seen from the Figure 3 that
the shockwave is reflected back to the center of the plasma under
the effect of spatial constraint device. On the contrary, when there
is no spatial constraint device, the shockwave expands around.

Spatial constraint is a very simple method to improve
the sensitivity of LIBS and requires no or little modification of the
LIBS system. Common spatial constraint devices forms are the
parallel plate, hemispherical, cylindrical, and rectangular cavity.
Currently, the hemispherical form is considered to provide the
best enhancement effect. A hemispherical device with a circular
hole on the top as a channel for laser pulse focusing could be
designed to allow for reflection and confinement of the expansion
shockwave on the inner surface of device, which would achieve
signal enhancement. The main parameters that affect a spatial
constraint device are the hemisphere diameter, hole diameter,
and thickness of the hemisphere wall. The enhancement effects
of hemispheres with diameters of 4, 5, 6, and 7mm have been
investigated. When the hemisphere diameter was 5mm, the
correlation coefficient (R2) of V(I)/Fe(I) improved from 0.946 to
0.981. Similarly, the R2 of Cr(I)/Fe(I) and Mn(I)/Fe(I) increased
from 0.973 to 0.986 and from 0.945 to 0.981, respectively [61].

Traditional spatial constraint can result in formation of laser-
induced craters. When multiple pulses hit a sample, the LIBS
signal generated by later pulses will be enhanced because of
the formation of craters by the initial pluses [62]. Spectral
enhancement occurs because the laser pulse crater has a binding
effect on the plasma [63].

Magnetic Constraint Method
Magnetic constraint is another common external field assistance
method for improving LIBS sensitivity. Application of the

magnetic constraint method is very similar to that of spatial
constraint. This method replaces the spatial constraint device
around the sample with a magnetic field device. Under the
magnetic field, charged particles inside the plasma that are
excited on the surface of the sample will move in a circular
or spiral motion because of the Lorentz force [64]. This may
slow down expansion of the plasma plume, increase the emission
duration, improve the probability of electron-ion recombination,
and result in enhancement of the emission line intensities [65].

One of the simplest applications of magnetic confinement uses
a magnetic ring as a magnetic field to constrain the plasma. Hao
et al. [64] designed a magnetic ring to investigate the effect of a
magnetic field. The outer diameter, inner diameter, and height
of the magnetic ring were 12.7, 3.2, and 6.3mm, respectively.
LODs of 11 ppm for V and 30 ppm for Mn were obtained with

FIGURE 3 | The morphological comparison of plasmas (A) with restraint

device; (B) without restraint device.

FIGURE 2 | An example of the structure of a closed air chamber.
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the magnetic ring, and these were lower than those obtained
with a degaussed magnet (18 ppm for V and 41 ppm for Mn)
[64]. Dong et al. [66] used a combination of metal nanoparticlea,
super-hydrophobic, and magnetic confiment to detect Cu in
solution. This method gave a signal intensity enhancement of
approximately 5–6 orders of magnitude. Although a magnetic
ring is simple and easy to apply as an external magnetic field
device, the magnetic field of a magnetic ring cannot be adjusted.
Therefore, Cheng et al. [67] used a pair of magnetic poles to
form a magnetic field to constrain plasma. In their experiments,
a magnetic field of 0.67 T was applied in analysis of a copper
sheet. The detection results showed that the signal intensity of
Cu(I) was enhanced 3–4 times, and those of Cu(II) and Cu(III)
were enhanced 6–8 times. Although the enhancement effect of
magnetic field is very good in laboratory, it is inconvenient to the
filed for in-situ detection.

CHEMICAL ENHANCEMENT METHODS

Nanoparticle Surface Enhancement
Method
Chemical enhancement methods can also be used to improve
the LIBS detection sensitivity. Sample pre-treatment is
the main method used to achieve chemical enhancement,
especially nanoparticle surface enhancement. The enhancement
mechanism of nanoparticle-enhanced LIBS differs for conductors
and insulators [68]. Figure 4 shows the ablation process of
nanoparticles on conductors and insulators. It can be seen from
the figure that, for conductors, when NPs are deposited on the
surfaces of metals and other conductors, surface plasmons of the
nanoparticle formed by the laser electromagnetic field couple
with the electric field to produce a field enhancement. As a result
of the enhanced electromagnetic field, the inward acceleration
of free electrons in the direction of the laser pulse propagation
results in faster ablation of the material, which results in
enhancement [69]. As for insulators, enhancement mainly occurs
because of the resonance between nanoparticles and local surface
plasma from the sample. Strong local heating is generated on the
surface of the sample, which stimulates the surface of the sample
to produce more plasma and enhance the spectral signal [70].

Nanoparticle-enhanced LIBS is mainly affected by the type,
radius, and concentration of the nanoparticles. The enhancement
effects of nanoparticles of different types (Au, Ag, Cu, and Pt),
sizes (e.g., 20 and 10 nm Ag), and concentrations (e.g., 0.02 and
0.01mg.mL−1 10 nm Ag) have been investigated. Enhancements
of 1–2 orders of magnitude were obtained for metal samples [69,
70]. Furthermore, the enhancement effects of Au nanoparticles
for PbCl2, Pb (NO3)2, and AgNO3 have been investigated.
The results showed that the LODs of Pb and Ag were 2 pg
and 0.2 pg, respectively [71, 72]. Poggialini et al. [73] used
Greensynthetized silver nanoparticles to enhance the spectral
intensities of Zn and Cr in copper and obtained LODs for Zn
and Cr of 6 ppm and 0.1 ppm, respectively. Wen et al. [74]
used LIBS combined with Au nanoparticles to detect Cu2+, Pb2+,
and Cr3+ in the solution, and the LODs of Cr, Pb, and Cu
in the solution were 0.5, 0.5, and 1.1 g.ml−1, respectively. In

addition, Wu et al. [75] achieved a LOD of 13 ppb for K by
combining amphiphiles with nanoparticles for adsorption and
enrichment of K in KCl solution. The application of nanoparticles
for molecular bands detection was studied by Koral et al.
[76] An order of magnitude enhancement of AlO signal was
achieved by 20 nm Ag nanoparticles when detecting aluminum
alloy. Metal nanoparticles are simple to use and can greatly
improve the detection sensitivity; however, metal nanoparticles
will contaminate samples.

Chemical Replacement Methods
It is well-known that LIBS of liquid samples suffers from
problems such as spattering, quenching, and short plasma
lifetimes. Therefore, some researchers have proposed chemical
replacement methods for pretreatment of liquid samples to
improve the sensitivity of LIBS. The replacement can be
implemented by methods such as liquid–liquid extraction,
liquid–solid transformation, and surface-enhanced LIBS.

Liquid–liquid extraction can improve the LIBS sensitivity
for liquid samples. Some special elements can be extracted and
enriched by adding special chemical reagents to the solution
before detection of LIBS. In the study of Aguirre et al. [77]
dispersive liquid–liquid microextraction has been used to detect
Cr, Cu, and Mn in water. The signal intensity obtained with
this method was 4–5 times that of traditional LIBS and the
LODs of the elements decreased by 3.7–5.6 times. In their
subsequent research, they proposed a method of single-drop
microextraction, which improved the detection sensitivity by
2.0–2.6 times, and the detection limit of Cr, Mn, Ni, Cu, and
Zn elements in the solution was in range of 21–301 mg/kg [78].
However, liquid–liquid extraction suffers from some problems
as the extraction process can be cumbersome and use dangerous
chemical reagents.

To improve liquid–liquid extraction shortcomings,
researchers have proposed the liquid-solid conversion method.
The method was realized by using solid-phase media to enrich
the elements of object in liquid samples, then the solid-phase
media was detected by LIBS. The sensitivity was improved
by the effect of enrichment. For example, nanographite and
electrospun ultrafine fibers have been used to adsorb heavy
metal ions in solution and increase the LODs [58, 79]. However,
the liquid–solid conversion is a physical adsorption process
and the adsorption efficiency is limited by the adsorption
medium. Therefore, some researchers have proposed using an
electrochemical reaction method. In one study, two aluminum
sheets were used as an electrode to displace Cu in solution
and achieve a LOD of 500 part per trillion [80]. Although
the electrochemical conversion improved the displacement
efficiency, the requirement for an applied electric field increased
the complexity of the LIBS structure.

Researchers discovered that it was possible to improve the
LIBS sensitivity by dropping a small amount of liquid sample
onto the surface of a selected solid substrate, drying it, and then
exciting the dried sample by LIBS. The method was defined
surface-enhanced LIBS (SENLIBS) [32]. For example, the SELIBS
method had been to reduce the LODs of Mn and K to 6 and
0.53 µg.g−1, respectively [81, 82]. In addition, Yang et al. [32]
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FIGURE 4 | The Schematic diagram of nanoparticles acting on (a) conductive sample and (b) dielectric sample: (1) laser radiation; (2) ionization and breakdown; (3)

plasma generation; (4) crater.

have used the SENLIBS method to simultaneously detect La,
Ce, Pr, and Nd in solution. Compared with the filter paper
method, the LODs of these elements increased by 2–4 times.
They also detected some metallic elements in the solution
using chemical replacement combined with SENLIBS, and the
minimum detection limits were 0.250 g.ml−1 (Cu), 0.118 g.ml−1

(Pb), 0.420 g.ml−1 (Cd) and 0.025 g.ml−1 (Cr), respectively [34].

MATHEMATICAL METHODS

Mathematical processing of spectral data acquired by LIBS
can be used to improve the sensitivity. With a mathematical
method, the spectrum can be fully used and matrix interference
can be reduced, which improves the prediction ability of the
model. In principle, mathematical methods are divided into
univariate methods and multivariate methods. The univariate
methods mainly include single linear regression [83], internal
standard [84], and external standard [85]. Commonly used
multivariate methods include partial least squares [86], artificial
neural network [87, 88], partial least squares regression [89],
least squares support vector machines [90, 91], and random
forest [92].

The univariate analysis method extracts the peak intensity
of the target element from the spectrum and then establishes

a fit between the intensity of the spectrum and the content of
the element to obtain the relationship between them. However,
because of self-priming and self-etching in the spectral line or
interference from other peaks, the fitting result with a single
variable is poor and the model has poor prediction ability and
is difficult to apply practically. Therefore, multivariate methods
have been used to filter redundant information in the spectrum
and extract useful information to obtain a quantitative model
with strong predictive ability [93]. For example, the univariate
model R2 obtained using a single Cd line was 0.2316 for
quantitative analysis of Cd in fresh vegetables. The band at
211.03–229.57 nm was extracted to increase the R2 of calibration
set to 0.98 and the R2 of validation set to 0.99 with the
partial least squares model [94]. When predicting the melamine
contents in milk samples, researchers used an artificial neural
network to increase the R2 obtained from a univariate algorithm
from 0.982 to 0.999. Similarly, the mean prediction error and
standard deviation decreased from 24 to 5% and from 2.2 to
0.3%, respectively [95]. In addition, for prediction of S and
P elements in alloy steel, the R2 using a univariate algorithm
were 0.8532 and 0.8936, respectively. When using the sequential
backward selection-random forest, the R2 increased to 0.9991 (S)
and 0.9994 (P) [96]. It is noted that incorrect spectral analysis
methods can lead to poor analytical performance of LIBS.
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Therefore, it is important to choose appropriate mathematical
methods based on the characteristics of the spectrum.

OTHER METHODS

The methods used to improve the sensitivity of LIBS detection
also include spark assisted LIBS, flame assisted LIBS and
microwave-assisted LIBS (MW-LIBS). With the assistance of
microwaves, the transmission time of the plasma is maintained
by hundreds of microseconds tomilliseconds [97]. As the lifetime
of plasma extended, the emission intensity also enhanced. For
example, Tampo et al. [98] used 2.45 GHz, 250W microwave
pulses to assist LIBS in detecting nuclear fuel. The results showed
that Gd spectral signal could be enhanced by 50 times, and the
minimum detection limit could reach 40 ppm. The enhancement
effect was very significant. Alwahabi’s team used microwave-
assisted LIBS to detect Cu/Al2O3 solid samples. The results
showed that the Cu spectral signal was enhanced by 100 times,
and the detection limit reached 8.1 ppm [99]. At the same time,
they also used MW-LIBS to detect the liquid samples. The results
showed that the detection limit of MW-LIBS (10.8 ± 0.7 ppm)
was greatly improved compared with that of traditional LIBS (124
± 5 ppm) [100]. In spark-assisted LIBS, the detection sensitivity
of LIBS was improved by using a high voltage pulse to re-excite
the plasmas. It was proved that using a coil with a length of
50m and a resistance value of 50� to re-excite the plasma on
the surface of the aluminum alloy could improve the signal-
to-noise ratio by an order of magnitude [101]. Martinez et al.
[102] also obtained enhancement of two orders of magnitude
by applying a 600 kW electric pulse to assist LIBS [102]. Flame
assist is another method to improve the spectral signal intensity
of LIBS. Liu et al. [103] used neutral acylene flame assist LIBS to
test aluminum alloy samples, and proved that the spectral lines
of atoms and ions in the flame environment were enhanced by 4
times and 3 times, respectively. Although these methods improve
the detection sensitivity of LIBS to some extent, they increase the
cost and complexity of the system. At the same time, the above
methods are impractical for in-situ measurement, because they
increase the operation difficulty in filed.

COMBINATION OF MULTIPLE METHODS

To further improve the sensitivity of LIBS, researchers have
considered combining the above methods. Because DP-LIBS
can greatly improve the detection sensitivity, many studies have
investigated combining other physical methods with DP-LIBS.
For example, steel samples have been analyzed by DP-LIBS
in combination with the ambient atmosphere method. The
enhancement effects of different inert gases (N2, Ar, and He) at
different pressures on plasmawere investigated. Compared with a
single pulse, the detection limits of C(III) and S(V) were reduced
from 12.6 to 3.6 parts per million and from 9.8 to 2.4 parts per
million, respectively [60]. In another study, spatial constraint
was combined with DP-LIBS to enhance Si spectral lines by 2–
3 times [104]. An enhancement factor of 70 for Al(I) (308.2 nm)

was achieved using magnetic confinement in combination with
DP-LIBS [105]. Magnetic confinement has been combined with
the ambient atmosphere control method. The results showed
that Mg(II) signals were enhanced 3 times in argon at 1 kPa
and 1.5 times in argon at 80 kPa [106]. In the chemical
enhancement methods, nanoparticles can greatly improve the
detection sensitivity. Therefore, combination of nanoparticles
with DP-LIBS has been investigated, and was found to increase
the LIBS signal 30 times [107]. Resin enrichment combined with
the spatial constraint method reportedly decreases the LOD of Cd
from 0.3 to 0.132mg.kg−1 [108].

CONCLUSIONS AND PROSPECTS

In this invited review paper, we summarize various techniques
proposed by researchers in recent years for improving the
poor detection sensitivity of LIBS. These methods can be
divided into physical, chemical, mathematical methods, MA-
LIBS, spark-assisted LIBS, and flame assisted LIBS. The physical
methods include the double-pulse method, environmental
atmosphere control method, spatial constraint, and magnetic
confinement. The chemical methods include nanoparticle surface
enhancement and chemical replacement. Researchers have
demonstrated the enhancements achieved with these methods
for metals, soils, gemstones, liquids, gases, and foods. In these
studies, the LODs were reduced to part per million levels and
even part per trillion levels in some cases. Furthermore, the
signal could be enhanced several tens of times and simple
non-linear regression can be improved by more than 10
times. The mechanism, enhancement effect, change in plasma
temperature, and electron density with each method have been
thoroughly investigated. In conclusion, the detection sensitivity
of LIBS could be greatly improved using these methods and
by combination of multiple methods. However, there are some
problems with these methods, such as complicated experimental
configurations and high costs. In addition, some methods are
difficult to realize for portable rapid detection instruments.
With the continuous development of science and technology,
exploration and discovery can introduce new materials and
innovative methods to improve the detection sensitivity of
LIBS. It is important that the complexity and cost of the
LIBS systems is decreased for rapid field measurements. With
improvements in the sensitivity and repeatability of LIBS, as well
as miniaturization and improvement of the practicability of the
instrument, LIBS technology will have greater potential for rapid
field measurements in various areas.
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