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School of Science, Zhejiang University of Science and Technology, Hangzhou, China

This study proposes a three-layer focusing gradient metasurface for wavefront

processing. The structure works in the frequency range of 15–25 GHz and has a

central frequency of 19.6 GHz. The metasurface unit is organized in a square and has

high-impedance elements that reflect the full range of phase shifts. When the microwave

beam is incident on this metasurface, the high-impedance elements modulate the beam

according to the gradient arrangement, to realize the focusing effect of the lens, and the

efficiency reaches 82%. The simulation results are consistent with the theoretical results.
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INTRODUCTION

The acquisition of new materials with new optical properties has become an important research
field [1]. People acquire new materials by chemical synthesis [2], and they manipulate the optical
properties by artificially designing dielectric constants andmagnetic permeability [3, 4]. The degree
of freedom and maneuverability of the artificial optical structure is higher than that of chemical
synthesis methods [5]. From 2000 to 2010, the use of metamaterials to design new optical devices
and achieve unique optical functions has received significant attention. Examples of these include
negative refraction, metalenses, optical stealth cloaks, and artificial chirality [6, 7].

Fermat’s principle [8] points out that the wavefront of a light beam can be modified by
controlling the phase of the light wave [9, 10]. A metasurface exhibits peculiar optical properties
in controlling electromagnetic waves [11, 12]; it is also widely used in the terahertz band [13].
Traditional metal-based metasurfaces can effectively reduce losses during electromagnetic wave
propagation [14, 15], but the interaction intensity decreases as the distance between themetasurface
and the electromagnetic beam increases [16, 17]. The metal—medium—metal structure [18]
provides an effective way to achieve efficient control of light wave amplitude, phase, and
polarization [19]. In this study, we propose and validate a new type of focusing lens based on a
three-layer square gradient metasurface reflector array, which can approximate and the reflection
phase in the range of 2π by controlling the metasurface unit.

MODEL DESIGN

As shown in Figure 1A, an element of the metasurface array has three layers, and the metal layers
use a perfect electrical conductor (PEC). Metals behave like PEC in the microwave band and a
reflectarray built using elements of variable dimensions can reflect the incident waves with high
efficiency. As shown in Figure 1B, the top metallic patch layer is a square that is hollowed from
the inside to the outside. Figure 1C shows the element parameters. The thickness of each metal
layer and the dielectric are t = 0.035mm and h= 1.60mm, respectively, and the dielectric constant
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FIGURE 1 | (A) Side view of the three-layer square element, (B) top view, and (C) element parameters.

FIGURE 2 | The amplitudes (red triangle dots) and reflection phase shift (black

square dots) of a metasurface with different side lengths at 19.6 GHz

frequency.

is 2.60. The lattice constant is x = 10mm. The width
of the metallic patch is the only adjustable parameter,
and it has a significant influence on the reflection phase.
By changing the value of the parameter, it is possible
to control the incident beam and make it converge at
one point.

Compared with other focusing structures [20, 21],
the thickness of the proposed design only is 1.67mm,
which is much smaller than the operational wavelength.
It is easy to manufacture. The phase (φ) distribution
of the focusing gradient metasurfaces usually follows
Equation (1) [22].

f (x, y) =
2π

λ0
(

√

x2 + y2 + f2 − f)+ f0 (1)

Where f is the focal length, and λ0 is the free-space
wavelength [23, 24].

A continuous curve of phase shift in the range of −168.5◦

to 170.8◦, as shown in Figure 2, can be achieved by changing
the width of the metallic patch layer. The maximum range
of the phase shift can reach 339◦, which is close to a
full cycle and sufficient for the intended operation of a
reflectarray while maintaining the amplitude of the reflected
wave above 0.82. The focal length is 150mm. As shown in
Figure 3, the three-layer metasurface array consisted of 13
× 13 square elements. The desired phase shift is obtained
by just changing the inner radius parameter of the metallic
patch. The radii of the patches in the eight parts are 0.1,
0.37, 0.62, 0.74, 0.80, 0.92, 1.36, and 4.9mm, respectively.
The element can be used for a metasurface lens with good
performance. The reflection phases of the eight concentric parts
fulfill Equation (1).

RESULTS AND DISCUSSION

The CST Microwave Studio software was used to solve the
reflection spectra of the metasurface structure. The plane wave
propagated in the negative z direction and linearly polarized
along the direction of incidence of the beam. The simulation
results are shown in Figure 4. Figure 4A shows the reflected
electric-field intensity distribution in the x–y plane, where the
focal length f is ∼146mm. Figure 4B shows the reflection
intensity distribution in the x–y plane at z = 146mm, z =

150mm, and z = 170mm, respectively. One can see that the
energy is the strongest, the light spot is the smallest, and the
focusing effect is the best at z = 146mm. Figure 4C shows
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the 3D radiation pattern at 19.6 GHz, and Figure 4D shows
the electric-field energy density distribution in the x–z plane.
Focus conversion efficiency was ∼82%. The calculation method
is the ratio of focus energy of the focal spot to the total

FIGURE 3 | Schematic diagram of a gradient high-impedance metasurface

reflectarray with M × N elements consisting of square elements of

different sizes.

energy of the incident wave. Owing to the good focusing
performance, the proposed array can achieve a pencil-shaped
radiation pattern.

It is reasonable to infer that the high-efficiency focusing has
a broadband characteristic. As shown in Figure 5, the results
of near-field distribution at 18, 19, and 20 GHz show a high
focusing efficiency over a wide frequency range. Figures 5B,E,H
and Figures 5C,F,I show that the focal length increases and
the far-field radiation decreases with the decrease of working
frequency. Specifically, the focal length is 150mm at 18 GHz,
the far-field value is 13.7 dB, the focal length is 110mm at
19 GHz, the far-field value is 14.5 dB, the focal length is
90mm at 20 GHz, and the far-field value is 14.7 dB. The
simulation results verify the hypothesis and show a wide
broadband of operation, and the demonstrated high efficiency
and broadband wavefront steering can be applied in imaging and
high-directional antennas.

CONCLUSION

A three-layer square reflective array was simulated based on
a focused gradient metasurface. In the microwave frequency
band, the reflection phase of a single element to electromagnetic
waves varies only with the width of the metallic patch layer.
The phase discontinuity on the metasurface depends only
on the precise control of the three-layer square elements

FIGURE 4 | (A) The electric-field energy density distribution in the x–z plane. (B) The electric-field energy density distribution in the x–y plane at z = 146mm,

z = 150mm, and z = 170mm, respectively. (C) 3D radiation pattern at 19.6 GHz (D). The reflected electric-field intensity distribution in the x–y plane and at the focus

(z = 146mm).

Frontiers in Physics | www.frontiersin.org 3 March 2020 | Volume 8 | Article 46

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Yan et al. Focusing Based on Few-Layer Metasurface

FIGURE 5 | The field intensity, distribution in the y–z plane, x–y plane, and 3D radiation pattern at 20 GHz (A–C), 19 GHz (D–F), and 18 GHz (G–I), respectively.

in a subwavelength dimension, in which the size of the
square metasurface has a linear relationship with the phase
discontinuity. The proposed gradient metasurface can be used
for the realization of approximately full range reflection phase
shift modulation, and the simulation results show that the
three-layer gradient metasurface reflection array has a good

focusing efficiency of 82%. In addition, because of the simple
structure of the components, the three layers can be made of
common materials, which makes the device convenient to design
and manufacture. It provides a new method for the design of
passive-reflection focusing arrays, which improves the guiding
efficiency of electromagnetic beams.
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