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The quantum calculus, q-calculus, is a relatively new branch in which the derivative

of a real function can be calculated without limits. In this paper, the falling body

problem in a resisting medium is revisited in view of the q-calculus to the first time.

The q-differential equations describing the vertical velocity and distance of the body are

obtained. Accordingly, exact expressions for the vertical velocity and the vertical distance

are provided. The solutions are expressed in terms of the small q-exponential function

which is an elementary function in the q-calculus. The dimensionality of the obtained

formulae of the velocity and the distance are also analyzed. In addition, the present exact

solutions reduce to the corresponding solutions in classical Newtonian mechanics when

the quantum parameter q tends to one.
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1. INTRODUCTION

Basically, the regular calculus uses limits in calculating the derivatives of real functions. However,
the calculus without limits is nowadays known as quantum calculus or q-calculus. Historically, in
the eighteenth century, Euler obtained the basic formulae in q-calculus. However, Jackson [1] may
have been the first to introduce the notion of the definite q-derivative and q-integral. Currently,
there is a significant interest in implementing the q-calculus due to its applications in several areas,
such as mathematics, number theory, and combinatorics [2]. Ernst [3, 4] pointed out that the
majority of scientists who use q-calculus are physicists. Baxter [5] introduced the exact solutions
of several models in Statistical Mechanics. Bettaibi and Mezlini [6] solved some q-heat and q-wave
equations. Many interesting results in such area of research were also introduced by several authors
in the literature [7–12].

In this paper, we aim to extend the applications of the q-calculus to study the falling body
problem in a resisting medium. This problem and also the full projectile motion have been
investigated by several authors [13–17] using various definitions in fractional calculus. However,
the present paper may be the first to analyze the falling body problem in view of the q-calculus.

The basic formulae in q-calculus will be used to analyze themotion of a falling body in a resisting
medium. Moreover, it will be shown that the exact solutions for the vertical velocity and distance
reduce to the classical ones as q → 1. The paper is organized as follows. Section 2 presents the main
aspects of the q-calculus. Sections 3 discusses the application of the q-calculus on the falling body
problem. Section 4 includes an additional analysis. Finally, section 5 outlines the conclusions.
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2. THE MAIN ASPECTS OF THE

q-CALCULUS

Let q ∈ R and n ∈ N, then [n]q is defined as (first chapter in [18])

[n]q =
1− qn

1− q
, (1)

and as q → 1, we have

lim
q→1

[n]q = n. (2)

The q-factorial [n]q! of a positive integer n is given by

[n]q! = [1]q × [2]q × [3]q × · · · × [n]q. (3)

The definition of q-differential is dqf (t) = f (t) − f (qt) and the
q-derivative of a function f (t) is defined by [18]

Dqf (t) : =
dqf (t)

dqt
=

f (t)− f (qt)

(1− q)t
, t 6= 0, (4)

such that

lim
q→1

Dqf (t) = f ′(t), (5)

if f is differentiable at t, and we have at t = 0 that

Dqf (0) = lim
t→0

Dqf (t). (6)

According to (4) we have

Dqt
n = [n]q t

n−1. (7)

The small q-analog of the exponential function et denoted by
eq(t) (also called the small q-exponential function) is given as

eq(t) =

∞
∑

j=0

tj

[j]q!
. (8)

The definite Jackson q-integral is defined by

∫ x

0
f (t) dqt = (1− q)x

∞
∑

j=0

qjf (qjx), (9)

and according to (4) and (9), we have

∫ x

0
Dqf (t) dqt = f (x)− f (0). (10)

The indefinite Jackson q-integral of the small q-exponential
function eq(αt) is given as [18]

∫

eq(αt) dqt =
1

α
eq(αt)+ c, (11)

where c is a real constant. The correctness of dimensionality of
the physical quantities is actually guaranteed by the definition (4).

3. THE FALLING BODY PROBLEM

Consider the falling of an object of mass m in the Earth
gravitational field through the air from a height h with initial
velocity v0. The classical equation of motion for the particle is
given by [15, 16]

m
dv

dt
= −mg −mkv, (12)

where k is a positive constant and its dimensionality is the inverse
of seconds, i.e., [k] = s−1. The initial conditions are given as

v(0) = v0, z(0) = h, (13)

where z(t) is the vertical distance of the particle at arbitrary time

t and dz(t)
dt

= v(t). The equation of motion (12) in view of the
quantum calculus becomes

dqv

dqt
: = −g − kv, q ∈ (0, 1]. (14)

In order to solve Equation (14), we assume the solution in the
series form:

v(t) =

∞
∑

n=0

ant
n, (15)

and therefore

dqv

dqt
=

∞
∑

n=0

[n]qant
n−1,

=

∞
∑

n=1

[n]qant
n−1, where [0]q = 0,

=

∞
∑

n=0

[n+ 1]qan+1t
n. (16)

Substituting (15) and (16) into (14), yields

∞
∑

n=0

[n+ 1]qan+1t
n = −g − k

∞
∑

n=0

ant
n, (17)

or

[1]qa1 +

∞
∑

n=1

[n+ 1]qan+1t
n = −g − ka0 − k

∞
∑

n=1

ant
n, (18)

which gives

a1 =
−g − ka0

[1]q
,

an+1 =
−kan

[n+ 1]q
, n ≥ 1, (19)
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From (19), we have

a2 =
−ka1

[2]q
=

(−1)2kg + (−k)2a0

[1]q[2]q
,

a3 =
−ka2

[3]q
=

(−1)3k2g + (−k)3a0

[1]q[2]q[3]q
,

a4 =
−ka3

[4]q
=

(−1)4k3g + (−k)4a0

[1]q[2]q[3]q[4]q
,

.

.

an =
(−1)nkn−1g + (−k)na0

[1]q[2]q[3]q . . . [n]q
, n ≥ 1. (20)

This n-term coefficient can expressed in terms of the q-factorial
[n]q! as

an =
(−1)nkn−1g + (−k)na0

[n]q!
, n ≥ 1. (21)

The instantaneous velocity is obtained as

v(t) = a0 +

∞
∑

n=1

ant
n,

= a0 +

∞
∑

n=1

[

(−1)nkn−1g + (−k)na0

[n]q!

]

tn.

= a0 +

∞
∑

n=1

[

(g/k)(−kt)n + (−kt)na0

[n]q!

]

,

(22)

which can be written as

v(t) = a0 +
( g

k
+ a0

)

∞
∑

n=1

(−kt)n

[n]q!
. (23)

In terms of the small exponential function eq(−kt), we have

v(t) = a0 +
( g

k
+ a0

)

[

eq(−kt)− 1
]

. (24)

Applying the first initial condition in (13) on (24), we obtain
a0 = v0 and therefore v(t) becomes

v(t) = v0 +
( g

k
+ v0

)

[

eq(−kt)− 1
]

, (25)

which can be simplified as

v(t) = −
g

k
+
( g

k
+ v0

)

eq(−kt). (26)

The vertical distance z(t) in quantum calculus is governed by,

Dqz(t) = −
g

k
+
( g

k
+ v0

)

eq(−kt), (27)

where v(t) = Dqz(t). Integrating (27), it then follows;

∫ t

0
Dqz(τ ) dqτ =

∫ t

0

(

−
g

k

)

dqτ +
( g

k
+ v0

)

∫ t

0
eq(−kτ ) dqτ ,

(28)
and hence,

z(t)− z(0) = −
g

k

[

τ

[1]q

]t

0

+
( g

k
+ v0

)

[

−
eq(−kτ )

k

]t

0

, (29)

or

z(t) = h−
g

k

(

t

[1]q

)

+
( g

k
+ v0

)

(

−
eq(−kt)

k
+

1

k

)

, (30)

i.e.,

z(t) = h−
gt

k
+

1

k

( g

k
+ v0

)

(

1− eq(−kt)
)

, (31)

where [1]q = 1. The exact solutions (26) and (31) should be
reduced to the corresponding solutions in classical Newtonian
mechanics when q → 1. In addition, if the acceleration due
to gravity is measured in ms−2, then the vertical velocity in
(26) must has dimension ms−1 and the vertical distance in
(31) must has dimension m. These issues are addressed in the
following section.

4. ANALYSIS AND APPLICATIONS

First of all, we investigate the solutions (26) and (31) when q → 1.
In this case, the small exponential function eq(−kt) reduces to the

standard exponential function e−kt in classical calculus. Hence,
(26) becomes

v(t) = −
g

k
+
(

v0 +
g

k

)

e−kt , (32)

which is the analytic expression for velocity in the case of the
classical Newtonian mechanics (see Equation 16 in reference
[15]). Besides, the vertical distance in (31) reduces to

z(t) = h−
gt

k
+

1

k

( g

k
+ v0

) (

1− e−kt
)

, (33)

which is also the analytic expression for the vertical distance
in the classical Newtonian mechanics (see Equation 17 in
reference [15]).

In addition, in the case of no air resistance, i.e., the parameter
k vanishes, we obtain from (32) that

v(t)|k→0 = lim
k→0

[

v0e
−kt + g

(

e−kt − 1

k

)]

,

= v0 + g lim
k→0

(

e−kt − 1

k

)

,

= v0 + g lim
k→0

(

−te−kt

1

)

,

= v0 − gt. (34)
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Also, the vertical distance in (33) in the absence of air
resistance becomes

z(t)|k→0 = h+ lim
k→0

[

−gtk+ (g + kv0)(1− e−kt)

k2

]

,

= h+ lim
k→0

[

v0 − gt +
[

(g + kv0)t − v0
]

e−kt

2k

]

,

= h+ lim
k→0

[

−
[

(g + kv0)t − v0
]

te−kt + v0te
−kt

2

]

,

= h+

(

−
(

gt − v0
)

t + v0t

2

)

,

= h+ v0t −
1

2
gt2. (35)

Here, it should be noted that L’Hôpital’s rule was applied to
calculate the above limits. The Equations (34) and (35) are the
same of the corresponding equations for the vertical velocity
and vertical distance in Newtonian mechanics in the absence of
air resistance.

Regarding the dimensions of the q-forms of v(t) and z(t)
in (26) and (31), respectively, it should be first to specify the
dimensions of the quantities eq(−kt) and (1 − eq(−kt)) as
indicated below:

[

kt
]

= [k]× [s] = s−1 × s = Scalar,
[

eq(−kt)
]

= Scalar, (36)
[

1− eq(−kt)
]

= Scalar.

By this, eq(−kt) and (1 − eq(−kt)) are dimensionless quantities,
i.e., eq(−kt) and (1− eq(−kt)) are scalar quantities. Accordingly,
v(t) in (26) always has dimension ms−1 for all values of the
quantum parameter q. Also z(t) in (31) always has dimension
m ∀q ∈ (0, 1]. The correctness of dimensions of the q-
vertical velocity and the q-height was actually guaranteed by the
definition (4) without any need to involve an auxiliary parameter
as in the literature [15, 16].

Although the present model of the falling body problem seems
simple, the authors believe that the current work is worthy of

exploration. This is because the present solution was provided
to the first time for the falling problem in view of q-calculus.
In addition, it was shown in this paper the way of obtaining the
solutions in exact forms and also how to check the dimensions of
the physical quantities in terms of q-parameter. Furthermore, the
obtained solutions can be verified by direct substitutions into the
governing equations. Therefore, the present work is a first step
for further studies in future to explore various physical models in
applied mathematics implementing the q-calculus.

5. CONCLUSION

In this paper, the quantum calculus was applied to solve
the falling body problem. The exact solutions for the q-
vertical velocity and the q-distance have been obtained. The
obtained exact solutions were expressed in terms of the small
q-exponential function. The correctness of dimensionality of
the obtained formulae of the velocity and the distance was
proved. Moreover, The present exact solutions reduced to the
corresponding solutions in classical Newtonian mechanics when
the quantum parameter q tends to one. The present work
can be further extended to explore the physical properties of
the projectile motion in two and three dimensions in view of
the q-calculus.
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