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The growing availability of imaging data, calculation power, and algorithm sophistication
are transforming the study of morphogenesis into a computation-driven discipline. In
parallel, it is accepted that mechanics plays a role in many of the processes determining
the cell fate map, providing further opportunities for modeling and simulation. We provide
a perspective of this integrative field, discussing recent advances and outstanding
challenges to understand the determination of the fate map. At the basis, high-resolution
microscopy and image processing provide digital representations of embryos that
facilitate quantifying their mechanics with computational methods. Moreover, innovations
in in-vivo sensing and tissue manipulation can now characterize cell-scale processes
to feed larger-scale representations. A variety of mechanical formalisms have been
proposed to model cellular biophysics and its links with biochemical and genetic factors.
However, there are still limitations derived from the dynamic nature of embryonic tissue
and its spatio-temporal heterogeneity. Also, the increasing complexity and variety of
implementations make it difficult to harmonize and cross-validate models. The solution to
these challenges will likely require integrating novel in vivo measurements of embryonic
biomechanics into the models. Machine Learning has great potential to classify spatio-
temporally connected groups of cells with similar dynamics. Emerging Deep Learning
architectures facilitate the discovery of causal links and are becoming transparent and
interpretable. We anticipate these new tools will lead to multi-scale models with the
necessary accuracy and flexibility to formulate hypotheses for in-vivo and in-silico testing.
These methods have promising applications for tissue engineering, identification of
therapeutic targets, and synthetic life.

Keywords: morphogenesis, cell mechanics, multi-scale modeling, morphomechanical fields, deep learning,

cell fate map, fluorescence microscopy, digital embryo

INTRODUCTION

Embryogenesis is a complicated ensemble of processes by which a single cell turns into a multi-
cellular living organism. Through various developmental stages, the cell population proliferates
while tissues develop, change their properties, differentiate, and gain their specific functionality
[1]. During embryogenesis, biochemical, genetic, and epigenetic factors interact, forming a tangled
network of processes with diverse physical length scales and time scales [2, 3]. Remarkably,
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the robustness and variability of these processes are balanced
to make possible the reproducibility and diversity of living
specimens [4].

Mechanics plays a central role in shaping the embryo [5,
6]. Gene expression gradients regulate tissue patterning and
cellular properties, such as rheology, adhesion, and contractility
[7]. At the same time, the embryonic cells sense mechanical
cues from their microenvironment and convert them to
biochemical signals, including gene expression [8, 9]. These
cues are essential to guide morphogenesis but also tissue repair,
given that immature cells can retain significant plasticity and
reprogram in response to external forces [10, 11]. The cross-
talk between biophysical and biochemical processes involves
multiple mechanisms and molecules and occurs in multiple
scales [12]. Besides, cells can follow complex trajectories within
the developing embryo, thereby creating and being exposed to
continuous changes in the microenvironment [13–16].

Researchers have been long interested in discovering
mechanistic links between physical processes and gene
expression that lead to cell fate determination [17–21].
Recent advances in microscopy, modeling, and computation
have enabled quantifying 2D and 3D mechanical forces and
rheological properties in multi-cellular colonies, including live
developing embryos [22–28]. These methods provide local
data in space and time, and analyzing them to unravel cell fate
maps is challenging. High-resolution, long-term observation
in two or three dimensions is desirable to consider the whole
range of scales at which mechanics can impact cell fate. Still,
it complicates the analysis further because it involves massive
amounts of data. Furthermore, the statistical treatment of the
data needs to accommodate the highly heterogeneous and
time-evolving properties of developing tissues [29–31].

This perspective discusses current advances in computational
methods for the characterization of mechanical processes
during embryogenesis and how these processes influence
cell fate. Sections Digital Reconstruction of Embryogenesis,
In vivo Quantification of Forces and Mechanical Properties,
and Computational Models in this perspective are organized
according to key steps in the analysis of experimental data
and relevant methodological approaches. Each section presents
our view into key advances and outstanding challenges. Section
Morphomechanical Domains in Developing Tissues: Follow the
Cell, Not the Voxel proposes a paradigm to deal with the
massive data produced by experimental techniques and construct
a multi-scale representation of embryo dynamics. Finally,
section Understanding Multi-Scale Embryonic Dynamics by
Machine Learning presents problems at the intersection between
morphogenesis and Machine Learning that has not been so far
tackled by the community.

DIGITAL RECONSTRUCTION OF
EMBRYOGENESIS

Progress in live microscopy and fluorescence reporters now
allow high-resolution, time-lapse imaging of developing

embryos in two and three dimensions [32–35]. Image
analysis and computer vision methods can now create digital
atlases of developing embryos (Figures 1A–F). These atlases
contain spatio-temporal information about cell and tissue
morphology, cell lineages, and functional patterns, such
as gene expression or protein activity [36–42]. Moreover,
novel visualization tools allow for systematically browsing
these digital embryos (Figure 1), and integrating them into
numerical simulations and machine learning algorithms
[36, 42, 43].

The three-dimensional in-vivo imaging of whole embryos has
challenges associated with image resolution, quality, and artifacts
(e.g., anisotropic point spread function). Besides, photobleaching
and phototoxicity make it challenging to extend imaging
over intervals long enough to capture relevant morphogenetic
processes. Multi-view light-sheet microscopy (LSM) [35, 44, 45]
and view fusion algorithms [46, 47] allow for 3D imaging large
embryos with cellular isotropic resolution. Recently, advances
proposing adaptive optics and lattice LSM with ultrathin light-
sheet excitation featured, promising sub-cellular resolution
during long-term observation [48].

Reconstructing the multi-scale dynamics of embryogenesis
requires not only long-term imaging with sub-cellular spatial
resolution but also sub-minute temporal resolution. An
established approach to achieve these joint demands is to
record images of several embryos within the same cohort with
different temporal resolutions and to register the resulting
images spatially onto a common template [49, 50]. The projected
growth in computing power of microscopy systems (e.g., by
embedded GPU computing) makes it possible to envision
enhanced microscopes with real-time adaptive multi-scale
observation [51, 52].

Image processing workflows must be able to handle the
massive amounts of complex data resulting from microscopy
modalities to provide a quantification of structures, motion, and
hierarchy [3, 53]. Intensity-based methods, such as optical flow
or image registration produce continuous velocity fields [53–
55] that can leverage the powerful modeling and descriptive
tools of continuum and statistical mechanics [56, 57]. On
the other hand, tracking the motion and divisions of single
cells yields discrete cell lineages, which presents apparent
advantages [4, 36, 40].

Motion estimation is critical because determining cell fate
involves reconstructing 3D cell trajectories across the various
developmental stages, imposing quasi-error-free requirements
(Figures 1E,F). Deep Learning tools, such as Convolutional
Neural Networks can help to improve the performance
under challenging conditions, such as deep-tissue segmentation
provided tagged training data [58, 59]. Interactive annotation
tools for correction and validation are still a suitable approach
to generate reliable expert-driven data [36, 42, 43, 60]
and potentially allow crowdsourced results [61]. Beyond
image data repositories, sharing detailed experiment metadata
through systematic frameworks (e.g., based on ontologies)
can provide a “Big Data” substrate for machine learning to
optimize pipelines.
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FIGURE 1 | Digital reconstruction of cell trajectories in a zebrafish embryo. (A) Three-dimensional (3D) rendering of cell nuclei (blue) in raw data and selection of cells
(yellow) in the dorsal line, performed at 10.7 h-post-fertilization and backtracked to 7 hpf. From left to right, each panel shows a different spatial orientation (animal
pole, lateral and ventral). (B) Detected cell nuclei (red) and cell selection as in (A) (yellow), shown in a spatial slice over the orthoslice of the raw data channel (gray).
Same time step and view angles as in (A). (C) 3D rendering of cell nuclei (blue) and selection of cells of the dorsal line at 10.7 hpf (yellow). (D) Cell detection (red) and
cell selection (yellow) in the same slice as (B). (E) Left: Two cell selections (green and yellow) over nuclei detection domains at 7 hpf. Middle: forward tracking (yellow
to red colormap indicates time advancement) of the two selected cell domains. Right: forward tracking of the two cell selections from a lateral point of view. (F) Cell
selections (green and yellow) at 10.7 hpf. Cell backward tracking (yellow to purple colormap) in same view angles than (E). This dataset and the visualization tool
Mov-IT are freely available from the BioEmergences open workflow http://bioemergences.iscpif.fr/bioemergences/openworkflow-index.php [36].
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IN VIVO QUANTIFICATION OF FORCES
AND MECHANICAL PROPERTIES

Digital reconstruction of morphogenesis already provides
structured data, but embedding biophysical formalisms is
invaluable to decipher multi-scale dynamics. The study of
biophysics in single cells is not new: the measurement of
the rheological properties of cells, their internal stresses
and the forces they exert has received significant attention
in the past two decades [12, 23, 62]. The requirement
of non-invasiveness, three-dimensionality, and the need for
calibrated sensors that sensitive enough to resolve minute forces
and deformations make this task particularly challenging in
live embryos.

Laser ablation was one of the pioneering methods to quantify
embryonic mechanics in vivo. This technique produces a
localized cut in a tissue, which allows for estimating tissue
tensions by letting the ablated region relax to a stress-free
configuration [63–65]. This technique is still widely used
but it is disruptive. A non-invasive alternative is to use
fluorescence reporters to measure acto-myosin activity as
a surrogate metric of force generation. Still, both methods
rely on independent measurements of tissue rheology
[66, 67]. Molecular sensors based on fluorescence resonance
energy transfer (FRET) also provide a minimally invasive
means of measuring forces in vivo [68]. This modality is
very attractive since it probes the tension born by specific
molecules. However, it requires careful calibration, does
not provide vector or tensor data, and needs a different
sensor to measure the tension born by each molecule. It is
undoubtable that these approaches will continue to shed light
on numerous embryogenic processes. Even so, their critical
examination has kindled the search for easy-to-calibrate
quantifications of the strains, stresses and material properties
inside live tissues.

Because in vitro assays allow for careful control of
experimental parameters, they have experienced significant
progress in the past 20 years, thus offering valuable lessons
for the development of in vivo techniques. In particular,
there is a diversity of force microscopy methods that exploit
the linear properties and high deformability of hydrogelsto
provide sensitive, calibrated strain-stress sensors. Cells are
cultured on these hydrogels, the deformation caused by the
cells on the hydrogel is measured, typically by tracking the
motion of fiduciary markers (e.g., fluorescent microspheres),
and the traction forces exerted by the cells are recovered
from the measured deformations [69–71]. Monolayer Stress
Microscopy is an extension of traction microscopy that
quantifies the collective distribution of intracellular stress
in thin confluent cell cultures [72]. A similar approach
was proposed to estimate ventral furrow invagination in
Drosophila although in that case the stress-free configuration
was not known [73]. Of note, traction forces can be highly
three-dimensional even when the cells are plated on flat
hydrogels [74], leading to significant bending and additional
intracellular stress in cell monolayers [75]. Quantifying the

forces involved in epithelial bending and invagination could
offer new biomechanical insights about the morphogenesis of
tissues and organs.

In live developing embryos, it is now feasible to measure
strains (and strain rates, Figure 2) at the cellular level
by tracking the morphological changes of segmented cells
[55, 76]. Tissue-level strain fields can be derived from cell
tracking and optical flow methods (Figures 2A–C) [57, 77]. By
combining the cell-level and tissue-level strain quantifications
it is possible to infer tissue rearrangements, such as cell
deformation and cell intercalation [55, 60, 77, 78]. These
metrics can be overlaid with functional data, such as gene
expression and acto-myosin activity, to provide a correlation-
based understanding of tissue dynamics [53, 77, 79]. Moreover,
continuum strain fields enable the quantification of internal
stresses based on a prescribed mechanical model for the embryo.
These formulations are very advantageous—they allow for
writing sets of equations that can be solved analytically or
numerically to fully characterize the mechanical state of the
tissue [80]. A mechanical formalism that has been applied to
developing embryos with notable success relies on enforcing
static equilibrium of forces between intracellular pressure and
cortical tension. This formulation leads to a geometrical problem
for cell shapes that can be closed by analyzing experimental
images [81–86]. However, it must be recalled that embryonic
tissue properties are heterogeneous, highly non-linear and time-
evolving, which makes it challenging to develop mechanical
formalisms that are uniformly valid across different regions
of space, instants of time, and genetic and pharmacological
manipulations. Furthermore, a significant challenge is to
establish the stress-free reference state to properly quantify visco-
elastic forces.

A recent approach for the in-vivo characterization of
embryonic mechanics, without prior assumptions, consists
of injecting microdroplets or hydrogel microspheres of
size comparable to one cell, and that can act as calibrated
sensors and/or actuators (Figure 2) [87]. After appropriate
functionalization by surface coating, these sensors can be made
biocompatible and are internalized by the embryo, thereby
minimizing the invasiveness of the method. Incompressible
fluorescent oil-droplets allow for quantifying anisotropic
stresses [88], whereas hydrogel droplets with characterized
compressibility allow for quantifying isotropic ones [89].
Moreover, ferrofluid droplets can be act as active sensors
to measure the local tissue rheology [90]. An additional
feature of these sensors is that they move with their
neighboring cells during development, thus providing
valuable information about the temporal evolution of
mechanical stresses and tissue rheology. Their limitations
stem from reduced sampling ability, given by the limited
number of sensors that can be used per embryo, and the
current lack of scalable computational frameworks to relate
the measurements with cell fate determination. Even so,
it is reasonable to expect that emerging innovations will
simplify the implementation of these techniques, enabling their
widespread application.
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FIGURE 2 | Lagrangian representation of kinematics and genetic expression.
(A) Three schematic snapshots of different time intervals of migrating cell

(Continued)

FIGURE 2 | nuclei within an area. The trajectories of two cells (gray and blue)
are highlighted. In the second time step a gene expression pattern in yellow is
shown affecting several cells. In the last time step another different gene
expression pattern is represented in cyan affecting another set of cells. Green
blobs represent mechanical sensors that sense local deformation. (B) Two
snapshots showing the relative displacements of neighbor cells with respect of
a reference cell (gray). These relative displacements are translated into a
kinematic descriptor of relative area change rate that representation expansion
(blue) and compression (red). The relative displacements in this schematic
panel imply a local expansion (blue value) around the reference cell between
timesteps t and t + 1 as shown by the average increasing distance between
the cell nuclei. (C) same schematic than in (B) for a compressive case with
cells getting closer to the reference cell (red value). (D) Lagrangian
vectorization of compression/expansion descriptor [same colormap than
(B,C)] and gene expression along time for the two reference cells. The data
sensed with the mechanical probe is also vectorized in a Lagrangian
representation with colormap dark blue to white. Gene expression is
vectorized along the reference cell trajectories. (E) Schematic of a transformer
(encoder-decoder) architecture trained to infer local forces from deformation
measurements (input). The input is segmented into different temporal frames
as subvectors. (F) Schema of a transformer architecture trained to infer
mechanical factors (input) involved in the appearance of expression patterns at
different temporal scales.

COMPUTATIONAL MODELS

Computational models with explanatory and predictive power
can infer causal links and contribute to the mechanistic
understanding of embryogenesis. These models allow researchers
to observe processes, reverse engineer mechanisms, and test
hypotheses with much looser constraints than pharmacological
or genetic manipulations. Many biological problems involving
collective cell-cell and cell-matrix interactions have been
simulated using discrete, continuum, and hybrid physical
models [91, 92]. Discrete agent-based models initially considered
cellular movements within a lattice to investigate multicellular
interactions [93]. Lattice-free agent-based models consider
continuous movements of each agent. A common approach
is to conceptualize cells as objects with fixed geometry and
biophysical properties, whose trajectories are dictated by the
balance of forces exerted by their neighbors and the environment
[94]. Subcellular resolution can be achieved through agent-based
models in which each agent is deformable and occupies several
nodes [95]. The cellular Potts model (CPM) is an energy-based
stochastic model, typically defined on a lattice that can have
subcellular resolution, that is particularly well-suited to deal
with large deformations and multi-scale phenomena [96]. These
features make the CPM well-suited to simulate collective cell
dynamics in a diversity of scenarios, including morphogenesis
[97]. While they are mostly phenomenological, these models
are a promising, computationally efficient approach to study
how meso-scale multicellular phenomena emerge from the self-
organization of sub-cellular and cellular processes.

The cellular Potts model was initially applied to quantify
epithelial dynamics including the rearrangements of different
cells [98]. Subsequently, the CPM has provided insight about
how cortical tension and cell adhesions drive cell sorting
and tissue organization [99, 100]. More recently, agent-based
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models have proven useful to integrate mechanical cues with
gene expression. Epithelial and mesenchymal tectonics were
simulated together with gene regulatory network dynamics to
recapitulate the dynamics of early zebrafish development [26].
Deformable agent-based models are a promising approach
to quantify mechanotransduction, the heterogeneity of
embryonic tissues, and their impact in larger-scale developmental
processes [92, 101].

Vertexmodels bridge the discrete and continuum descriptions
[102]. In these models, each cell is approximated by a polygon
in 2D or a polyhedron in 3D, and the tissue measurements are
sampled at the junction of three or more cells [102, 103]. Vertex
models provide more information on cell interfaces than agent-
based models permitting the analysis of topological changes in
the cell environment [104, 105]. Curved cell geometries can
be resolved with finite-elements [106, 107], and the biophysical
interaction between the membrane and the cytoplasmic fluid can
also be incorporated using immersed boundary methods [108].
Vertex models have been widely applied to study the mechanics
of epithelia, which are represented as manifolds that can fold
or invaginate [109–114]. These models have made contributions
to our understanding various tissue behaviors: growth [115–
117], cell division and packing [118], planar polarity [119] and
the formation of compartments [120]. Dynamic cellular finite-
element models have been also proposed for individual and
collective cell movements and mechanics [121].

As stated above, continuum models can adapt mechanical
theories, such as hydrodynamics and statistical mechanics to
live matter [122], taking advantage of a massive body of
knowledge and powerful tools from applied mathematics and
computation, such as stability theory, perturbation methods,
and computational fluid dynamics. In addition to providing
a means to relate measurements of strain fields to internal
stresses [78, 123], these models are well-suited to perform
predictive simulations large-scale embryo dynamics. The widely
studied formation of the ventral furrow in Drosophila [124]
is a good example of a process governed by hydrodynamics
[56]. Most continuum models are limited by their inherent
coarse-grained, but fusion between these models and agent-based
models could help resolve the contribution individual cells to
tissue behavior [125].

MORPHOMECHANICAL DOMAINS IN
DEVELOPING TISSUES: FOLLOW THE
CELL, NOT THE VOXEL

Although microscopy experiments provide increasingly rich
data about embryonic development, the data is obtained in a
form that makes it difficult to extract the relationships between
cellular and subcellular dynamics, large-scale biomechanical
phenomena, and cell fate maps. The root for this difficulty can
be illustrated using the analogy between the cell trajectories
and a flow; observation through the microscopy imposes a
perspective in a fixed reference frame as an external observer
of embryogenesis (i.e., Eulerian frame). However, a perspective
as an internal observer that records data along the trajectory

of each cell would be more suitable (i.e., Lagrangian frame).
The Lagrangian framework allows for computing deformation
rates and finite deformations over arbitrarily long time intervals
[57]. It also helps discover Lagrangian coherent structures
[126, 127] formed by cells that experience similar histories
of mechanical cues, and which potentially organize the
embryogenic flow (Figure 2D).

The Lagrangian trajectories of embryonic cells can be obtained
by single-cell tracking or by approximating their motion as
a continuous flow [14, 15, 53]. Moreover, in the Lagrangian
framework, descriptors related to morphology, mechanics,
genetics, etc. can be expressed in terms of the cell trajectories at
specific time intervals. The usefulness of this approach depends
on whether it can identify true morphomechanical fields. That is,
if it finds connected domains of cells with a similar history of
cues, if these domains are reproducible across several specimens,
and if they can be related to the fate maps. We previously
showed that machine learning does identify morphomechanical
fields by classifying cell populations with similar Lagrangian cues
either via clustering or with training data [57]. Comparison of
cohorts can be either performed using a canonical embryo as
reference or computing a statistical average ofmorphomechanical
fields. This is a different approach from statistical spatial atlases
frequently used to align information within a cohort [49, 50].
However, several fundamental questions and methodological
obstacles remain unanswered. In particular, the sensitivity
of the automatic classification of morphomechanical fields to
intra-phenotypic variability, and its usefulness in establishing
inter-phenotype differences need to be addressed in more
detail. In particular, automating these analyses for cohorts of
embryos requires systematic scanning across entire embryos
to compensate for the different development rates of each
embryo and its phenotype variability. Then, through the spatio-
temporal registration of fields [54], it could be possible to
infer robust phenotyping structures and assess the impact of
dynamics variability into morphological configuration of tissues
and organs.

UNDERSTANDING MULTI-SCALE
EMBRYONIC DYNAMICS BY MACHINE
LEARNING

Biological systems are often defined as networks of discrete
elements or biochemical processes, which serve as a conceptual
framework to glean mechanistic insight about their organization
[128, 129]. Framing embryogenesis using this paradigm involves
identifying morphogenetic events and fields [130], which can
be diverse in nature, duration, and length-scale. Based on
image data, one can define morphogenetic events as spatio-
temporal spots of statistically abnormal behavior given a
reference window. They may comprise subcellular or mesoscopic
regions and a variable number of time frames and can be
encapsulated by applying spatio-temporal connectivity [131].
When these fields are backtracked, they become unwound in
time and space, allowing the discovery of intersections with past
events and/or environmental cues. Likewise, forward tracking
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of events can reveal cascade effects that propagate into one
or more morphogenetic fields. The structured representation
of digital embryos as spatio-temporally connected fields is a
form of dimensionality reduction that fits machine learning-
driven approaches.

Owing to recent advances in machine learning methods,
computers can now perform human-like reasoning in tasks,
such as conversation or gaming [132–134]. Deep learning (DL)
architectures, such as Feed-Forward Networks, Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN)
can be applied to analyze interactions in the networks of
elements employed in systems biology [135]. Consequently,
the applications of DL to biomedicine are quickly becoming
ubiquitous [136–139]. The analysis of high-throughput genomics
data to study genetic variations in regulatory networks is
no exception [140, 141]. A main barrier toward adopting
DL in developmental biology has been its black-box nature,
which does not easily permit inferring mechanisms or causal
relationships, and makes it challenging to manipulate models to
test hypotheses.Most ongoing efforts tomitigate these limitations
can be encompassed under the epistemological paradigm of the
Visible Neural Network [142]. One approach toward VNN is
to represent the nodes in the network as “visible” data-driven
models. This approach has been used to relate cell genotypes
and phenotypes based on cell ontologies [143]. An alternate
approach is to build the nodes in the network using explicit
models based on theoretical or semi-empirical laws [144]. Both
approaches allow for manipulating the inner machinery of
the DL architecture, thereby facilitating hypothesis testing, the
inference of causal relationships, and elucidating mechanisms.
Furthermore, coupling DL model-driven architectures with
multi-level structured training data can help reduce the amount
of inputs, simplify the architecture and facilitate its interpretation
[145]. Exhaustive simulations running on cloud technologies
[146, 147] can leverage computational models and feed machine
learning workflows to create multiple hypothesis to be tested
in-vivo. In the case of embryo development, most theoretical
and computational models are coarse grained and, thus, better
suited to represent meso-scale and large-scale phenomena (see
section Computational Models). Consequently, it could be
beneficial to develop hybrid approaches in which cell-scale
phenomena are modeled with DL. This type of bottom-up
methodology has shown great potential to improve the prediction
of chaotic deterministic systems, such as turbulent flow [148],
but it should be noted that, epistemologically, it constitutes
a transparent network of opaque nodes. Given that multiple
relationships among genetic and biophysical processes evolve
dynamically in space and time during morphogenesis, RNNs are
a suitable approach to treat experimental data sequences. Several
architectures of RNN have been proposed to improve training
and solve the vanishing gradient problem through time [149].
LSTM comprise memory cells to infer long-term dependencies
in sequences [150–152]. Gated Recurrent Units are another
RNN architecture that addresses the long-termmemory problem
and outperforms LSTM in some applications [153, 154]. Sets
of LSTM can be combined to design an encoder-decoder that

approaches the problem as a conversion of the input sequence
into an intermediate fixed-length sequence (encoder) that can
be further classified (decoder) [153, 155]. Recent advances in
sequence analysis have been based on the idea of attention
[156–161]. Attention architectures deal with long inputs by
focusing on relevant frames of the sequence, eliminating
the restriction of a fixed-length intermediate sequence, and
leveraging intermediate states of the encoder as additional input
to the decoder. Attention also provides clarity of the input-
output relationships [156] and has shown promising results
in end-to-end entailment of complex data sequences [162].
The transformer, an architecture without recurrence that relies
on feed-forward layers and attention, has been proposed to
exploit the potential of attention while allowing for massive
parallelization [161, 163].

A key issue is how to pre-train [163, 164] and train these
architectures with the data streams of morphogenesis. For
instance, contextual bidirectional pre-training might facilitate
characterizing strain-stress relationships given past and future
tissue states (Figures 2E,F), in order to generate stress maps.
Also, entailment of morphogenetic cues and mechanical events
with fate map determination could be possible using the input
defined by the profiles of cell trajectories, labeled according to
a given morphogenetic field or a mature organ. In this regard,
the scalability of biological domain tagging could introduce
bottlenecks in the generation of training sets, particularly
when considering the inherent variability of biological data.
These tasks may require using several input vectors at the
same time requiring extending current speech-oriented DL
architectures [165, 166].

OUTLOOK

In this perspective, we have critically surveyed recent advances
in computational methods for the characterization of
embryogenesis, focusing on how to integrate data from
biophysical measurements or models into cell fate maps. The
ongoing surge in research efforts to quantify the biophysics
of morphogenesis is leading to important methodological
contributions and new insights about how genetics unfold into
phenotypes. Despite these advances, the mechanistic description
of morphogenesis remains challenging, given the dynamic
and multi-scale nature of the underlying processes and the
notable plasticity of immature cells. Thus, new methods are
required to understand the interplay of physics, genetics, and
epigenetics, leading to cell fate map determination. State-of-
the-art imaging systems, image analyses, and computer vision
methods are enabling the digital curation of multi-dimensional,
high-resolution atlases of developing embryos. These data need
to be structured in a systematic way to ensure experimental
reproducibility and compatibility of different databases, which
are necessary for statistically significant comparisons of large
cohorts. In this sense, we posit that data analysis would benefit
from a Lagrangian representation based on cell trajectories
containing the cumulative histories of the spatio-temporal
events and environmental cues cells experience along their
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paths. This representation integrates spatial information into
temporal sequences allowing for multi-scale discovery of
morphomechanical fields.

Computational models offer a powerful toolbox to assimilate
and explain experimental data, as well as to test new hypotheses.
As these models grow in sophistication, they are beginning
to predict and decipher the dynamics of developing embryos,
based on multi-scale biophysical formalisms that can tackle
spatio-temporal heterogeneity and complex mechanobiological
interplays. These formalisms are benefitting from novel,
minimally-invasive experimental approaches to measure the
evolving mechanical properties of live embryos. However,
the increasing diversity of models makes it difficult to
identify, harmonize, and cross-validate a set of laws that
govern the dynamics of morphogenesis. The lack of long-term
maintenance of many open-source modeling codes makes this
task additionally challenging.

In parallel, machine learning is quickly gaining traction
as an alternative to classic model-driven computation
to leverage intensive experimentation machine learning
and causality inference tools [167, 168] can help test the
completeness of models. In particular, these tools can
elucidate morphomechanical domains formed by cells with
similar dynamics, and link the formation of these domains
with upstream biomechanical events. Deep learning (DL)
architectures are becoming transparent and interpretable by
nesting data-driven or model-driven visible nodes, and have
been proven useful to discover causal links in other biological
processes. For a holistic approach, DL is suitable to analyze
spatio-temporal profiles, seek for events, discover patterns and
identify dynamic entities. Multi-scale comparison of cohorts
with model-driven DL architectures can be the basis to discover
“missing data,” factors and critical spatio-temporal processes
regulating phenotype configuration. Overall, the methodologies
and approaches here discussed will have valuable practical
applications for tissue engineering, stem cell research, genetics
and behavior of diseases, drug studies, and synthetic life.
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P. Reasoning about entailment with neural attention. arXiv [Preprint]
arXiv:1509.06664 (2015).

163. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv [Preprint]
arXiv:1810.04805 (2018).

164. Dai AM, Le QV. Semi-supervised sequence learning. In: Advances in Neural
Information Processing systems.Montréal, QC (2015). p. 3079–87.

165. Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y. Attention-based
models for speech recognition. In:Advances in Neural Information Processing
systems. Montréal, QC (2015). p. 577–85.

166. Rush AM, Chopra S, Weston J. A neural attention model for abstractive
sentence summarization. arXiv [Preprint] arXiv:1509.00685 (2015).
doi: 10.18653/v1/D15-1044

167. Granger CW. Causality, cointegration, and control. J Econ Dyn Control.
(1988) 12:551–9. doi: 10.1016/0165-1889(88)90055-3

168. Pearl J. Causality: Models, Reasoning and Inference. Cambridge, MA:
Cambridge University Press (2000).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Pastor-Escuredo and del Álamo. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Physics | www.frontiersin.org 12 February 2020 | Volume 8 | Article 31

https://doi.org/10.1016/j.cell.2018.05.056
https://doi.org/10.1038/nmeth.4627
https://doi.org/10.1016/j.coisb.2019.04.001
https://doi.org/10.1126/science.aat8464
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.1016/0165-1889(88)90055-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	How Computation Is Helping Unravel the Dynamics of Morphogenesis
	Introduction
	Digital Reconstruction of Embryogenesis
	In vivo Quantification of Forces and Mechanical Properties
	Computational Models
	Morphomechanical Domains in Developing Tissues: Follow the Cell, Not the Voxel
	Understanding Multi-Scale Embryonic Dynamics by Machine Learning
	Outlook
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


