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Toward the microscopic theoretical description for large amplitude collective dynamics,

we calculate the coefficients of inertial masses for low-energy nuclear reactions. Under

the scheme of energy density functional, we apply the adiabatic self-consistent collective

coordinate (ASCC) method, as well as the Inglis’ cranking formula to calculate the inertias

for the translational and the relative motions, in addition to those for the rotational motion.

Taking the scattering between two α particles as an example, we investigate the impact

of the time-odd components of the mean-field potential on the collective inertial masses.

The ASCC method asymptotically reproduces the exact masses for both the relative and

translational motions. On the other hand, the cranking formula fails to do so when the

time-odd components exist.

Keywords: nuclear reaction, inertial mass, nuclear fusion, nuclear collective dynamics, mass parameter

1. INTRODUCTION

The time-dependent density functional theory (TDDFT) [1–5] is a general microscopic theoretical
framework to study low-energy nuclear reactions. Based on the TDDFT, the mechanisms of nuclear
collective dynamics have been extensively studied for decades. The linear approximation of TDDFT
leads to the random-phase approximation (RPA) [5–7], which is capable of calculating nuclear
response functions and providing us a unified description for both structural and dynamical
properties. Despite the detailed microscopic information revealed by TDDFT, it has a difficulty
in describing nuclear collective dynamics at low energy [5]. For instance, it cannot describe the
sub-barrier fusion and spontaneous fission, due to its semiclassical nature [1, 5, 6].

The description of nuclear dynamics in terms of collective degrees of freedom has been explored
in nuclear reaction theories. However, the derivation of the “macroscopic” reaction model based
on the microscopic nuclear dynamics has been rarely studied in the past. For the theoretical
description in terms of collective degrees of freedom, the collective inertial masses with respect to
the collective coordinates are of paramount importance. One of the most commonly used methods
to extract the collective mass coefficient is the Inglis’ cranking formula [8–10], which can be derived
based on the adiabatic perturbation theory.

It is well-known that the cranking formula has a problem that it fails to reproduce the total mass
for the translational motion of the center of mass of a nucleus Ring and Schuck [6]. Therefore, it is
highly desirable to replace the crankingmass by the one theoretically more advanced and justifiable.
We believe that the adiabatic self-consistent collective coordinate (ASCC) method [11–14] suites
for this purpose. The method, in the first place, aims at determining the canonical variables on
the optimal collective subspace for description of a low-energy collective motion. The masses with
respect to those collective coordinates can be extracted by solving a set of the ASCC equations.
This method has been applied to many nuclear structure problems with large-amplitude nuclear
dynamics with the Hamiltonian of the separable interactions [13–16]. Recently, by combining the
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imaginary-time evolution [17] and the finite amplitude method
[18–21], we proposed a numerical method to solve the ASCC
equations and to determine the optimal collective path for
nuclear reaction [22]. At the same time, we obtain the collective
inertial mass in a self-consistent manner. In this work, we
calculate the collective masses for three modes of collective
motion, the translational motion, the relative motion and
rotational motion. We compare the ASCC results with those of
the cranking formula.

Our calculations are under the scheme of energy density
functional theory. In order to guarantee the Galilean symmetry
during a collective motion, most of the energy density functionals
must include densities that are odd with respect to the time
reversal. Under the assumptions of the time-reversal symmetry,
these terms vanish and therefore do not contribute to the
time-even states, while they have non-zero values in situations
of dynamical reactions. It has been found that the time-odd
components play an important role in the inertia parameters
for nuclear rotations [23, 24]. To investigate this problem in the
context of reaction dynamics of light nuclei, we investigate the
effects of time-odd terms on the different inertial masses, taking
the α + α reaction as the simplest example.

This paper is organized as the following. In section 2, we
recapitulate the formulation of the basic ASCC equations in
the case of one-dimensional collective motion. We present
the method of constructing the collective path and the
coordinate transformation procedure to calculate the inertial
mass parameter with respect to the relative coordinate. In
section 3, we apply the method to the reaction system α+α↔8Be.
We focus on the influence of the time-odd terms on both
the relative and rotational inertias. Summary and concluding
remarks are give in section 4.

2. THEORETICAL FRAMEWORK

2.1. Formulation of ASCC Method
In this section, neglecting the paring correlation, we recapitulate
the basic ASCC formulation, and introduce the numerical
procedure of constructing the collective path and calculating
the inertial mass. The details can be found in Wen and
Nakatsukasa [22].

For simplicity, here we consider the collective motion
described by only one collective coordinate q(t), which has a
conjugate momentum p(t). We assume that the time-dependent
mean-field states are parameterized by Slater determinants
labeled as |ψ(p, q)〉. The energy of the system reads

H(p, q) = 〈ψ(p, q)|Ĥ|ψ(p, q)〉, (1)

which defines a classical collective Hamiltonian. In the ASCC
method, the resulting collective path |ψ(p, q)〉 is determined so
as to maximally be decoupled from other intrinsic degrees of
freedom. The evolution of q(t) and p(t) obeys the canonical
equations of motion with the classical Hamiltonian H(p, q).

In order to consider the adiabatic limit, we assume the
momentum p is small and the states are expanded in powers of
p about p = 0. The states |ψ(p, q)〉 are written as

|ψ(p, q)〉 = eipQ̂(q)|ψ(0, q)〉 = eipQ̂(q)|ψ(q)〉, (2)

where the generator Q̂(q) is defined as Q̂(q)|ψ(q)〉 = −i∂p|ψ(q)〉.
The conjugate P̂(q) is introduced as a generator for the
infinitesimal translation in q, P̂(q)|ψ(q)〉 = i∂q|ψ(q)〉. P̂(q) and
Q̂(q) can be expressed in the form of one-body operator as

P̂(q) = i
∑

n∈p,j∈h
Pnj(q)a

†
n(q)aj(q)+ h.c.,

Q̂(q) =
∑

n∈p,j∈h
Qnj(q)a

†
n(q)aj(q)+ h.c., (3)

where i in the expression of P̂(q) is simply for convenience. They
are locally defined at each coordinate q and will change their
structure along the collective path. The particle (n ∈ p) and
hole (j ∈ h) states are also defined with respect to the Slater
determinant |ψ(q)〉.

In the adiabatic limit, expanding Equation (2) with respect to p
up to second order, the invariance principle of the self-consistent
collective coordinate (SCC) method [11] leads to the equations
of the ASCC method [5, 12]. Neglecting the curvature terms, it
reduces to somewhat simpler equation set:

δ〈9(q)|Ĥmv|9(q)〉 = 0, (4)

δ〈9(q)|[Ĥmv,
1

i
P̂(q)]− ∂2V(q)

∂q2
Q̂(q)|9(q)〉 = 0, (5)

δ〈9(q)|[Ĥmv, iQ̂(q)]−
1

M(q)
P̂(q)|9(q)〉 = 0, (6)

with the inertial mass parameter M(q). The mass M(q) depends
on the scale of the coordinate q. Thus, we can choose it to
make M(q) = 1 without losing anything. The moving mean-
field Hamiltonian Ĥmv and the potential V(q) are, respectively,
defined as

Ĥmv = Ĥ − ∂V(q)

∂q
Q̂(q), V(q) = 〈ψ(q)|Ĥ|ψ(q)〉. (7)

Note that the collective path is given by |ψ(q), which represents
the state |ψ(q, p) with p = 0. Equation (4) is similar to
a constrained Hartee-Fock problem, however, the constraint
operator Q̂(q) depends on the coordinate q, which is self-
consistently determined by the RPA-like Equations (5) and (6),
called “moving RPA equations.” The conventional RPA forward
and backward amplitude Xni(q) and Yni(q) can be regarded as the
linear combination of P̂(q) and Q̂(q).

Xnj =
√

ω

2
Qnj +

1√
2ω

Pnj, Ynj =
√

ω

2
Qnj −

1√
2ω

Pnj, (8)

where the RPA eigenfrequency ω is related to the mass parameter
and the second derivative of the potential

ω2 = 1

M(q)

∂2V(q)

∂q2
. (9)
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As a pair of canonical variables, a weak canonicity condition
〈9(q)|[iP̂(q), Q̂(q)]|9(q)〉 = 1 should be satisfied. This
canonicity condition is automatically satisfied if the RPA
normalization condition

∑

n,j(X
2
nj − Y2

nj) = 1 holds.

It should be noted that the ASCC method is applicable
to systems with pairing correlations, in principle. However, in
this paper, we neglect the pairing correlation to reduce the
computational cost, and concentrate our discussion on effects
of mean fields of particle-hole channels for the inertial masses.
We present results for the α + α reaction in section 3, for which
no level crossing at the Fermi surface is involved. Therefore, the
pairing plays very little role in this particular case.

For superconducting systems, apart from the collective
coordinate and momentum, an additional pair of canonical
variables, the particle number and the conjugate gauge angle, are
needed to label the nuclear state. Details of the formulation are
give in Matsuo et al. [12] and Nakatsukasa et al. [5].

2.2. ASCC Collective Path and Inertial Mass
A change in the scale of the collective coordinate q results in a
change in the collective mass M(q). Thus, in order to discuss
the magnitude of the collective mass, we need to fix its scale.
This is normally done by adopting an intuitive choice of the
one-body time-even operator Ô. One of possible choices is the
mass quadrupole operator Q20 =

∫

drψ†(r)r2Y20(r̂)ψ(r). In
the present study of nuclear scattering (nuclear fission), it is
convenient to adopt the relative distance R̂ between two nuclei
with the projectile mass numberApro and the target mass number
Atar. Assuming that the center of mass of the two nuclei are on the
x axis (y = z = 0),

R̂ ≡
∫

drψ̂†(r)ψ̂(r)x

[

θ(x− xs)

Apro
− θ(xs − x)

Atar

]

, (10)

where θ(x) is the step function, and x = xs is the artificially
introduced section plane that divides the total space into two,
each of which contains the nucleon number of Apro and
Atar, respectively.

The operator R̂ has an evident physical meaning when the
projectile and the target are far away to each other. When they
touch each other, the distance between two nuclei is no longer
a well-defined quantity, thus loses its significance. However, this
is not a problem in the present microscopic formulation of the
reaction model. We have determined the reaction path and the
canonical variables (q, p), through the ASCCmethod. It is merely
a coordinate transformation from q to R with a function R(q).
The reaction dynamics do not depend on the choice of R, as far
as the one-to-one correspondence between q and R is valid.

The coordinate transformation naturally leads to the
transformation of the inertial mass fromM(q) toM(R);

M(R) = M(q)

(

dq

dR

)2

. (11)

The calculation of the derivative dq/dR is straitforward, because
the collective path |ψ(q) and the local generator P̂(q) of the

coordinate q are obtained by solving the ASCC Equations
(5) and (6).

(

dq

dR

)−1

= dR

dq
= d

dq
〈ψ(q)R̂|ψ(q)〉

= −i〈ψ(q)
[

R̂, P̂(q)
]

|ψ(q)〉. (12)

The inertia mass parameter with respect to R or any other
coordinate can be easily calculated with this formula.

We solve the moving RPA Equations (5) and (6) by taking
advantage of the finite amplitude method (FAM) [18–21],
especially the matrix FAM prescription [21]. To solve the ASCC
Equations (4), (5), and (6) self-consistently and construct the
collective path |ψ(q), we adopt the following procedures:
1. Prepare the Hartree-Fock ground state |ψ(q = 0) which can

be either the two separated nuclei before fusion, or the ground
state of the mother nucleus before fission.

2. Based on |ψ(q), solve the moving RPA Equations (5) and (6),
to obtain Q̂(q) and P̂(q). First, we start with an approximation
Q̂(q+ δq) = Q̂(q).

3. Solve the moving HF Equation (4) to calculate the state
|ψ(q+ δq) by imposing the condition

〈9(q+ δq)|Q̂(q)|9(q+ δq)〉 = δq, (13)

where we use the approximate relation, |ψ(q+ δq) ≃
e−iδqP̂(q)|ψ(q), to constrain the step size.

4. With this new state |ψ(q+ δq), update the generators Q̂(q +
δq) and P̂(q + δq) by solving the moving RPA equations
again. Then, with these updated generators, go back to the step
2.2. Repeat the steps 2.2 and 2.2 until the self-consistency is
achieved at q+ δq.

5. Then, regarding q + δq as q with an initial approximation
Q̂(q+ δq) = Q̂(q), go to the step 2.2.

Carrying on this iterative procedure, we determine a series of
states |ψ(0), |ψ(δq), |ψ(2δq), |ψ(3δq), · · · that form the ASCC
collective path. Changing the sign of the right hand side of
Equation (13), we can also construct the collective path toward
the opposite direction {|ψ(−δq), |ψ(−2δq), · · · }. In this way, the
collective path |ψ(q), the potential V(q), and the collective mass
M(q) are determined self-consistently and no a priori assumption
is used.

3. APPLICATIONS

3.1. Solutions for the Translational Motion
First, we calculate the inertial mass for the translational motion,
for which we know the exact value Am. The calculation is done in
the three-dimensional coordinate space discretized in the square
grid in a sphere with radius equal to 7 fm. The BKN energy
density functional [25] is adopted in the present calculation.

The HF ground state is a trivial solution of Equations (4)–(6),
on the collective path since it corresponds to the minimum of
the potential surface, ∂V/∂q = 0. We calculate the translational
inertia mass of the ground state of an alpha particle, and examine
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FIGURE 1 | (Left panel) Calculated RPA eigenfrequencies based on the ground state of the alpha particle, as a function of mesh size. The red closed circles indicate

the values for translational mode, while the green asterisks and purple open circles indicate those for monopole and quadrupole modes, respectively. (Right panel)

Calculated translational mass M of a single alpha particle in units of nucleon’s mass m, as a function of the mesh size. The calculated mass with respect to the y

direction, perpendicular to the symmetry (x) axis, is shown. The one with respect to the x direction is presented in Figure 1 of Wen and Nakatsukasa [22].

its grid size dependence. The left panel of Figure 1 shows the
eigenfrequency ω in Equation (9) of the lowest several RPA states
as a function of the mesh size of the grids. The three translational
modes along x, y, z axis are degenerated and shown by the red
dots, the absolute value of this eigenfrequency decreases and
approaches zero as the mesh size becomes smaller. The value
of the translational motion is significantly smaller than all the
other collective modes. In the ideal case where the mesh size
is sufficiently small, this value is expected to be zero. For other
collective modes, the eigenfrequencies stay almost constant as
functions of the mesh size. Due to the compact nature of alpha
particle, except for the translational zero-modes, the lowest
physical excitation mode is calculated to be about 20 MeV, which
represents the monopole vibration.

Using Equation (11) we calculate the translational inertia mass
of one alpha particle. The right panel of Figure 1 shows the result
as a function of mesh size. As the mesh size decreases, the results
approach to the value of 4 in the unit of nucleon mass, which is
the exact total mass of the alpha particle. With the simple BKN
energy density functional, this exact value for the translation is
also obtained with the cranking mass formula of Inglis. However,
it underestimates the exact total mass when the energy functional
has a effective mass m∗/m < 1. On the other hand, the ASCC
mass for the translational motion is invariant and exact even with
the effective mass. This is due to the Galilean symmetry of the
energy density functional which inevitably contains the time-odd
components. This will be discussed in section 3.4.

3.2. ASCC Reaction Path for α+α↔
8Be

The numerical application of the ASCC method to determine a
collective path for the nuclear fusion or fission reactions demands
a substantial computational cost. Here, we present the result for
the reaction path of α+α↔8Be, as the simplest example. It can
be regarded as either the fusion path of two alpha particles or the
fission path of 8Be. Themodel space is the three-dimensional grid
space of the rectangular box of size 10 × 10 × 18 fm3 with mesh

size equal to 1.0 fm. The standard BKN energy density functional
is adopted.

Starting from the two ground states of α particle and carrying
out the iterative procedure presented in section 2.2, we obtain a
fusion path that connects the two well separated alpha particles
to the ground state of 8Be. If we start the calculation from the
ground state of 8Be, the same reaction path, that represents
fission of 8Be, can be obtained. In the left four panels of Figure 2,
we show the calculated density distribution of four different
points on the obtained collective fusion path. The panel (a) shows
the density distribution of two alpha particles at R = 6.90 fm,
(d) shows that of the ground state of 8Be which corresponds to
R = 3.55 fm. Those of (b) and (c) show those at R = 5.40 fm
and 4.10 fm, respectively. The collective path smoothly evolves
the separated two alpha particles into the ground state of 8Be.

The right panel of Figure 2 shows the potential energy along
this collective path, as a function of R. The dashed cure shows
the point Coulomb potential, 4e/R + 2Eα , with the ground state
energy of a single alpha particle Eα . With the BKN energy density
functional, the 8Be is bound in the mean-field level. The ground
state of 8Be is located in the potential minimum at R = 3.55 fm,
while the Coulomb barrier top is at R = 6.50 fm. This ASCC
collective path is self-consistently generated by the iterative
procedure presented in section 2.2. The generators (Q̂(q), P̂(q))
for the relative motion are microscopically given. Since the
structure of the 8Be nucleus is very simple, this potential surface is
actually similar to that of the constraint Hartree-Fock calculation.

3.3. Inertial Mass for α+α↔
8Be

Upon the collective reaction path obtained, the inertial mass
with respect to the relative distance R, MASCC(R), is calculated
using Equation (11). In the asymptotic region, we expect the
inertial mass to be identical to the reduced mass, µred =
AproAtarm/(Apro + Atar), where m is the nucleon mass. For the
current system α+α↔8Be, the value ofµred is expected to be 2m.
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FIGURE 2 | (Left panel) Calculated density distributions of four points on the ASCC collective fusion path α+α→8Be. Inset (A) shows the density distribution of two

well separated alpha particles at R = 6.90 fm, inset (D) is the ground state of 8Be at R = 3.55 fm. Inset (B,C) show the density distributions at R = 4.10 fm, 5.40 fm,

respectively. Those on the y − z plane are plotted. (Right panel) Potential energy as a function of R shown by the red curve. The blue the dashed line is calculated as

4e2/R+ 2Eα for reference.

The reduced mass µred is justifiable when two alpha particles
are well separated. However, it loses its validity as two particles
approach each other. A widely used approach to calculate inertial
mass for nuclear collective motion is the “Constrained-Hartree-
Fock-plus-cranking” (CHF+cranking) approach [26]. In this
approach, the collective path is produced by the CHF calculation
with a constraining operator Ô given by hand, and the inertial
mass is calculated based on the cranking formula with respect
to these CHF states. The formula for the cranking mass can be
derived by the adiabatic perturbation [6]. In the present case of
the one-dimensional motion, based on the states constructed by
the CHF calculation with a given constraining operator Ô, the
cranking formula reads [26]

MNP
cr (R) = 2

∑

n∈p,j∈h

|〈ϕn(R)|∂/∂R|ϕj(R)〉|2
en(R)− ej(R)

, (14)

where the single-particle states ϕµ and their energies eµ are

defined with respect to hCHF(λ) = hHF[ρ]− λÔ,

hCHF(λ)|ϕµ(λ)〉 = eµ(λ))|ϕµ(λ)〉, µ ∈ p, h. (15)

We may use any operator Ô as a constraint, as far as
it can generate the states with all the necessary values of
R = 〈R̂〉. However, obviously the inertial mass M(R)
depends on this choice, which is one of drawbacks of the
CHF+cranking approach.

In most of the reaction models, the inertial mass with respect
to R is assumed to be a constant value of µred. Our study reveales
how the inertia changes as a function of R. In Figure 3, both the
ASCC and the cranking masses are presented. For the cranking
mass, since the CHF state needs to be prepared first. We calculate
the CHF states in two ways with different constraining operators
Ô; the mass quadrupole operator Q̂20 and the relative distance R̂
operator of Equation (10). The model space for both calculations
are the same. As we can see from Figure 3, at large distance,

FIGURE 3 | (Color online) Inertia masses MR for the reaction α+α↔8Be as a

function of relative distance R. The solid (red) curve indicates the result of

ASCC. The other curves show the cranking masses of Equation (14)

calculated based on CHF states. The dotted (green) and dash-dotted (blue)

lines indicate the results with constraints on R̂ and Q̂20, respectively.

both methods asymptotically reproduce the reduced mass of 2m,
which is the exact value for the relative motion between two alpha
particles. In the interior region where the two nuclei have merged
into one system, these three masses give very different values.
Generally the cranking mass is found to be larger than the ASCC
mass, especially at around R = 4.7 fm where all the three masses
develop a bump structure.

The difference between the ASCC and the cranking masses
attributes to several factors. One is due to the fact that the
cranking formula neglects residual fields induced by the density
fluctuation. Another is that the constraining operators affect the
single-particle energies eµ(R). We also note that the cranking
masses obtained with different constraints give very different
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FIGURE 4 | Relative inertial masses in the presence of time-odd mean-field potential for the reaction α+α↔8Be as a function of relative distance R. The results of the

cranking masses are shown in the left panel and those of the ASCC method are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves

show the results calculated with B3 = 0, 25, and 75 MeV fm5, respectively.

values. This is true even at the HF ground state (R = 3.55
fm), in which the single-particle states |ϕµ(R) and their single-
particle energies eµ(R) are all identical to each other. This is
because the derivative ∂/∂R gives different values, since the
different constraint produces different states away from the HF
ground state. This ambiguity exposes another drawback of the
CHF+cranking approach, while the ASCCmass has an advantage
that the collective coordinate as well as the wave functions are
self-consistently calculated rather than artificially assumed.

3.4. Impact of Time-Odd Potential
All the results shown so far are obtained with the standard BKN
energy density functional that has no derivative terms. Therefore,
the nucleon’s effective mass is identical to the bare nucleon mass.
However, most of realistic effective interactions have effective
mass smaller than the bare mass, typically m∗/m ∼ 0.7. In such
cases, an improper treatment of the collective dynamics leads to a
wrong answer for the collective inertial mass [27]. This change in
the effectivemass typically comes from the term ρτ in the Skyrme
energy density functional, which should accompany the term−j2

to restore the Galilean symmetry [27, 28]. These terms are absent
in the standard BKN functional.

To investigate the effect of the time-odd mean-field potential
on the collective inertial mass, we add the term B3(ρτ − j2) to
the original BKN energy density functional. The modified BKN
energy density functional reads,

E[ρ] =
∫

1

2m
τ (r)dr+

∫

dr

{

3

8
t0ρ

2(r)+ 1

16
t3ρ

3(r)

}

+
∫ ∫

drdr′ρ(r)v(r− r′)ρ(r′)

+B3

∫

dr
{

ρ(r)τ (r)− j2(r)
}

(16)

where ρ(r), τ (r), and j(r) are the isoscalar density, the isoscalar
kinetic density, and the isoscalar current density, respectively. In
Equation (16), v(Er) is the sum of the Yukawa and the Coulomb

potentials [25]. The variation of the total energy with respect
to the density (or equivalently single-particle wave functions)
defines the single-particle (Hartree-Fock) Hamiltonian. In the
present case, the single-particle Hamiltonian turns out to be

h[ρ] = −∇ 1

2m∗(r)
∇ + 3

4
t0ρ(r)+

3

16
t3ρ

2(r)

+
∫

dr′v(r− r′)ρ(r′),

+B3(τ (r)+ i∇ · j(r))+ 2iB3j(r) · ∇ (17)

where the effective mass is now deviated from bare nucleon mass

h̄2

2m∗(r)
= h̄2

2m
+ B3ρ(r). (18)

For the time-even states, such as the ground state of even-even
nuclei, the current density disappears, j = 0. Even though, these
terms play an important role in the collective inertial mass. The
parameter B3 6= 0 provides the effective mass and the time-
odd effect. The rest of the parameters are the same as those in
reference [25].

To examine the impact of the time-odd terms on the inertial
mass, in Figure 4 we show M(R) calculated with and without
the B3 term. When the time-odd terms are absent, B3 = 0,
both the ASCC and the cranking formula reproduce the α + α

reduced mass in the asymptotic limit (R → ∞). However, the
cranking formula fails to do so with B3 6= 0. As the value of B3
increases, the asymptotic cranking mass decreases. This can be
naively expected from the reduction of the effective mass from
the bare mass. In contrast, the ASCC inertial mass converges to
the correct reduced mass, no matter what B3 values are. This
means that the ASCC method is capable of taking into account
the time-odd effect and recovering the exact Galilean symmetry.

Another inertial mass indispensable in the collective
Hamiltonian of nuclear reaction models is the rotational
moments of inertia. The rotational motion is a Nambu-
Goldstone (NG) mode. To calculate this, we utilize a method
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FIGURE 5 | Rotational moments of inertias in the presence of time-odd mean-field potential for the system α+α as a function of relative distance R. The results of

cranking formula are shown in the left panel and the results of ASCC are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves show the

results calculated with B3 = 0, 25, 75 MeV fm5, respectively, as labeled in the figure.

proposed in the reference [29], where the inertial masses of
the NG modes are calculated from the zero-frequency linear
response with the momentum operator of the NG modes. The
formulation has been tested in the cases of translational and
pairing rotational modes, showing high precision and efficiency.
Based on the collective path obtained, we apply this technique to
calculate the rotational moments of inertia.

In Figure 5, the calculated moments of inertias are presented.
With B3 = 0, the moments of inertia calculated with the ASCC
and with the cranking formula well agree with each other in the
asymptotic region of large R. The value is equal to the point-mass
approximation in which the point α particles are assumed at the
center of mass of each α particle. However, when non-zero B3
comes in, the cranking mass formula can no longer reproduce
this asymptotic value. Similar to the case of relative motion, as
the value of B3 increases, the asymptotic moments of inertia
decrease and deviate from the asymptotic value. In contrast, the
ASCC method provides the moments of inertia almost invariant
with respect to the B3 values. These results show again that,
compared with the cranking formula, the ASCC method gives
the collective inertial masses by properly taking into account the
time-odd effects.

4. SUMMARY AND DISCUSSION

Based on the ASCC theory, we presented a method to
determine the collective reaction path for the nuclear reaction
as the large amplitude collective motion. This method is
applied to the fusion/fission α+α↔8Be, using the BKN energy
density functional. In the three-dimensional coordinate-space
representation, the reaction path, the collective potential, as
well as the inertial masses are self-consistently calculated. We
compare the ASCC results with those of the CHF+cranking
method. Since the reaction system is very simple, there is no
significant difference between the calculated CHF reaction paths
with different constraint operators. Despite of this similarity in
the CHF states, the inertial masses calculated with the cranking

formula turn out to sensitively depend on the choice of the
constraint operator. The ASCC method is able to remove this
ambiguity in the inertial mass, by taking into account the residual
effects caused by the density fluctuation.

We add a term, which introduce the effective mass and time-
odd mean fields, to the standard BKN energy density functional,
to examine the effect of these terms on the inertial masses for
both the relative and rotational motions. In the presence of time-
odd term, the cranking formula fails to preserve the correct
asymptotic values, while the validity of ASCCmass is not affected
by the introduction of the effective mass. The time-odd mean-
fields properly recover the Galilean symmetry, leading to the
exact values of the asymptotic inertial mass. This is found to be
true in both relative and rotational motions. With this property,
we are quite confident that the ASCC method is promising to
be applied to the modern nuclear energy density functionals,
and make advanced microscopic theoretical analysis on various
nuclear reactionmodels. Another important issue is the inclusion
of the paring correlation, which may influence not only static
but also dynamical nuclear properties. In order to keep the
lowest-energy configuration during the collective motion, the
pairing interaction is known to play a key role [30]. Therefore,
we may expect significant impact on both the collective inertial
masses and the reaction paths. To study the above issues are our
future tasks.
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