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The Faddeev-Yakubovsky equations constitute a rigorous formulation of the quantum

mechanical N-body problem in the framework of non-relativistic dynamics. They allow

the exact solutions of the Schrödinger equation for bound and scattering states to be

obtained. In this review, we will present the general formalism as well as the numerical

tools we use to solve Faddeev-Yakubovsky equations in configuration space. We will

consider in detail the description of the four- and five-nucleon systems based on modern

realistic nuclear Hamiltonians. Recent achievements in this domain will be summarized.

Some of the still controversial issues related with the nuclear Hamiltonians as well

as the numerical methods traditionally employed to solve few-nucleon problems will

be highlighted.

Keywords: Faddeev-Yakubovsky equations, four-nucleon system, five-nucleon systems, few-body collisions,

scattering observables

1. INTRODUCTION

The solution of the Faddeev-Yakubovsky (FY) equations is an extremely challenging task from both
the intellectual and technical points of view. The fast growth in the complexity of this problem
with the number of interacting nucleons (A) makes progress in solving these equations relatively
slow [1]. During the last twenty years, we have witnessed the emergence of the full solution—
bound and scattering states—of the four-nucleon problem [2, 3] and only very recently have the
first solutions for A= 5 [4–6] been published.

Although the four-boson bound problem was already formulated—and solved with S-wave
interaction—in [2], the first converged result employing realistic NN interactions for the A = 4
bound state (4He) took another 10 years to achieve [3].

The first solution of the scattering problem for the elastic 1+3, 2+2, and 1+3→ 2+3
rearrangement channels within the isospin approximation and S-wave interactions dated from
1998 [7], and it took twenty years more to obtain a full solution of the four-nucleon scattering
problem with (i) realistic interactions [8–10] (ii) including charge-dependent (CD) and non local
terms [11], (iii) Coulomb effects [12–15], (iv) three- and four-body breakup amplitudes [13, 16–18],
and (v) a proper ab-initio determination of the 4N resonant states (e.g., 4n or 4H) as S-matrix poles
in the complex energy plane [6, 19–23]. There remains only the computation and analysis of the
three- and four-body breakup differential cross-sections, since only the integrated cross-sections
are nowadays available.
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The A = 4 schematic chart is displayed in the left panel of
Figure 1. It comprises five different charge states (Z = 0, 1, 2, 3,
4), including a single bound state (4He) as well as five two-cluster
scattering channels (n-3H, n-3He, p-3H, 2H-2H, p-3He denoted
in an olive color), several three-body (in blue) and four-body (in
black) break-up thresholds, and numerous—well-identified or
questioned—low-energy resonances. The A = 4 sector presents
the simplest case, revealing in practice all the phenomena of the
theoretical nuclear physics: the presence of several thresholds and
resonances. As an example, the continuum of the 4He nucleus
contains almost degenerate n-3He and p-3H thresholds, with an
4He resonant state situated in between whose position must be
accurately determined since it strongly modifies the scattering
in both channels and thus constitutes a serious challenge for all
realistic NN interaction models [8, 26]. Although still far from
the intricacy of heavy nuclei, one can say that, in some sense, the
nuclear complexity really starts at A= 4.

Solving the A = 5 problem represents a redoubtable technical
and numerical difficulty with respect to the A= 4 case. However,
the A= 5 chart is simpler than the A= 4 one due to the absence of
the A= 5 bound state and of 3,5Li and/or 4Be targets: the number
of charge states effectively investigated is limited to three (Z =
1, 2, 3) since the experimentally inaccessible 5n and 4p states
raise less interest. There are four two-body scattering channels
(n-4He, 2H-3H, 2H-3He, and p-4He, also denoted in olive), some
of them, like the 2H+3H→ n+4He fusion reaction, of paramount
importance in nuclear physics and in the stellar nucleosynthesis
cycle. In contrast, the number of three- and four-body breakup
thresholds (in blue) is sensibly larger. This is illustrated in the
right panel of Figure 1, where the “nuclear chart” corresponding
to A = 5 is displayed. The FY solutions for A = 5 are at present
limited to low energy (S- and P-waves) n-4He elastic scattering
[4, 5] and in computing the lowest resonant states of 5H [6], in
both cases using realistic interactions. Some disagreements with
the R-matrix analysis were found in both systems. The fusion
reaction 2H+3H → n+4He has not yet been solved within the
FY framework, but a recent pioneering result has been achieved
within the NCSMC approach [27].

We would like to point out from the very beginning that other
rigorous schemes were proposed for solving the ab initioN-body
problem. One of the most relevant is that provided by the AGS
equations [28], which is strictly equivalent to the FY formalism
and has produced very accurate results for the three- and four-
nucleon problem, always in momentum space [29, 30]. We also
emphasize that such rigorous mathematical schemes are not
necessary when dealing with bound states or simple 1+ (N − 1)
elastic scattering processes and that the Schrödinger equation can
then be directly solved by several methods.

It is worth also mentioning that, aside from FY solutions
in configuration space, on which we report, there are several
competing approaches to solving the A = 4 and A = 5
problems that have produced very interesting and, in some cases,
pioneering results. Any attempt at an exhaustive reference list
is beyond our capabilities. However, we would like to point
out among them the GFMC [31, 32], variational approaches
with Hyperspherical Harmonics [33, 34] or a Gaussian basis
[35], RGM [36], NCSM and NCSMC [27, 37], and Lorentz

Integral Transform [38], which can produce very accurate
results, in some cases well beyond the technical capabilities
of the Faddev-Yakubovsky approach. However, the Faddeev-
Yakubovsky partition of the wave function is interesting for
increasing the numerical convergence of the results or is even
unavoidable for an appropriate implementation of the boundary
conditions [35, 39]. The interested reader can find a more
thorough bibliography in some devoted reviews [40].

In this contribution, we will concentrate on some particular
issues that our previous works had not treated with the required
detail. We will mostly present results related to the four-nucleon
scattering problem, obtained by solving the Faddeev-Yakubovsky
equations in configuration space, and will add some recent results
on the five-nucleon n-4He low-energy scattering. In section 2,
we will detail the theoretical aspects of the four-body equations.
section 3 is devoted to the discussion of 4N scattering results with
different realistic models. Some concluding remarks are collected
in the Conclusions.

2. THEORETICAL DESCRIPTION

In what follows, we will present the general formalism as
well as the numerical methods relevant to the solution of the
four-body problem in configuration space. Some results related
with neutron scattering on 4He that we obtained by solving
five-body FY equations will also be discussed; however, and
due to its complexity, the five-body formalism will not be
presented here. For this particular case, a interested reader may
refer to Sasakawa [41], Lazauskas [4, 5], and Lazauskas and
Song [42].

2.1. The Four-Body FY Equations
The derivation of the four-body Faddeev-Yakubovsky equations
starts by defining the three-body-like Faddeev components
(FC) ψij, which are associated to each interacting pair of
particles (ij):

ψij = G0Vij9 (i < j). (1)

Here, G0 = (E − H0)
−1 denotes the free four-body Green’s

function, associated with the four-body kinetic energy operator
H0 and the four-body energy E, while Vij denotes the two-
body potential between the particles i and j. Naturally, for
a four-body system, there exist six different three-body-like
Faddeev components. In terms of these, one can define
two types of the so-called Faddeev-Yakubovsky component
(FYCs), denoted, respectively type-K and type-H components, by
the relations:

Kl
ij,k

= GijVij(ψjk + ψik) (i < j);

Hkl
ij = GijVijψkl (i < j; k < l).

(2)

In this equation, Gij = (E − H0 − Vij)
−1 denotes the interacting

four-body Green’s function associated with the interaction term
between particles i and j. By permuting particle indexes, one
may construct 12 independent components of type-K as well
as six independent components of type-H. The asymptotes
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FIGURE 1 | Schematic nuclear chart for A = 4 (left) and A = 5 (right) systems displaying the different thresholds (full lines). The two-cluster thresholds are depicted

in an olive color, many-cluster thresholds in blue and black. Some selected resonant states are depicted by dashed lines, indicating approximate positions of their

centroids, as predicted by R-matrix analysis by Tilley et al. [24] and Tilley et al. [25]. The widths of the resonant states are disregarded.

FIGURE 2 | Four-particle partitions K4
12,3 and H34

12, together with the

associated Jacobi coordinate sets.

of the components Kl
ij,k

and Hkl
ij incorporate all the possible

3+1 and the 2+2 particle channels, respectively, as illustrated
in Figure 2. Here, we are interested in nuclear problems,
involving protons and neutrons. Within the isospin formalism,
neutrons and protons are treated as isospin-degenerate states of
the same particle: the nucleon. Then, the FY components, which
differ by the order of the particle indexing, are related due to
the symmetry of particle permutation. There remain only two
independent FYCs, which are further denoted K ≡ K4

12,3 and

H ≡ H34
12 by omitting their particle indexes. For FY equations for

a case of four identical particles (see [11, 43]):

(E−H0 − V12)K = V12(P
+ + P−)

[

(1+ Q)K+H
]

,

(E−H0 − V12)H = V12P̃
[

(1+ Q)K+H
]

, (3)

Each FY component F = (K,H) has its natural expression
in its proper set of Jacobi coordinates, as depicted in Figure 2.
However, they may be as well-considered as a function of any set
of Jacobi coordinates and converted for one coordinate set into
another one by using the particle permutation operators, which
are summarized as follows:

P+ = (P−)−1 ≡ P23P12,
Q ≡ −P34,
P̃ ≡ P13P24 = P24P13,

where Pij indicates the operator permuting particles i and j.
In terms of the FYCs, the total wave function of an A = 4

system is given by:

9 =
[

1+ (1+ P+ + P−)Q
]

(1+ P+ + P−)K

+ (1+ P+ + P−)(1+ P̃)H. (4)

Each FY component F = (K,H) is considered as a function,
described in its proper set of Jacobi coordinates, as depicted
in Figure 2.

The angular, spin, and isospin dependence of these
components are described using the tripolar harmonics
Yα(x̂, ŷ, ẑ), i.e.,:

〈ExEyEz|F〉 =
∑

α

Fα(xyz)

xyz
Yα(x̂, ŷ, ẑ). (5)
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The quantities Fα(xyz) are called the regularized radial FY
amplitudes, where the label α holds for a set of 10 intermediate
quantum numbers describing a given four-nucleon quantum
state (Jπ ,T, Tz). By using the LS-coupling scheme, the tripolar
harmonics are defined for components of K and H type,
respectively, by

YαK ≡
{[

(

lxly
)

lxy
lz

]

L

[

(

(s1s2)sx s3
)

S3
s4

]

S

}

JπM

⊗
[

(

(t1t2)tx t3
)

T3
t4

]

TTz

, (6)

YαH ≡
{[

(

lxly
)

lxy
lz

]

L

[

(s1s2)sx (s3s4)sy

]

S

}

JπM

⊗
[

(t1t2)tx (t3t4)ty

]

TTz

. (7)

The FY equations were originally derived to treat systems
of particles interacting by pairwise short-range interactions.
Nevertheless, these equations can be modified with relative ease
to include three-body forces (3BF). This has been achieved
for the first time in the work of the Bochum group [44]. In
implementing three-nucleon forces, we have followed quite a
similar but nevertheless slightly optimized strategy [43]. It is
worth noticing a recent work by Kamada [45] presenting a
systematic derivation of the four-body FY equations by including
three-body forces.

2.2. Treatment of the Coulomb Interaction
One of the more delicate issues in solving few-particle scattering
problems is the proper treatment of the Coulomb interaction.
Due to the long-range nature of Coulomb potential in coordinate
space, or, equivalently, due to its singular behavior in momentum
space, the standard approach of the scattering theory based
on expansion in free waves in the asymptote region is not
appropriate. Indeed, the FY equations, as presented in the
previous section, are formulated for short-range interactions and
are not appropriate for handling scattering problems including
Coulomb interaction.

For a three-body system, the proper mathematical formalism
to include Coulomb interactions was proposed by Merkuriev
[46]. This formalism is valid both for attractive and for repulsive
Coulomb forces. The problem becomes considerably simpler if
only one repulsive Coulomb interaction is present (only two out
of three particles are charged by equal sign charges) like for a
proton-deuteron scattering. For this particular case, there are
several alternative prescriptions to handle Coulomb interaction
force [47–52]. They are based on inserting, fully or partially,
the Coulomb potential VC(x, y), in the left-hand side of the
Faddeev equation

[E−H0 − V(x)− VC(x, y)]9(x, y) = (V(x)− V l
c(x, y))(P

+

+ P−)9(x, y). (8)

In this way, the long-range part of the Coulomb interaction
V l
c(x, y) is subtracted on the right-hand side of the Faddeev

equation and is appropriately compensated by the term VC(x, y)
on the left-hand side, thus accounting for the Coulomb
asymptotic wave function in the scattering channel.

On the contrary, for an N>3 case, no such modifications of
FY equations existed prior to our work. Only in the work of
Filikhin and Yakovlev [53] has this problem been partly addressed
by being limited to S-wave approximation.

2.2.1. Formulation, à la Merkuriev [46]

In this work, we present two alternatives for how to treat
Coulomb interaction for N>3 systems: following the strategy
of Merkuriev, and following the method proposed by Sasakawa
and Sawada [48]. It is worth mentioning that many alternative
treatments of the repulsive Coulomb interaction, corresponding
to the three-body approaches of Noble [47] and Chen et al.
[50], may be formally spanned under Merkuriev’s approach by
considering different forms of splitting the Coulomb interaction
into short- and long-range parts.

In this section, we propose a generalization of the four-body
FY equations following Merkurievs approach to the three-body
system [46]. We start by splitting the Coulomb potential VC

ij

into two parts: short-range Vs
ij and long-range V l

ij, such that

VC
ij = Vs

ij + V l
ij. This is realized by means of appropriate cut-off

functions χ sa (xij, ya, za), depending on the radial parts of Jacobi
coordinates as they are depicted in Figure 2:

V
sa
ij = χ s

a(xij, ya, za)V
C(xij). (9)

We introduce three different forms of splitting

VC
ij (xij) = V lK

ij (xij, yij,k)+ VsK
ij (xij, yij,k), (10)

VC
ij (xij) = V lH

ij (xij, ylk)+ VsH
ij (xij, ylk), (11)

VC
ij (xij) = V

lρ
ij (xij, ρij)+ V

sρ
ij (xij, ρij), (12)

and, following the steps leading to three-body Merkuriev
equations, we reformulate the four-body equations as follows:

(E−H0 − V12 − V lK
13 − V

lK
23 − V

lρ
14 − V

lρ
24 − V

lρ
34)K

4
12,3

= VsK
12 (K

4
23,1 +K

4
31,2)+ V

sρ
12(K

1
23,4 + K

2
31,4 +H

14
23 +H

24
31),

(13)

(E−H0 − V12 − V lH
34 − V

lρ
13 − V

lρ
23 − V

lρ
14 − V

lρ
24)H

34
12

= VsH
12H

12
34 + V

sρ
12(K

2
34,1 + K

1
34,2). (14)

One may easily verify that, by summing these equations, one
obtains Schrödingers equation for the total wave function of
the system : 9 =

∑

Kl
ij,k

+
∑

Hlk
ij . On the other hand, the

asymptotes of the different binary channels become perfectly
separated. To demonstrate this feature, let us investigate the FY
componentK4

12,3 associated with Equation (13). This component
is meant to incorporate the asymptote of the (123)+4 particle
channel and is directly coupled with the componentsK1

23,4,K
2
31,4,

H14
23, and H24

31, which are not proper to the (123)+4 particle
channel. Nevertheless, in Equation (13) this coupling is ensured
only by the short-range interaction V

sρ
12. It remains coupled with

the components K4
23,1 and K4

31,2 by the long-range interaction
terms, but all these components belong to the same (123)+4
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particle channel. Very similar behavior is preserved by the
componentH34

12, associated with Equation (14). This component
contributes to the asymptote of the (12)+(34) particle channel
and is coupled by a long-range interaction term only with the
componentH12

34 belonging to the same binary channel. Therefore,
the modified FY Equations (13)-(14) uncouple the asymptotes
belonging to different binary scattering channels even when the
Coulomb interaction is present. Their uncoupling properties are
in this way similar to the original FY equations involving only
short-range interactions.

2.2.2. Alternative Formulation, à la Sasakawa and

Sawada [48]

For each FYC, one introduces an auxiliary long-range potential
in their asymptote describing an effective Coulomb repulsion
between the fragments of the associated binary channel V l

zα
(zα),

such that:

V l
zα
(zα → ∞) =

Cα

zα
, (15)

where, for a type-K component, defined by the particle ordering
α = (412,3) :

C4
12,3 ≡ C4 =

√

2m4(M −m4)

Mm
; (16)

and for type-H component with α = (3412),

C34
12 ≡ C12

34 =

√

2(m1 +m2)(m3 +m4)

Mm
. (17)

We denote by mi the mass of nucleon i, and by M =
∑

imi,
the total mass of the system. FY equations are reformulated
by subtracting this long-range potential in their left-hand side.
These auxiliary potential terms are compensated by introducing
appropriate terms in the right-hand side of FY equations:

(E−H0 − V12 − q4(q1 + q2 + q3)V
l
z4
)K4

12,3

= V12(K
4
23,1 +K

4
31,2 +K

1
23,4 +K

2
31,4 +H

1
23,4 +H

2
31,4),

−q1q2(V
l
z1
K
1
23,4 + V l

z2
K
2
31,4 + V l

z1423
H

14
23 + V l

z2413
H

24
13) (18)

(E−H0 − V12 − (q1 + q2)(q3 + q4)V
l
z412,3

)H34
12

= V12(K
12
34 +K

2
34,1 +K

1
34,2)− q1q2(V

l
z2
K
2
34,1 + V l

z1
K
1
34,2),(19)

where qi is the charge of particle i. The auxiliary potential terms
V l
zα
(zα) in the left- and right-hand sides of equations are balanced

in such a way that they compensate each other once all 18 FY
equations are added to recover Schrödingers equation.

Further, we are interested in uncoupling of the wave
components describing different two-cluster scattering channels.
To see how well these components uncouple in their asymptotes,
let us analyze the first equation associated with a component
K4
12,3. In the right-hand side of this equation, components

K1
23,4,K

2
31,4,H

14
23, and H24

13 are present, which are not proper

to the (123) + 4 elastic channel of the component K4
12,3. As

an example, component K1
23,4, associated with the (234) + 1

scattering channel, is coupled with the K4
12,3 in this equation by

the potential term

V12 − q1q2V
l
z1
= q1q2





1

x12
−

√

2m1(M−m1)
Mm

z1



 , (20)

which behaves as O((z1)
−3) in the z1 >> max(x23, y

4
23) region,

which defines the asymptote of the (234) + 1 scattering channel.
One may reach the same conclusion relative to the coupling
between the components of typesK andH. Thus, the asymptotic
coupling between the components belonging to different binary
channels is realized by the effective potential terms decaying as
O((z1)

−3) and thus is strongly suppressed relative to the original
Coulomb potential. One should mention, however, that such
uncoupling is not ensured for the case when breakup in three (or
four) clusters is energetically allowed.

By comparing the approach of Equations (13)–(14) to the
one following Equations (18)–(19), one may readily conclude
that, in the first approach, the FY components are more
properly uncoupled by the exponentially decaying potential
terms. Nevertheless, the second formalism requires less effort
implement numerically. In the following section, we will present
some results demonstrating that these two approaches work
equally well for the nuclear problem, where only repulsive
Coulomb interactions are present.

3. RESULTS

3.1. Models
The results presented in this study are obtained using realistic
nuclear Hamiltonians. The realistic nucleon-nucleon (NN)
potentials contain several adjustable parameters, which are tuned
in order to reproduce experimental NN scattering data and
the properties of a deuteron with very high accuracy. Three
different NN potentials, Argonne v18 (AV18) [54], INOY04 [55],
and Idaho N3LO (I-N3LO) [56], are used in this work. The
AV18 model is a phenomenological potential, which is defined
in configuration space and is local. The longest-range part of
the AV18 potential is determined by one-pion exchange and
electromagnetic NN interaction terms, but its short-range part
is fully phenomenological.

The locality of the NN force assumed in the pioneering
high-accuracy NN interaction models was due to numerical
convenience. Nevertheless, it was soon realized that such models
suffer from the underbinding problem when describing A >

2 nuclei [57–59]. The inclusion of non-local interaction terms
allows the off-shell structure of the potential to change and may
strongly affect the description of the A > 2 sector. This feature
has been explored by Doleschall [55, 60, 61], who constructed
a set of phenomenological potentials. The internal parts of
these potentials are built by employing highly non-local form
factors (the INOY04 model non-locality range is approximately
2 fm), whereas their outside parts are local and are defined
by the Yukawa potential representing one-pion exchange. The
NN interaction models of Doleschall et al., and in particular
INOY04, were able to overcome the lack of binding energy in
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TABLE 1 | Parameters of the local N2LO 3BF employed in this work.

3 (MeV) cD cE c1 c3 c4 References

350 −0.2 0.205 −0.81 −3.2 5.4 [72]

400 −0.2 0.098 −0.81 −3.2 5.4 [72]

450 −0.2 −0.016 −0.81 −3.2 5.4 [72]

500 −0.0411 0.945 −0.81 −3.2 5.4 [71]

500 −0.2 −0.205 −0.81 −3.2 5.4 [70]

In the last column, a reference to the original work where the values of the parameters cD

and cE were established is provided.

the three-nucleon sector, namely 3H and 3He, without explicitly
using three-nucleon forces and still accurately reproduce NN
observables [11, 55].

From the early 2000s, inspired by the works of Weinberg [62],
a new generation of nuclear forces appeared based on chiral
effective field theory [63, 64]. Chiral effective field theory
provides a powerful framework with which to link the NN
potentials with the pion-nucleon ones but, at the same time,
construct systematically, order by order, an improvable scheme
to build consistent multinucleon forces as well as control the
uncertainties in their determination. The chiral NN interaction
model developed up to next-to-next-to-next-to-leading order by
the Idaho group [56], denoted here as I-N3LO, remains one of
the most successful descriptions of the NN interaction.

Realistic nucleon-nucleon interaction models are nowadays
able to describe all the available scattering data in the two nucleon
sector almost perfectly. Studies of heavier nuclei are therefore
required in order to test and validate these interaction models.
However, calculations of the trinucleon binding energies already
reveal an underbinding problem: most of the nucleon-nucleon
potentials fail to reproduce binding energies of triton and 3He.
A single exception is provided by the INOY potentials, which,
employing non-local form factors, are adjusted at NN level to also
reproduce the binding energy of 3H. Nevertheless, these models
turn out to be too soft, compressing, and overbinding 4He [11,
65], leading to high saturation density of the nuclear matter [66]
as well as severe overbinding of heavier nuclei [67]. The natural
remedy is the introduction of three-nucleon forces, which
appear in any theoretically motivated nuclear interaction model.
It should be noted that only models based on effective-field
theory provide a systematic hierarchy between two-nucleon and
multi-nucleon forces. Regardless of the three-nucleon interaction
model, these forces have some adjustable parameters.

There are several different three-nucleon force models that
can be used in conjunction with AV18 and the chiral effective
field potentials of Epelbaum et al. [63] or Machleidt and Entem
[64]. Notably, with AV18 NN potential, we will employ the
Urbanna IX (UIX) three-nucleon interaction model of Pudliner
et al. [68], adjusted in order to improve description of the
three-nucleon binding energies as well as the nuclear matter
saturation density.

In Navratil [69], a three-nucleon force employing local
momentum-space regulators, and developed up to next-to-
next-to-leading order was proposed. In Gazit et al. [70], two

TABLE 2 | Comparison of the p-3He singlet (Jπ=0) and triplet (Jπ= 1) scattering

lengths calculated by the approach of Equations (13)–(14) to those obtained by

solving Equations (18)–(19).

Jπ 0+ 1+

Equations (13)–(14) 11.92 9.346

Equations (18)–(19) 11.86 9.302

Scattering lengths are provided in units of fm.

unknown coupling constants, cD and cE, of this 3BF were
adjusted to reproduce triton binding energy and β-decay half-
life simultaneously. In a recent work [71], it was found that
the relation between the low-energy constants (LECs) cD and
cE, determining the three-nucleon contact interaction and the
two-nucleon contact axial current, was given erroneously. A new
parametrization of the last force was also provided. In our work,
we will essentially use the last parametrization of the force of
Marcucci et al. [71] using cutoff 3= 500 MeV (see Table 1). It
is worth mentioning that the two parameterizations, one of Gazit
et al. [70] and one ofMarcucci et al. [71], provide almost identical
predictions for all the nuclear observables considered here.

An alternative strategy to fix cD and cE coupling constants was
followed by Roth et al. [72]. Those authors noticed that heavier
nuclei are overbound when 3BF of Gazit et al. [70] is used. A
new set of three-nucleon forces were proposed using lower cutoff
values, 3 = 350, 400, and 450 MeV, which describe the binding
energies of the medium mass nuclei along the dripline better.

For convenience, the different parameterizations of 3BF used
in what follows in conjunction with I-N3LO NN interaction will
be referred to by the cutoff value 3 regularizing this force. In
Table 1, we provide the parameters of the different 3BFs tested
in this work.

3.2. Coulomb Phaseshifts
As described in section 2.2, the implementation of the
Coulomb interactions represents a real challenge for the few-
nucleon scattering problem. Two different methods have been
proposed to implement the Coulomb force in nucleon-trinucleon
scattering. We present in Tables 2, 3 a comparison among
these two approaches. One may see that, regardless of the
fact that the method based on Equations (13)–(14) is formally
more appropriate, in Practice, the two methods provide almost
identical results. Even for p-3He scattering length calculations,
where the effect of Coulomb repulsion should be the most
appreciable, the two methods provide indistinguishable results
within the numerical accuracy. A small discrepancy might be
still observed in calculating negative parity phaseshifts (see
Table 3 corresponding to Ep= 2.25 MeV), which might be
related to the importance of the triton polarizations terms,
while these terms are partly screened in the approach based on
Equations (18)–(19).

3.3. Description of the Four-Nucleon
Scattering
The main goal of theoretical nuclear physics is to construct a
reliable model describing the nuclear structure and reactions.
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TABLE 3 | The same as in Table 2 but for the scattering phase shifts (2s+1LJ ) and

mixing angles (ǫJ
π
) at Ep =2.25 MeV, both presented in degrees.

1S0
3S1

3D1 ǫ
1+ 3P0

1P1
3P1 ǫ

1− 3P2

Equations (13)–(14) −41.57 −35.49 −0.28 −0.58 7.74 17.75 10.84 8.43 16.41

Equations (18)–(19) −41.50 −35.42 −0.28 −0.57 8.15 17.72 11.25 8.55 16.66

Realistic nucleon-nucleon interaction models are built to
reproduce available data in two-nucleon sectors. In addition,
three-nucleon forces are usually introduced and adjusted to
reproduce the ground state binding energies of triton (3H),
3He, and 4He. Nevertheless, the binding energies of the stable
nuclei, appearing along the dripline, are strongly correlated and
thus provide only limited insight into nuclear forces. Scattering
experiments, allowing unbound structures far from the stability
to be accessed, remain the richest tool to study the properties of
the underlying nuclear interaction.

Three-nucleon systems have been extensively studied
throughout the last two decades [73]. Realistic nuclear
Hamiltonians provide a satisfactory description of the uttermost
part of the trinucleon data. Still, there remain some discrepancies,
like in the description of the analyzing powers (Ay-puzzle) and
some breakup observables (space-star anomaly) [74, 75],
which have not yet been addressed by any NN+3BF model.
It is noteworthy that these problematic observables are
relatively small, representing only a few percentiles of the total
scattering cross-section.

Three-nucleon systems remain relatively simple, due to
the absence of any thresholds (apart from the three-particle
breakup one) or resonant structures in the continuum. The
two experimentally accessible systems, 3H and 3He, are mirror
systems and thus exhibit very similar properties. Four- and
five-nucleon systems, accommodating several resonant states
and a rich threshold structure in the continuum, therefore
present interesting theoretical laboratories for testing the
nuclear interactions.

The elastic neutron scattering on 3H, being a process free
from Coulomb interaction, is the simplest four-nucleon reaction
to describe theoretically. Unfortunately, due to nuclear safety
regulations, experiments with tritium are scarce. Nevertheless,
some successful measurements were realized in the 1970s. In
particular, very accurate measurement of the total neutron-
tritium cross-section was realized by Phillips et al. [76].

In Figure 3, we compare our calculated results with the ones
of this measurement. There are two important energy regions
for the elastic neutron scattering on 3H: the zero energy region
(S-waves) and the region of P-wave resonances.

At very low energies, the process is dominated by neutron
scattering in S-waves relative to the target. These waves are
governed by the Pauli repulsion between the neutron projectile
and those present in the tritium target. Due to this repulsion,
the scattering process is mostly peripheral, and therefore the
calculated scattering lengths strongly correlate with the size of
the target nucleus and consequently with the predicted tritium
binding energy. Thus, the nuclear interaction models that tend to
underbind the triton overestimate the n-3H cross-section at low
energy. By adjusting the triton binding energy, either by means

of three-nucleon force or by the presence of non-locality in NN
interaction (INOYmodels), the agreement with the experimental
n-3H cross-section significantly improves in the zero-energy
limit. It is worth noticing that some minor differences still
remain between the models, i.e., the predictions of INOY04 or
I-N3LO+3BF(3= 500 MeV) agree with a lower bound of the
zero-energy cross-section, whereas AV18+UIX agrees with an
upper one. These differences could be resolved by comparing
the calculated spin-dependent (a0 and a1) scattering lengths.
Unfortunately, there is quite a large discrepancy between the
measured coherent scattering lengths ac, defined as ac =

a0
4 +

3a1
4 ,

and the inferred spin-dependent values. The measurement of the
coherent scattering length ac constrains the values of a1 and a0
to a linear band, while the measurement of the total n-3H cross-
section constrains them in an elliptic one. The spin-dependent
values ai result from the intersection of these two bands, but
their practical determination is not free of ambiguities due to
experimental errors. This is illustrated in Figure 4, together with
the predictions of the nuclear models considered.

The total neutron-triton cross-section peaks at around 3MeV.
This peak results from the interference of four broad negative
parity resonant states present in the 4H nucleus. The accurate
description of the n-3H cross-section in this resonance region
turns out to be a very challenging problem for nuclear interaction
models. Most of these models fail to provide sufficient attraction
for negative parity states (essentially P-waves), providing a very
flat structure. In this context, the role of 3BF is quite essential and
far from trivial. First, by adding a 3BF that reproduces the triton
binding energy, one automatically reduces the contribution of
the partial cross-sections in the positive parity states Jπ = 0+

and 1+. Then, the required increase in negative parity cross-
section should fill the existing gap in the resonance region
and compensate for the reduction from the positive parity
state contribution.

Among the models described in Figure 3, UIX fails to boost
the contribution from the negative parity states in the total cross-
section. Therefore, the net effect is a reduction of the total cross-
section in the resonance region. Of the three NN interaction
models considered, I-N3LO provides the most attraction in the
negative parity states. The three-nucleon interaction model with
a cutoff 3= 500 MeV further improves the agreement between
the calculated and measured cross-sections, describing almost
ideally the experimental data of Phillips et al. [76]. Notice,
however, that the parameterizations of the same 3BF employing
lower cutoff values from Roth et al. [72] are not so successful,
underpredicting the total cross-section. It is also worth noting
that the discrepancy in the resonance region is increased by
reducing the value of the cutoff 3. Very similar consequences
are observed when calculating the binding energies of the P-shell
nuclei [72].

The proton scattering on 3He is a nuclear mirror process to
neutron scattering on 3H. The presence of Coulomb interaction
makes the proton scattering on the 3He cross-section diverge
at small angles, so one is not able to study the cross-section
of this process with the same ease as for the n-3H case.
Nevertheless, experimental differential cross-sections are much
more abundant for the p-3He case since they are easier
to measure.
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FIGURE 3 | Elastic neutron-3H scattering cross-sections calculated using different combinations of NN and NNN interaction models. Theoretical results are compared

with the experimental values of Phillips et al. [76].

FIGURE 4 | (Left) Experimentally deduced singlet (a0), triplet (a1), and coherent (ac) n-
3H scattering lengths. Diamonds from Seagrave et al. [77], up-triangles from

Hammerschmied et al. [78], squares from Rauch et al. [79], and stars from Hale et al. [80]. (Right) Comparison of the spin-dependent scattering lengths ai , with some

theoretical predictions. The measurement of the total cross-section [76] constrains the allowed a1(a0) values to the elliptic band region between the doted curves. The

coherent scattering length measurements constrain a1 (a0) to a linear band region given by 4ac = a0 + 3a1. Notice that two coherent scattering length measurements,

the upper band [78] and the lower band [79], are incompatible within their error bars, whereas Hammerschmied et al. [78] is also incompatible with the cross-section

measurement of Phillips et al. [76].

We have displayed in Figure 5 the calculated p-3He scattering
observables for an incident energy of 4.05 MeV. The same
observables for protons of 5.54 MeV are displayed in Figure 6.
Calculated results arrived at by employing Equations (13)–(14)
to take Coulomb into account are compared with the available
experimental data fromMcDonald et al. [81], Alley and Knutson
[82], Fisher et al. [83], and Daniels et al. [84]. The energy
region considered is still marked by the important contribution
of the negative parity 4Li resonances. Notably, due to the
presence of the repulsive Coulomb interaction, these resonances
manifest at slightly higher energies for the p-3He case relative
to the n-3H one. In Figure 5, relevant for 4.05 MeV protons,
the theoretical values corresponding to all the aforementioned
nuclear interaction models are displayed.

By studying the angular differential cross-section, one may
observe quite similar properties as previously outlined for the n-
3H total cross-section at the resonance peak. The I-N3LO NN
interaction model provides the most accurate description of the

data if used in conjunction with a 3BF with a cut-off parameter of
3= 500MeV. Othermodels tend to underestimate the scattering
cross-section, while the net differences are quite small. The most
relevant observable for studying the model dependence remains
the analyzing power Ay0. At the maximum of Ay0, one observes
an up to 30% spread between the different model predictions.
Once again, I-N3LO+3BF(3= 500 MeV) turns to be the most
successful in describing experimental data and sits almost on
top of it. Nevertheless, the deviation relative to the experimental
data is approximately 2% of the absolute cross-section values,
which is comparable to the discrepancy present in the three-
nucleon sector (Ay-puzzle). The analyzing powers are simply
much weaker, in absolute values, in nucleon-deuteron scattering,
and therefore discrepancies seem to be much more substantial.

When comparing the effect of different the 3BFs employed
in conjunction with I-N3LO NN interaction in a similar way as
outlined for the n-3H cross-section case, the description of p-
3He deteriorates when the cutoff 3 is reduced from its original
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FIGURE 5 | Several differential observables calculated for proton scattering on 3He at 4.05 MeV.

value, 500 MeV. This feature does not seem to be related to
the importance of reproducing the tritium beta decay half-life,
as only the Marcucci et al. [71] model accounts for it. The 3BF
model of Gazit et al. [70] provides almost identical results to those
obtained using the 3BF from Marcucci et al. [71], both using
the value 3= 500 MeV. Another quite straightforward answer
would be the importance of maintaining consistency between the
regulators in NN and three-nucleon interaction. Nevertheless,
while the I-N3LO interaction is regulated by employing the same
cutoff value of 3= 500 MeV, the expressions of these regulators
are quite different for NN and 3BF.

In order to consider scattering at even higher energies—for
En &8 MeV neutrons or Ep &7 MeV protons—one should
take the presence of the three- (or/and even four-) particle
breakup channels into account. The description of such processes
is far beyond the reach of the standard techniques based on
imposing proper boundary conditions in configuration space (or
treating singularities in a multidimensional kernel of integral
equations formulated in momentum space). Nevertheless, one
may avoid these complications by employing complex scaling or

complex energy methods, as has been successfully demonstrated
in Carbonell et al. [85]. The scattering in n-3H and p-3He
systems has been accurately described above d+N+N and also
above 4N thresholds in recent work [17, 86, 87]. In particular,
it has been found that description of the analyzing power
improves in these systems once energy is increased. This fact
is clearly demonstrated in Figure 7. The interplay of the 3BF
has not yet been explored in studying four-nucleon scattering
above the three-particle breakup threshold. Nevertheless, some
indications are present that the calculated total elastic and
breakup cross-sections correlate with the predicted binding
energy of the target nucleus, as illustrated in Figure 8. This
feature is attributed to the importance of correctly positioning the
thresholds in describing low-energy scattering cross-sections. In
the vicinity of a threshold, and due to the kinematic form factor,
the breakup cross-section increases with the available kinetic
energy. Conversely, the elastic cross-sections tend to decrease
with energy. For the models reproducing tri-nucleon binding
energies properly, the obtained n-3H and p-3He cross-sections
are successfully described in the intermediate energy region.
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FIGURE 6 | Various differential observables calculated for proton scattering on 3He at 5.54 MeV.

When considering elastic differential cross-sections, some
discrepancies have been found when studying 22.1 MeV neutron
scattering on 3H, in particular at the cross-section minima (see
Figure 7). The theoretical values are sizeably larger than the
measured ones, and furthermore, this discrepancy is the largest
for the models describing tritium binding energy well. On the
other hand, as demonstrated in Deltuva and Fonseca [86], the
calculated cross-sections for 18 MeV neutrons lie in the middle
between the data sets of Seagrave et al. [88] and Debertin
et al. [89]. One might thus expect a lack of reliability for the data
from Seagrave et al. [88]. As this disagreement is only manifested
in the vicinity of the cross-section minima, one is tempted to
attribute the discrepancy to a simple underestimation of the
experimental error-bars. New precise measurements are required
to resolve this issue.

The description of the scattering in the continuum of
the 4He nucleus, involving three experimentally accessible
processes p-3H/n-3He/2H+2H, is the most complicated four-
nucleon problem. Nevertheless, an accurate description of this
system has been achieved by three different groups, successfully
benchmarking their results [15]. The Vilnius-Lisbon group
has studied this system extensively in a broad energy region,
as well as employing different interaction models [29, 30,
90–92]. One may single out two very challenging energy

regions in this system. The first is related to the presence
of a Jπ = 0+ resonant state embedded between the p-
3H and n-3He thresholds (see Figure 1). Small modifications
in the nuclear Hamiltonian affecting the position of this
resonant state have huge effects on the calculated cross-sections
between the two thresholds. As demonstrated in Lazauskas
[93], the majority of the nuclear Hamiltonians fail in this
enterprise. Another challenging case is the description of the
4He continuum just above the n+3He threshold. In this window,
not only the analyzing powers but also elastic n+3He as well
as transfer n +3 He → p +3 H cross-sections are purely
reproduced [29, 92]. This feature is determined by the difficulty
of describing two relatively narrow (Jπ = 0− and Jπ =
2−) resonant states (see Figure 1). One should still explore
whether the 3BF models may provide any improvement in
describing this region. When increasing energy and moving
above the three- and four-nucleon breakup thresholds, in close
similarity with p+3He and n+3H systems, description of the
scattering cross-sections but also the analyzing powers tends to
improve [30, 92].

3.4. Five-Nucleon Systems
As mentioned above, the description of a five-nucleon
system based on the solution of the Faddeev-Yakubovsky
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FIGURE 7 | Calculated n-3 H elastic differential cross-sections (left) and analyzing power Ay (right) for neutrons of laboratory energy 22.1 MeV compared with the

experimental results of Seagrave et al. [88].

FIGURE 8 | Dependence of the calculated n-3H total elastic and inelastic

(breakup) cross-sections on the triton binding energy for different nuclear

models. Calculations have been performed for neutrons with laboratory energy

of 22.1 MeV.

equations represents a considerable technical challenge.
Nevertheless, during the last few years, we have achieved
a converged solution of the elastic neutron scattering on
4He as well as being able to determine the 5H resonance
position in the complex energy plane. In both cases,
the results were based on realistic NN and three-nucleon
interaction models.

Our results on n-4He were in good agreement with some
previous calculations based on NCMC techniques [37]. Ideally,
one should compare the calculated observables directly with
the experimentally available data. However, due to the limited
accuracy of the calculations (of order 5% for the phase shifts)
and the fact that very accurate phase shift analysis has been
carried out on the experimental data for this system, it is
practical to analyze the obtained results by comparing the
phase shifts.

We present in Figure 9 our calculated S- and P-wave
phaseshifts in the energy region up to 8 MeV. One may see

quite a nice description of the scattering observables in the
relative S-wave, which also demonstrates a remarkable model
independence. In close analogy to the n-3H scattering case,
this partial wave is dominated by Pauli repulsion between
the neutron projectile and the ones present within the 4He
target. We would like to note, however, that some model
dependence is observed even in S-waves if one compares the
phase shifts at very low energy and, in particular, the calculated
scattering length. Significant differences are observed between
the different theoretical predictions [95] but also between the
experimentally measured [96–98] as well as adopted [25, 99, 100]
scattering length values. In particular, our calculated values are
in conflict with those obtained using GFMC techniques [32],
where a scattering length a(2S1/2)= 2.4 fm was found, the same
value for AV18 or AV18 supplemented with UIX (or IL2)
3N forces, while our calculations with AV18 give a(2S1/2)=
2.96(5) fm, whereas for AV18+UIX, we get a(2S1/2)= 2.71(7).
We believe that this difference may be attributable to the
lack of accuracy in Nollett et al. [32], as their calculations
are not able to reveal any difference in calculated scattering
length for AV18 and AV18+UIX Hamiltonians. In contrast,
our calculations indicate the presence of a strong correlation
between the calculated scattering length and 4He binding energy,
displayed in Figure 10. Therefore, it should be expected that
AV18 and AV18+UIX models sizeably differing in predicted
4He binding energies should also provide different n-4He
scattering lengths.

Even more problematic is description of the resonant n-
4He P-waves. Realistic NN interaction models fail to provide
sufficient splitting between the quartet and the doublet P-
waves. For the INOY04 model, the situation is even worse:
this model significantly lacks attraction in both P-waves. The
addition of the UIX 3BF to the AV18 model does not improve
description of the n-4He P-wave phaseshifts, as was the case
for the n-3H and p-3He systems. In contrast, the I-N3LO
model, when used in conjunction with the 3BF (3= 500 MeV)
from Marcucci et al. [71], turns out to be quite successful
in describing both P-waves. The phase shifts of the strongly
resonant 3/2P channel are reproduced quite well, with only
a slight lack of attraction, whereas the 1/2P phase shifts are
described ideally. The comparison of the results from different
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FIGURE 9 | Comparison between the theoretical predictions of the n-4He, S- and P-waves, phaseshifts, and the results of a partial wave analysis of the experimental

data by Hale [94]. In the left panel, the results corresponding to different NN interactions are indicated respectively by triangles (I-N3LO), × (AV18), or squares (INOY),

and the dotted curves correspond to R-matrix analysis. In the right panel, our calculated values for the I-N3LO model—with (empty symbols) and without (full symbols)

three-body forces (3BF)—are also compared with the results obtained by NCSMC calculations (solid lines) of Navrátil et al. [37].

FIGURE 10 | Apparent correlation between the calculated 4He binding

energies and n-4He scattering length. Calculated values are compared with

those adapted from the experiment by NIST [100], Atlas n-res [99], and

TUNL [25].

interaction models suggests the presence of strong similarities in
the n-3H and n-4He scattering. There is an apparent correlation
between the positions of P-wave resonant states in 4H and
5He nuclei.

The 5H resonance parameters were first computed
ab-initio in Lazauskas et al. [6] with phenomenological
and realistic NN interactions. We used two independent
methods to locate the resonance positions in the complex
energy plane: a variant of the smooth exterior complex
scaling method, and the analytic continuation on the
coupling constant. The results show remarkable stability
with respect to the different tested interactions and support
recent experimental findings [101, 102]. The resonance
parameters of the Jπ = 2−,0−,1− states in 4H, which dominate
the low-energy n-3H elastic cross-section, have also been
computed and found to be slightly wider than those for 5H

(Ŵ4H ≈ 4 MeV for Ŵ5H ≈ 2.5 MeV), advocating for the
presence of additional attraction of the 4n with respect to
the 3n system. In view of this, any attempt to reproduce the
experimental finding of a 7H narrow state would be of the
highest interest.

4. CONCLUSIONS

We have presented some recent results related to
the solutions of the Faddeev-Yakubovsky equations
in configuration space for nuclei with four or five
nucleons obtained with several modern realistic NN and
NNN interactions.

Two independent methods to include the Coulomb
interaction in the A = 4 scattering states, namely
in the p-3He low-energy elastic cross-section, have
been compared.

We have discussed in detail the n+3H elastic cross-section in
the resonance peak, which constitutes a stumbling block for all
realistic NN and 3BF models, even those that most successfully
describe the binding energy of A= 3, 4 nuclei.

The mirror reaction p+3He was also presented
by computing several observables such as
differential cross-sections and analyzing power at
Ep ≈ 5 MeV.

The first results for the five-nucleon system have been
considered. They concern the n-4He elastic scattering
at low energy and the resonance position of 5H in the
complex energy plane. The n-4H scattering displays
severe discrepancies in terms of scattering length, both
between models and with experimental data. The resonance
parameters of 5H show great stability with respect to the
NN interactions used and are compatible with some of the
experimental analyses.

The general conclusion concerning the nuclear interactions is
that the I-N3LO NN model used in conjunction with 3BF with
a cut-off parameter 3 = 500 MeV provides the most accurate
description of the data.
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