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Many fluids undergo shear banding, in which two states of different apparent viscosity

coexist for a given shear rate (or for a given stress). In the idealized case of an infinite

gap between shearing plates the selection of the conditions for shear banding has been

shown to depend on the spatial structure and shape of the interface between shear

bands. With the advent of microfluidic design for processing and additive manufacturing,

the processing of many complex fluids often occurs in situations where this idealized

limit doesn’t apply, and the gap between walls, in either shearing flow or more often

for pressure driven flow, is no longer “infinite” compared to the structural scales. It

is increasingly clear that the effective rheology and structure of flowing fluids in these

conditions requires information about the entire sample size, i.e., that the rheology is

intrinsically non-local. In this review we discuss some recent attempts (both theoretical

and experimental) to address non-local rheology and its implications for shear-banding

flows of polymeric fluids. This manifests itself in rheology extracted from velocity profiles,

as well as the dependence of shear-banding conditions on the position of the interface

between shear bands, as well as the system size.

Keywords: shear banding, microfluidics, confinement, constitutive modeling, non-linear dynamics, polymers,

wormlike micelles, rheology

1. INTRODUCTION

Shear banding occurs when a fluid can support two different states of apparent viscosity for either
the same shear rate (different local stresses) or the same shear stress (different local strain rates).
It is expected when the relation between shear stress σ and shear rate γ̇ [called the constitutive
curve σ (γ̇ )] is non-monotonic. Shear banding, either steady or transient, is now well-established
in many soft materials [1], including surfactant solutions (wormlike micelles [2], lamellar phases
[3], associating polymers [4]), potentially in polymer solutions and melts [5, 6]; yield stress fluids,
such as emulsions [7], colloidal suspensions [8], microgels [9], and star polymer solutions [10]; and
liquid crystalline solutions [11, 12]. Banding is often initiated by an instability, but can also appear
as if it is a “nucleated” event, in which, for example, a lower viscosity state appears somewhere in the
system under certain conditions of either imposed global stress or average shear rate. Shear banding
results in heterogenous flows (Figure 1), with the spatial organization determined by the nature of
the multi-valued relation between shear stress and shear rate. In the most common situation two
different shear rates coexist for a given stress, which corresponds to gradient banding, in which
shear bands are organized along the flow gradient direction, with the interface between the bands
lying in the velocity-vorticity plane. In parallel sliding plates this corresponds to bands parallel
to the plates, while in cylindrical Couette flow the bands are arranged in concentric cylinders. In
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FIGURE 1 | (Left) Constitutive curve showing shear-banding construction. For an imposed average shear rate ¯̇γ satisfying γ̇1 < ¯̇γ < γ̇2 shear rates γ̇1 and γ̇2 coexist

at a selected shear stress σ *. The plateau stress σ * is measured for controlled average rates in the coexistence regime, while for controlled stress the lower shear rate

branch is measured for σxy < σ *, and the upper shear rate branch measured for σxy > σ *. The square points mark shear rates between which the fluid is predicted to

be absolutely unstable; at other shear rates it is either stable or metastable [13–15]. (Right) Configuration showing a shear-banding profile of the local shear rate, with

an interface width ℓ and shear bands of sizes L1 and L2. The interfacial profile satisfies a version of Equation (9).

vorticity banding the bands are arranged in the vorticity direction
such that the shear rate is the same in each band while the
shear stress differs. In polymeric fluids, such as polymer solutions
and melts, and surfactant solutions that self-assemble into long
thread-like wormlike micelles, the shear banding is usually driven
by the lower viscosity that results when the polymers are aligned
more parallel to each other in flow. This is thought to be
accompanied by a reduction in the degree of entanglement
among the polymers (wormlike micelles have the additional
complication that they can break and reform rapidly [16]).
Breakage leads to a simpler relaxation spectrum than that of
polymers in the fast-breaking limit, since all lengths of micelles
relax together; but the effect of breakage on entanglement
is unknown.

There are clear similarities between shear banding and
equilibrium phase transitions, such as liquid-vapor coexistence.
The non-monotonic constitutive curve σ (γ̇ ) is analogous
to the non-monotonic pressure-density relation p(ρ) of an
equilibrium liquid-vapor isotherm. The conditions of liquid-
vapor equilibrium are equality of chemical potential (Gibbs free
energy per particle) and pressure. For shear banding the shear
stresses must balance, which is analogous to the pressure; but
because the system is dissipative one cannot use equality of
chemical potentials to determine which shear stress is “selected”
as the coexisting stress. Instead, one can solve the steady-state
inhomogeneous dynamics to find coexistence and determine
stress selection, which is analogous to finding the shape and
width of the liquid-vapor interface [17, 18]. Correspondingly, the
steady-state shear-banding configuration contains three length
scales: the sizes L1 and L2 of the two bands1 and the width ℓ

1In practice many shear bands can form with shear rates (γ̇1, γ̇2), but in most

situations these will coarsen to leave only two bands. This is usually driven by

small stress gradients in rotational rheometers; for example, Taylor Couette and

cone-and-plate geometries both have gradients in stress at steady state.

of the interface between bands. In a very large system the width
ℓ can be ignored compared to the distance L ≫ ℓ between the
shearing surfaces, and the relative size of the two shear bands
is determined to satisfy the applied average shear rate, such that
(see Figure 1)

L ¯̇γ = L1γ̇1 + L2γ̇2, (1)

where the two bands have shear rates γ̇1 and γ̇2. The width ℓ

of the interface between bands is usually microns in size, which
is negligible compared to the sizes of most processing devices
(millimeters or centimeters).

This simple picture, which will be described below, has several
complications and challenges. The value of ℓ is predicted to be
determined by a constitutive parameter (or parameters) that is
independent of the conditions of flow; typically in the form of
a coefficient that governs the contributions of spatial gradients
to the total shear stress and to the dynamics of microstructural
order. A reliable theory for this parameter is lacking, despite
much work in the area. Many modern processing methods
based on microfluidic technologies use very small geometries
to transport, mix, and deliver soft materials, with length scales
ranging from microns to millimeters, and in some cases sub-
micron in scale. Experiments on small gaps show that it is difficult
to consistently model and describe the both small scale and
larger scale rheologies [19, 20]. The simple shear-banding model
predicts that the interfacial width ℓ is independent of the applied
average shear rate ¯̇γ . However, experiments show that this is not
correct [21], as will be explained below.

In this brief review we focus on polymeric fluids, i.e.,
polymer and surfactant solutions. We outline some of the main
phenomenology of non-local terms in models for shear-banding
polymeric fluids, and discuss some of the implications for
experiments, as well as challenges posed by recent experiments.

Frontiers in Physics | www.frontiersin.org 2 January 2020 | Volume 7 | Article 246

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lerouge and Olmsted Non-locality in Shear Banding

2. NON-LOCAL MODELING

2.1. Constitutive Models
2.1.1. Dynamics of the Structural Stress Tensor
To physically model shear banding the stress tensor must
incorporate stresses due to microstructural quantities, such
as molecular or segmental orientation, micellar length,
concentration fields in polymeric fluids. Other fluids could
include degrees of association, fraction of frictional or non-
frictional contacts in suspensions, structural (such as local
icosahedral ordering) or crystalline order parameters, and many
others. The principal guiding rules are to (1) include all non-
negligible contributions to the total stress, and (2) incorporate
variables that relax slowly compared to typical thermal or flow-
induced noise (“slow” can unfortunately be used subjectively!).
In polymeric fluids the total stress σ is often written in terms of a
molecular configurational tensor W, or equivalently a polymeric
stress tensor 6, where

σ = 2ηD + GW − pI (2a)

≡ 2ηD + 6 − pI, (2b)

Here G is a characteristic modulus, I denotes the identity
matrix, η is a Newtonian viscosity, D = 1

2

[

∇v+ (∇v)T
]

is
the symmetric velocity gradient tensor, and p is the isotropic
pressure determined by incompressibility (∇ · v = 0). The
configurational tensor can be defined in a number of ways; as
W = 〈rr〉 of the second moment of the normalized molecular
end-to-end vector r = R/|R0|, where R0 is the equilibrium
RMS end to end vector; as the right Cauchy-Green deformation
tensor acting on the polymeric degrees of freedom [22]; or the
average tangent-tangent correlation function along the chain

W = 〈
∫ Lc
0 t(s)t(s)ds/Lc〉, where Lc is the contour length. In most

cases of interest we assume creeping flow, corresponding to small
Reynolds numbers, for which

∇ · σ = 0. (3)

This condition holds for most, but not all, conditions under
which shear banding is seen. The microstructure dynamics

determines the non-monotonic behavior of the fluid; a finite
strain rate induces molecular alignment, which in turn reduces
the shear stress σ ≡ σxy below the Newtonian limit σ = ηγ̇ .
For rapid shear rates the increasing alignment actually leads to
a stress maximum, beyond a strain rate corresponding to the
molecular relaxation time. For greater shear rates progressively
fewer chains carry stress through a plane with normal vector
in the flow gradient direction [23], and thus the shear stress is
predicted to decrease [23, 24].

Numerous dynamical models have been proposed for W or
equivalently 6. They have the form

�

6 = − 1

τ
6 + 8(6, κ)+D∇26, (4)

where
�

6 denotes a covariant derivative that compares the
time dependence of the tensor 6 to the manner in which
the microstructure is expected to rotate in the least dissipative
manner in a flow field parameterized by the velocity gradient
tensor καβ = ∇βvα . Several models are collected in Table 1. The
models shown do not accommodate concentration changes (so-
called “two-fluid” models), and have been used to varying degrees
of success in modeling banding behavior in wormlike micelles
or polymer solutions. None of the models is an excellent fit to
experimental data, so in the absence of better microscopically-
derived models that are tractable for modeling inhomogeneous
flows, the choice of model depends on the details of the
calculations necessary, and the features required.

The “diffusion constant” is usually written to indicate that
the stress variable 6 can “diffuse,” or more precisely, that spatial
gradients in 6 relax. Hence, the diffusion term is actually a
product of a mobility and a local free energy cost, and thus in
this form D has dimensions [D] = (length)2/time. Hence, the
product Dτ is the square of a length, and we define

ℓ =
√
Dτ (5)

as the characteristic lengthscale corresponding to stress
“diffusion.” In most cases this is also of order the length scale

TABLE 1 | Constitutive models that exhibit shear banding for polymeric fluids with no concentration variations from Olmsted et al. [15] [a], Giesekus [25] [b], Likhtman and

Graham [26] [c], Yuan et al. [27] and Dhont [28] [d].

Johnson-Segalman
�

6= − 1

τ
6 + 2

µ

τ
D +D∇26 [a]

Giesekus
∇
6 = − 1

τ
6 + 2

µp

τ
D − α62 +D∇26 [b]

Rolie-Poly
∇
W = − 1

τd
(W − I)− 2

τR

(

1−
√

TrW
3

)[

W + β
W − I
√

TrW/3

]

+D∇2W [c]

Curvature stress
�

6= − 1

τ
6 + 2

τ
(µD − κ∇2D) [d]

∇
6 ≡ (∂t + v · ∇)6 −

(

κ6 + 6κT
)

(Upper convected Maxwell derivative)
�

6≡ (∂t + v · ∇)6 − (�6 − 6�)− a(D6 + 6D) (Gordon-Schowalter derivative)

Here, κ is the “curvature stress” of Dhont [28], τ is a simple Maxwell-like relaxation time, τd is the reptation time for polymer liquids, τR is the Rouse or stretch relaxation time; µ,µp are

characteristic viscosities, a,β,α are phenomenological parameters that can be tuned to control the non-monotonicity of the constitutive models, D is a phenomenological non-local

coefficient that has been added in an ad hoc way to each equation of motion, and � = 1
2 (κ − κT ) is the anti-symmetric velocity gradient tensor. Models that incorporate coupling of

shear banding to concentration include two-fluid versions of the d-JS model [29, 30], the VCM model of Vasquez et al. [31], which incorporates two species of short and long micelles

that can break and recombine, and a two-fluid version of the Rolie-Poly model [32].
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of the interface between shear bands [15, 33]. In practice the
experiments described below extract D from an experimental
method in conjunction with a model, and then use the measured
(longest) relaxation time τ of the fluid in equilibrium to
estimate ℓ.

The Johnson-Segalman (JS, or d-JS with the diffusive term)
model is a very simple model that exhibits a non-monotonic
flow curve due to the slip parameter a, which parameterizes
the degree to which polymers “slip” relative to the local flow
field [34]. It has been used by many authors to model shear
banding [15, 35]. The non-linear Giesekus (or d-Giesekus)
model is another phenomenological model that can exhibit
banding, due to a second-order non-linearity in the polymer
stress 6. The microscopically-inspired Rolie-Poly [26] model
approximates the more detailed microscopic GLaMM model
[36–38], which incorporates reptation, convected constraint
release, retraction, and contour length fluctuations of entangled
non-breakable polymers. By controlling the parameters one
can tune continuously between shear-banding and non-shear
banding fluids in the Rolie-Poly model [39].

2.1.2. Stress “Diffusion”
In all cases an ad hoc “diffusive” term with coefficient D has been
added to the constitutive models in order to model the strongly
inhomogeneous flow associated with shear banding [15]. The
need for such a term to obtain physically and mathematically
sensible models in polymeric solutions was recognized by El-
Kareh and Leal [40], who demonstrated that diffusing polymers
can carry a non-local stress. One simple motivation for such
a term is the small, but non-zero, contribution from Frank
elastic effects familiar from liquid crystals [1, 41]. Frank
elasticity accounts for the free energy increase due to the
average molecular orientation becoming inhomogeneous. Liquid
crystalline polymers exhibit such free energies, with distortion
energy controlled by the persistence length of the polymers.
Nematic liquid crystals themselves are also predicted to exhibit
shear banding between the higher viscosity isotropic phase and
the lower viscosity nematic phase [17, 42–45]; in this case non-
local contributions to the total stress and segment orientation
dynamics arise naturally from Frank elasticity and lead to stress
selection. Note that experimental liquid crystalline systems of
rod-like molecules are often in the tumbling regime [11], so that
the nematic state is often time-dependent and banding is not so
clear. Pujolle-Robic and Noirez [46] presented experimental for
shear banding in a side-chain liquid crystalline polymer system.
The non-zero contribution of nematic effects to the segment
orientation dynamics of polymers appears as non-local terms in
the dynamics for the segment orientation tensor Q as well as in
the total stress tensor. If the orientation dynamics are fast then
the fluctuations can be integrated out at the level of the free
energy [47, 48], which leads to non-local terms in the free energy
penalizing W (or equivalently 6). This will generate a diffusive
term in the dynamics for W (or 6) that, in a melt, scales as [41]

Dτ ≃
ℓ2p

126
, (6)

where ℓp is the persistence length of the polymer (of order
0.5 nm for synthetic polymers, 15–20 nm for wormlike micelles,
and 25 nm for single-stranded DNA); one expects Dτ to
acquire a concentration dependence for solutions. Note that the
corresponding length scale for this contribution scales as ℓ =√
Dτ ≃ ℓp/11, which is much smaller than the micron length

scale estimated experimentally.
The non-local terms in the total stress arising from Frank-

elastic effects are analogous to the Korteweg stresses suggested
by Renardy [49] as a mechanism for stress selection. Korteweg
stresses arise from an expansion of the free energy in gradients
of W, where the expansion coefficients can, most generally, be
functions of W. This leads to additional terms in the total stress
tensor σ that are non-linear in W and its gradients:

σ = . . . + 9(W):
δF

∂W
+ 4(W):∇µ

δF

δ∇µW
, (7)

where F is a free energy functional and the fourth rank tensors 4

and 9 depend on the formulation of the model.
Non-locality can also arise from long-range hydrodynamic

coupling between polymer segments [18, 28]. Jin et al. [50]
demonstrated that this non-locality enters as a so-called
curvature viscosity κ , in addition to the usual viscosity, and
has the form −2κ∇2D/τ in the dynamics for the polymeric
contribution to the stress (Equation [d], Table 1). In steady state
this gives a contribution to the total stress of the form −2κ∇2D,
as proposed by [28]. Jin et al. [50] estimated this term as

κ ≃ Nηsa
2
m, (8)

where ηs is the solvent viscosity, am is a molecular size and N is
a numerical pre-factor. In this case the interfacial width is given
by ℓ = √

κ/ηs.
The d-JS model has been coupled to concentration degrees

of freedom in several different guises [29, 30, 51–55], as has
the Rolie-Poly model [32]. These models have non-local effects
due to coupling of stress gradients to solvent or polymers
concentrations [56].

There have been no simulations that we are aware of that
study the interface between shear bands in polymeric or micellar
fluids. Germano and Schmid [57] studied shear banding in
nematic liquid crystals using molecular dynamics simulations of
ellipsoidal particles, where the equilibrium interface width is set
by Frank elasticity and is fairly well-understood. Micellar systems
are still too complex to simulate large enough systems that can
shear band; Mohagheghi and Khomami [58] observed transient
shear banding in dissipative particle dynamics simulations of
bead-spring polymers, but did not study the apparent diffusive
or interfacial effects.

2.2. Results From Non-local Models
2.2.1. Stress Selection
Non-locality in the form of a diffusive term in the microstructure
dynamics can successfully model shear-banding behavior. The
steady-state shear-banding configuration becomes a spatial
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differential equation that describes the shear-banding profile, for
given imposed conditions, of the form [1, 15]

σxy ≡ σ = ηγ̇ + τ8xy(6, κ)xy (9a)

�

6 −∂t6 = − 1

τ
6 + 8(6, κ)+D∇26, (9b)

where σ is the uniform total shear stress that satisfies ∇ · σ = 0.
In the second equation the time derivative has been removed
from the covariant derivative to lead to a steady-state condition
(see Table 1). To solve this differential equation one requires
boundary conditions. Many authors have assumed a so-called
“zero flux” condition n̂ · ∇6 = 0, where n̂ denotes the surface
normal [15, 29]. There is no specific justification for such a
boundary condition, since there is no specific conservation law
on a “stress flux” governed solely by the polymer; the diffusive
contribution derived by El-Kareh and Leal [40] is an exception
to this.

In the limit of an infinite system undergoing shear flow
between parallel plates the specific boundary conditions do not
play an important role, and one finds that a shear-banding state
is selected at a unique value of the total shear stress σxy = σ ∗

in the non-monotonic region of the constitutive curve [15, 18].
For other values of the stress the interface propagates until
all of the fluid has been converted to either the high or low
viscosity state. The interface has a width ℓ ≃ Dτ , and the
infinite system limit corresponds to L≫ ℓ. For imposed average
shear rates in the non-monotonic part of σ (γ̇ ) shear bands
will develop to satisfy Equation (1), and select the stress σ ∗.
One then finds a stress plateau that extends from the low shear
rate to high shear rate branch between coexisting shear rates
γ̇1 and γ̇2. For non-uniform stresses, which occurs for virtually
all practical geometries (cylindrical Couette flow, cone and plate
flow, pressure driven flows) the interface will migrate to the
position within the cell at which the local total shear stress
σxy(y) = σ ∗ [15, 33]. In rheology experiments this leads to
a measured average shear stress that has a slope, rather than
a flat plateau, with a slope increasing with the stress gradient
imposed by the flow geometry. This feature has been verified in
cylindrical Couette flow [59, e.g.,]. In practice band formation
develops via an instability or nucleation of an inhomogeneous
shear rate profile [14, 28, 30, 60], which then develops into two
(or sometimes more) shear bands, followed by migration of the
shear band to the position in the shear cell at which the stress is
equal to the selected stress [61].

2.2.2. Finite Size and Boundary Effects
For imposed average shear rates close to either γ̇1 or γ̇2 one of
the shear bands will be very small; when the shear band size
Li ≃ |(γ̇ − γ̇i)/(γ̇1 − γ̇2)| is of order the interfacial width ℓ,
the shear band ceases to be well-defined, and the polymer stress
will vary more or less smoothly from the edge of the wider shear
band to the wall. This is predicted to give departures from the
stress plateau at its extremities, by typically increasing (low shear
branch) or decreasing (high shear rate branch) the stress σxy
relative to σ ∗ [15]. For small systems L & ℓ the stress should

depart more readily from σ ∗, and eventually one expects to
suppress banding completely for ℓ > L.

2.2.3. Different Boundary Conditions
There have been limited attempts to generalize the no-flux
boundary condition n̂ · ∇6 = 0. Adams et al. [41] introduced
a generalized boundary condition inspired by the anchoring
condition in liquid crystals,

Dτ n̂ · ∇6 + ωa(6 − 60) = 0. (10)

The first term is a surface partner to the bulk diffusive term,
and represents the surface contribution to the molecular torques
that control the dynamics of the microstructure. The second
term represents surface-specific interactions, controlled by an
anchoring energy ωa and a preferred surface value for the stress
60. For polymer liquid crystals or charged polymers the wall
chemistry will influence the preferred conformational state at the
wall. For uncharged flexible polymers [62] showed that steric
exclusion should lead to an oblate polymer conformation at
the wall.

The limit of weak anchoringωa → 0 reduces to the traditional
no-flux boundary condition, while the wall will typically enforce
surface stress with the symmetry of the wall (such as an oblate
polymer conformation near the surface). Depending on the
strength and direction of alignment one or the other of the shear
bands (which have different directions and degrees of alignment)
will be preferred near the walls. A preferred wall alignment
(or misalignment) can also reduce (or increase) the degree of
hysteresis found during increasing shear rate ramps, since the
material near an aligning wall is closer in character to the high
shear rate band [41]. Rossi et al. [54] studied the effects of similar
boundary conditions on a two-fluid version of the d-JS model,
and found standard shear banding with hysteresis at either side
of the stress plateau for zero imposed gradient (ωa → 0); and
hysteretic behavior at the high shear rate side of the stress plateau
(where the molecules are also better aligned in bulk) when the
walls specify alignment, analogous to ωa → ∞.

An outstanding experimental challenge is to impose different
known boundary conditions on the polymer or micelle degrees
of freedom, and measure the resulting effects on shear banding.
These wall effects are expected to be more important in confined
geometries, where the “anchoring length” ξ = Dτ/ωa competes
with the interfacial width ℓ.

3. EXPERIMENTAL EVIDENCE FOR
NON-LOCAL TERMS

Experimental attempts to determine orders of magnitude of non-
local terms in polymeric fluids have exclusively focused on shear-
banding (semi-dilute and concentrated) wormlike micelles. The
characteristic length scale ℓ has been estimated in both in macro-
and micro-flows using various experimental techniques, either
global (rheology) or local (velocimetry, optical visualizations),
as summarized in Table 2. Essentially two types of experimental
approaches have been used. The first one is based on the fact
that the diffusive term, even vanishingly small is expected to
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TABLE 2 | Summary of measurements of the interface length ℓ, based on different techniques in channels flow (C) or Taylor Couette flow (TC) with a gap size L.

Reference System Method Cell T/◦C D/(m2/s) ℓ/µm Notes

Radulescu et al.

[61]

0.3M CTAB, 1.79M NaNO3 Interface travel TC 30 7.2 · 10−14 0.111 Fit to d-JS model.

Underestimated D, ℓ

0.3M CTAB, 0.405M NaNO3 Interface travel TC 30 6.1 · 10−14 0.1 See Fardin et al. [21].

0.3M CTAB, 0.M KBr Interface travel TC 34 1.2 · 10−14 0.044

Masselon et al.

[19]

6% CpCl and NaSal, [Sal]/[CpCl]

= 0.5, 0.5M Brine

Flow profiles C 22 7.0 · 10−12 3− 22 Fit to simple scalar

model.

0.3M CTAB, 0.405M NaNO3% Flow profiles C 25 6.7 · 10−12 3− 8 Fit to simple scalar

model.

Masselon et al.

[20]a
6% CpCl and NaSal, [Sal]/[CpCl]

= 0.5, 0.5M Brine

Flow profiles C 22 2.9 · 10−10 9 Fit to simple scalar

model.

Fardin et al. [21] 0.3M CTAB, 0.405M NaNO3 Interface travel TC 28 10−11−10−10 1− 6 Corrected [61]. Fit to

d-JS and d-Giesekus

models. Found

D = D(γ̇ ).

Mohammadigoushki

and Muller [63]

0.3M CTAB, 0.4M NaNO3 Interface travel

and Superposition

Rheology

TC 25 30 35 10−12 − 10−8 1− 20 Found D ∼ L3 and ℓ

independent of T.

8% CpCl and NaSal, [Sal]/[CpCl]

= 0.5, 0.5M Brine

Superposition

Rheology

TC 21 10−12−10−11 1− 4 Found D ∼ L3.

Helgeson et al.

[64]

490 mM CTAB in D2O Flow profiles TC 32 0.9 · 10−8 13 Fit to d-Giesekus

model.

Ballesta et al. [65] 8% CpCl and NaSal, [Sal]/[CpCl]

= 0.5, 0.5M Brine

Interface travel

and Superposition

Rheology

TC 21 10−12−10−11 1− 10 Fit to d-JS.

aMasselon et al. [20] calculated an asymmetric interfacial profile, with lengths in either side determined by ℓi =
√

κ/ηi (see Equation 11), where ηi is the viscosity in either band. The two

half-widths found were ℓ1 ≃ 8µm, ℓ2 ≃ 1µm, giving a net width of ℓ ≃ 9µm.

control the stage of slow migration of the interface between
bands toward its final stationary position [33]. The second one is
based on direct comparison of the flow profiles (i.e., the velocity
field) with predictions of non-monotonic constitutive models
including spatial gradient terms (see Table 1).

3.1. Interface Migration
In shear-banding wormlike micelles, the shear stress response
following a step shear rate exhibits transient features that are
intimately related to the dynamics of the interface between bands
(Figure 2). Successive relaxation regimes over well-separated
time scales are commonly observed [66]. The last regime,
which precedes steady state, is expected to be related to the
migration of the interface that separates the shear bands. It
is predicted to be the slowest relaxation and to be controlled
by stress diffusive terms [61]. It starts when the interface
between stable bands forms at a position corresponding to
a stress value above or below the plateau stress and adopts
a fully sharp profile. As the shear stress σ is different from
the plateau value σ ∗, the front between bands has a non-zero
velocity and propagates over a short distance to reach its final
equilibrium position (σ = σ ∗) where its velocity becomes equal
to zero. For a general non-local and non-monotonic constitutive
equation of the reaction-diffusion type [67] the interface position
during this stage was shown to follow, at first order, a single
exponential evolution as a function of time. The characteristic

time scale (or equivalently the characteristic velocity) associated
with this slow migration process was found to depend on the
flow geometry, the stress diffusion coefficient D, and the local

constitutive model. Hence, from the knowledge of the migration
time scale (or the front velocity) and within the framework

of a given constitutive model, the diffusion coefficient and the

corresponding length scale ℓ can be computed. In practice,
the effect of non-local terms on the transient evolution toward

the steady shear-banded state has been mostly investigated in

the framework of the d-JS model [61]. Predictions with the d-
Giesekus model have also been tested [21] and a similar approach
has been recently developed in the framework of the VCM
model [68].

Different experimental strategies have been implemented to

access the slow interface migration process, namely transient

rheology [61], direct visualizations [21, 63], ultrasonic

velocimetry [65], and superposition rheology [63, 65], all
performed on semi-dilute wormlike micelles sheared in
a Taylor-Couette (TC) device. In all of these cases the
diffusion coefficient was computed in the framework of
the d-JS model.

The first estimate of the magnitude of non-local terms in
shear-banding wormlike micelles was inferred from the transient
stress response following a step shear rate between two banded
states [61]: from the characteristic time scale of the longest
stage preceding steady state, a stress diffusion coefficient D ∼
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FIGURE 2 | Sketch of measurement of interface properties during stress relaxation after strain rate step from a sample initially at rest. (A) Space-time plot showing

shear band migration after a step, where the white band signifies turbidity in light transmission. (B) Spatial profile across shear band along the white line in (A) showing

a well-formed interface. (C) Stress relaxation showing the region where a well-formed band migrates, from which the diffusion constant was inferred by fitting the

relaxation to the predictions of the d-JS model. Here 〈ri2〉z is the position of the interface between band, w is its apparent width, and σ̃ is the dimensionless shear

stress. Adapted with permissions from Fardin et al. [21], copyright by American Institute of Physics.

10−14m2s−1 was computed, leading to diffusion length scale or
interface width ℓ around tens of nanometers, i.e., compatible with
the mesh size of the micellar network. However, more recent
experiments showed that the last and slowest regime preceding
steady state in the transient stress relaxation of shear-banding
wormlike micelles is not related to interface migration but to
the subsequent development of an elastic instability [69], which
is ubiquitous in these systems [2, 70]. The migration stage of
interest occurs before the elastic instability and spreads over a
shorter time scale. Consequently, the order of magnitude of the
non-local terms established in the pioneering study by [61] was

greatly underestimated. The original study was recently revisited
using optical visualization of the interface between bands [21, 63].
By tracking the interface position as a function of time, the
relevant migration stage has been identified. The corresponding
time scale led to stress a diffusion coefficient in the range
D ≃ 10−12-10−8m2s−1 and corresponding diffusive lengths (or
interface widths) ℓ ≃ 1-20µm (see Table 2).

Mohammadigoushki and Muller [63] found that the
stress diffusion coefficient increases linearly with increasing
temperature, leading to a corresponding length scale ℓ

independent of T. They also found a monotonic increase
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of D with the gap size L as D ∼ L3, for a given fixed curvature
ratio (inner to outer radii), thus ensuring the same percentage
stress drop across the gap [63]. This dependence D ∼ L3 cannot
be understood from current theory. Finally, Fardin et al. [21]
found a dependence of the migration time scale on the applied
shear rate, also suggesting that a given micellar system is not
characterized by a single value ofD. Assuming that the relaxation
time of the system does not vary with γ̇ , ℓ was thus found to
decrease with increasing γ̇ . Note that such a dependence on
the shear rate was not observed by Mohammadigoushki and
Muller [63]. This discrepancy may arise from insufficient spatial
resolution in the experiments performed byMohammadigoushki
and Muller [63], a drawback that also limited the data from
Fardin and Lerouge [71].

Non-local terms were also probed using parallel superposition
rheology, which consists in adding a small-amplitude oscillatory
shear parallel to a main steady shear [63, 65]. In that case, the
stress diffusion coefficient was inferred from the velocity of the
interface during the migration stage, by comparing with the d-
JS model. The interface velocity was deduced from fitting the
imaginary part of the complex viscosity within the framework
of a two-fluid phenomenological model [65] combined with
the reaction-diffusion model proposed by Radulescu et al. [67].
This method of determination of the interface velocity has
been validated using ultrasonic velocimetry where the interface
position was deduced from tracking the crossover between the
two shear bands in the velocity profiles [65]. Stress diffusion
coefficients and diffusive length were found in the range D ≃
10−12-10−11m2s−1 and ℓ ≃ 1-10µm, respectively.

3.2. Flow Profiles
The diffusive terms have also been estimated through direct
comparison between measured velocity profiles in the banding
regime and predictions of non-local models. Helgeson et al. [64]
measured the velocity profile using particle image velocimetry
(PIV) at a given applied shear rate in Taylor-Couette geometry,
and fitted to the non-homogeneous form of the d-Giesekus
model with the stress diffusion coefficient as the only adjustable
parameter. From the value of D ≃ 10−8m2s−1, a stress
diffusion length ℓ ≃ 13µm was inferred. Recently, a model-
free experimental procedure was developed to distinguish shear
banding from strong shear thinning using high-resolution PIV
[72]. An appropriate statistical method was used to smooth the
steady-state experimental velocity profiles and calculate their
local numerical derivatives. This procedure was tested on semi-
dilute wormlike micelles systems. From the third derivative of
a shear-banding velocity profile, an effective thickness of the
transition zone between bands, which can be interpreted as an
upper bound for the interface width, has been inferred. A stress
diffusion coefficientD ≃ 10−10m2s−1 giving ℓ ≃ 20µmwas then
deduced in the framework of the d-Giesekus model.

Another attempt to determine the order of magnitude of
spatial gradient terms came from confined microfluidic flows in
straight channel. Pressure-driven flows in channels have a linear
shear stress gradient σxy = σwr/R, where σw is the wall stress
and R is the half-width of the channel (or radius of a cylindrical

channel)2. A shear-banded state would typically have a thin and
fast flowing band near the wall, and plug-like flow in the middle
where the stress is much smaller. Hence the stress drop across
the interface between shear bands is δσxy ≃ ℓσw/R. For small
channels one expects a significant stress difference across the
interface, so banding is expected to be influenced [33].

Experiments by Masselon et al. [19, 20] using µ-PIV in
straight rectangular microchannels measured the local velocity
of a shear-banding fluid across the channel, and by correlating
this with the known wall stress (obtained from the driving
pressure) they could reconstruct the local stress σloc(y) as a
function of shear rate γ̇loc(y) through the channel, as well as the
velocity profile. σloc(γ̇loc) should follow the flow curve (including
the stress plateau) measured by bulk rheology. Masselon et al.
[19] showed that for small channels (R ∼ 60-100µm) this
procedure doesn’t work; the bulk and local flow curves deviated
significantly. Some of this can be attributed to wall slip, and some
is not well-accounted for by existing models. A simple model
was devised to address this, based on a scalar version of Dhont’s
curvature stress:

σw
y

R
= σh(γ̇ )− κ

d2γ̇

dy2
, (11)

where κ is the curvature-stress coefficient of Dhont (see Table 1).
To fit this model to the measured velocity profiles a constitutive
model σh(γ̇ ) was used based on bulk rheology, and a specific
boundary condition γ̇ (y = R) = γ̇w,exp was applied, where the
experimentally determined velocity gradient at the wall γ̇w,exp
was used. This allowed for an estimate of κ , as well as a
successful fit to the measured local rheology and the velocity
profile. From a large set of data obtained by systematically
changing the imposed pressure drop, the level of confinement,
and the boundary conditions for different semi-dilute shear-
banding wormlike micelles, the correlation length ℓ =

√

κ/η(γ̇ )
was found to vary along the stress plateau from ℓ ≃ 1-20µm
[19, 20]. Note that this work has some unsatisfactory points: wall
slip was put in “by hand” rather than emerging from a detailed
stress balance at the wall, and a scalar theory was used, rather
than also incorporating normal stresses.

4. BRIEF SUMMARY

Several experimental methods used in combination with ad-hoc
constitutive models have estimated the magnitude of non-local
terms in shear-banding wormlike micelles, to thus determine
an interfacial length ℓ of order a few microns, which is larger
than the typical mesh size of the micellar network, and thus
consistent with the models that depend on coarse-grained field,
such as the average polymer conformation or stress. However,
many challenges remain:

1. The diffusive length ℓ is not related in an obvious way to
mesoscopic length scales of the quiescent samples. Systems
of various compositions have been tested, mostly semi-
dilute systems, at various concentrations (ranging between

2x and y refer to as the flow and flow gradient directions, respectively.
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6 and 11% wt). Whatever the experimental technique and
the theoretical framework used, the emerging length scale is
still around 1–20 microns. In all the systems investigated,
the high shear rate band appears slightly turbid, suggesting
micron scale concentration fluctuations. Such fluctuations
might explain the order of magnitude of ℓ but more systematic
studies are required to fully understand the connection
between ℓ and the microstructure of the micellar systems.

2. In some cases (e.g., Fardin et al. [21]) the observed length

scale ℓ does not seem to have a unique value but depends

on the average imposed shear rates or the width of the shear

band. This behavior is not captured by phenomenological
models like the d-JS or d-Giesekus models, but conceivably

could be taken into account by more complex fluidity models
where the relaxation time has more complex dynamics [73];
or with non-linear diffusive terms in which D is replace by a
function D(κ ,6).

3. No theory simultaneously treats boundary conditions on
the polymeric degrees of freedom, shear banding, and
wall slip consistently, despite progress on separate aspects
of these issues. An ideal scenario would be to combine
molecular theories of polymers slip [74, 75] with shear-
banding calculations in which the wall boundary condition

has been generalized to include the effects of the wall on
polymer conformation tensor [41].

4. It would be very useful to have an experimental method for
measuring the actual boundary conditions of the structural
tensor at the wall (e.g., using Raman scattering, evanescent
wave methods, or other techniques).

In this review we have limited ourselves to diffusion lengths
extracted from non-local effects in wormlike micellar systems;
non-local rheology has been shown to be important in other
systems, notably dense yielding materials, such as emulsions
and pastes [7]. We have not attempted to review these together,
although there are certainly many parallels between the different
classes of systems.
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