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To obtain an understanding of the structure and reactions of nuclear systems from first

principles has been a long-standing goal of nuclear physics. In this respect, few- and

many-body systems provide a unique laboratory for studying nuclear interactions. During

the past decades, the development of accurate representations of the nuclear force has

undergone substantial progress. Particular emphasis has been devoted to chiral effective

field theory (EFT), a low-energy effective representation of quantum chromodynamics

(QCD). Within chiral EFT, many studies have been carried out dealing with the

construction of both the nucleon-nucleon (NN) and three-nucleon (3N) interactions. The

aim of the present article is to give a detailed overview of the chiral interaction models that

are local in configuration space, and show recent results for nuclear systems obtained

by employing these local chiral forces.

Keywords: nuclear interactions, chiral effective field theory, local interactions, three-body forces, ab-initio

calculations

1. INTRODUCTION

The last few decades have marked the emergence of the basic model of nuclear theory in which
nuclear systems—particularly atomic nuclei and infinite nucleonic matter—can be described as a
collection of point-like particles, the nucleons, interacting with each other in terms of two- and
many-body effective interactions, and with external electroweak probes via effective current
operators. This approach, in conjunction with a computational method of choice to solve the
many-body Schrödinger equation, can then be used to study the structure and dynamics of nuclear
systems in a fully microscopic way, which is commonly referred to as ab-initio calculations.
Examples of such calculations are based on the no-core shell model (NCSM) [1, 2], the coupled
cluster (CC) [3, 4] or hyperspherical harmonics (HH) [5] expansions, similarity renormalization
group (SRG) approaches [6, 7], self-consistent Green’s function techniques [8, 9], quantum Monte
Carlo (QMC) methods [10], and nuclear lattice effective field theory (NLEFT) [11]. Although
significant progress has been made in recent years, these ab-initio techniques remain challenging
and their domain of applicability is, at present, limited to provide quantitative description of light
andmedium-mass nuclei [1, 4, 7–10, 12] and their reactions [13–16]. A special but related challenge
is the development of microscopic models that include continuum couplings which are mandatory
to describe, for instance, weakly bound nuclear systems [17, 18].

One might argue that nucleons are not the fundamental building blocks of the nuclear systems
at hand, and that one should instead start from Quantum Chromodynamics (QCD). QCD
provides the theoretical framework to describe strong interactions which governs the dynamics
and properties of quarks and gluons. However, while strong interactions are weak and perturbative
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at high energies, i.e., short distances (asymptotic freedom),
quarks are strongly interacting at low energies or long distances,
of relevance for nuclear physics, which makes a non-perturbative
treatment necessary. In addition, at these energies quarks
are confined into colorless objects called hadrons (baryons,
consisting of three quarks, e.g., the nucleon, and mesons
consisting of a quark and an anti-quark, e.g., the pion). Hence,
while QCD is responsible for the complex inter-nucleon forces in
nuclear systems, which can be thought of as residual interactions
among quarks, a description in terms of nucleon degrees of
freedom is particularly valid at sufficiently low energies.

How the interactions among nucleons emerge from the
fundamental theory, QCD, has kept nuclear theorists occupied
for many decades. Since QCD is non-perturbative at low energies
of interest in nuclear systems, one may try to solve QCD with
brute computing power on a discretized Euclidean space-time
lattice (known as lattice QCD) However, in spite of many
advances [19–22], lattice QCD calculations are still limited to
small nucleon numbers and/or large pion masses, and hence, at
the present time, can only be used to address a limited set of
representative key-issues.

As a consequence, most theoretical studies of nuclear systems
have to resort to using the basic model of nuclear theory,
i.e., assuming pointlike nucleons to be the relevant degrees
of freedom instead of quarks. In this review, we will briefly
introduce this basic model and discuss the current state-of-the-
art for nuclear interactions, chiral effective field theory (EFT).
We will then focus on a particular subclass of chiral EFT
interactions, local chiral EFT interactions, intended for the use
in QMCmethods.

The review is structured as follows. In section 2, we discuss
the general features of nuclear interactions starting with the
phenomenological ones and moving to those obtained in chiral
EFT. In section 3, we provide many details about the theoretical
derivation of local interactions in both delta-full and delta-less
chiral EFT, i.e., when explicitly including the delta resonance or
not. In section 4, we briefly discuss finite cutoff and regulator
artifacts that can appear in calculations with local interactions.
Finally, in section 5, we report selected results for light and
medium-mass nuclei and the equation of state of pure neutron
matter using QMCmethods.

2. NUCLEAR HAMILTONIANS

The basic model of nuclear theory assumes that a nuclear
system can be described by a non-relativistic Hamiltonian that
contains interactions among nucleons, i.e., protons and neutrons.
The individual nucleons mostly interact via two-body (NN)
interactions. However, nucleons can also interact via three-
body (3N) and higher many-body interactions. The way these
many-body interactions appear is 2-fold. First, nucleons are
compound particles and, hence, treating them as point-like
particles induces effective many-body interactions even if only
two-quark interactions were to be considered. This is similar to
describing tides on Earth, where the three-body system given by
Earth, Moon, and Sun is relevant, even though gravity is only a

two-body force. Second, since quarks themselves can have multi-
quark interactions, this immediately leads to the appearance of
“true” 3N forces among nucleons, where, for example, single
quarks in each of the three nucleons interact with each other.

The resulting Hamiltonian can then be written as a sum of
the non-relativistic one-body kinetic energy (Ti),NN interactions
between particle i and j (Vij), 3N interactions between particle
i, j, and k (Vijk), and additional many-body interactions, and
provides a good approximation for interacting nucleons in a
given nuclear system:

H =
∑

i

Ti +
∑

i<j

Vij +
∑

i<j<k

Vijk + · · · . (1)

There are indications that four-body interactions may contribute
at the level of only ∼100 keV in 4He [23] or pure neutron
matter [24], and therefore are negligible compared toNN and 3N
interactions. Hence, current formulations of the basic model do
not typically include them (see e.g., [10]).

In order to derive two- and three-body nuclear forces, one
has to take into account some general considerations, specify the
theoretical framework in which such interactions are formulated,
and the experimental inputs necessary to determine possible
unknown parameters of the theory.

2.1. General Considerations for Nuclear
Interactions
To accurately describe nuclear systems that are governed
by QCD, nuclear interactions need to obey all the relevant
symmetries of QCD. Hence, nuclear potentials need to have the
following properties (we will focus on NN forces here, but the
statements remain true for all parts of the interaction):

• V is hermitian, because the Hamiltonian is hermitian,
• V is symmetric under the permutation of identical particles,

i.e., Vij = Vji,
• V is translationally and rotationally invariant,
• V is invariant under translations in time, i.e., time-

independent,
• V is Lorentz invariant (for non-relativistic interactions this

reduces to Galilean invariance),
• V is invariant under parity transformations and time reversal,
• V has to conserve baryon and lepton number,
• V has to be approximately isospin symmetric and charge

independent,
• and V has to include the properties of spontaneously and

explicitly broken chiral symmetry.

Chiral symmetry is a symmetry of the QCD Lagrangian with
massless quarks under independent rotations of left- and right-
handed quarks. Considering only u and d quarks, this symmetry
can be written as SU(2)L×SU(2)R. This expression contains two
symmetries: the first (vector) one represents isospin symmetry,
i.e., symmetry under the exchange of u and d quarks, and the
second (axial) one is the so-called chiral symmetry. These two
symmetries imply degenerate fermions under isospin and spin-
parity transformations.While isospin symmetry is approximately
fulfilled in nature, i.e., the neutron and proton have similar
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masses, nucleons with spin 1/2+ and 1/2− have very different
masses (940 vs. 1,535 MeV). This signals that chiral symmetry is
broken in nature.

In fact, chiral symmetry is broken 2-fold. First, it is broken
spontaneously, leading to the formation of Goldstone bosons,
that can be identified with the pions. Second, chiral symmetry
is also explicitly broken by the finite quark masses, which leads
to the pion being pseudo-Goldstone bosons with finite but small
mass. In contrast, isospin symmetry remains a good symmetry,
because the ratio (md−mu)/3QCD is very small, wheremu ≃ 2.4
MeV andmd ≃ 4.8 MeV.

These symmetries only allow certain operator structures for
nuclear interactions. Galilean invariance, for instance, implies
that nuclear interactions depend only on relative momenta
between two nucleons, p = pi − pj, while symmetry under
parity transformations implies that nuclear interactions cannot
be linear in p, and charge independence requires that the nuclear
interactions can be written as

V = V1 · 1+ Vτ τ i · τ j , (2)

and so on. In addition, the spin dependencies are included
through operators like 1, σ i · σ j, spin-orbit interactions given by
L · S with L = r × p, where r = ri − rj, or tensor interactions
with the tensor operator Sij(r) = σ i · r̂ σ j · r̂ − σ i · σ j. As a
consequence, interactions typically have a spin-isospin operator
structure given by

OV = {1, σ i · σ j, L · S, Sij} × {1, τ i · τ j} , (3)

where the individual operators carry momentum-dependent
functions consistent with all required symmetries.

2.2. Phenomenological Interactions
Historically, NN interactions were derived using
phenomenological insight. They were characterized by a
long-range component characterizing the interaction for inter-
nucleon separations r & 1/mπ , due to one-pion exchange
(OPE) [25], and intermediate- and short-range components
describing the interactions at 1 fm . r . 2 fm and r . 1 fm,
respectively. The intermediate- and short-range components
were included to simulate intermediate-range attraction as well
as short-range repulsion.

Up to the mid-1990’s, nuclear interactions were based almost
exclusively on meson-exchange phenomenology. Interactions of
the mid-1990’s [26–28] were constrained by fitting nucleon-
nucleon (NN) elastic scattering data up to laboratory energies of
350 MeV, with χ2/datum ≃ 1 relative to the database available
at the time [29]. Two well-known and still widely used examples
in this class are the Argonne v18 (AV18) [27] and CD-Bonn [28]
interactions. These are so-called phenomenological interactions.

Already in the 1980’s, accurate three-body calculations showed
that contemporary NN interactions alone did not provide
sufficient binding to reproduce experimental numbers for nuclei
with nucleon number A = 3, 3H and 3He [30]. This realization
was later on extended to the spectra (ground and low-lying
excited states) of light p-shell nuclei, for instance, in calculations

based on quantumMonte Carlo (QMC) methods [31] and in no-
core shell-model (NCSM) studies [32]. Consequently, the basic
model with only NN interactions fit to scattering data, without
the inclusion of a three-nucleon (3N) interaction, was found
to be unsatisfactory. However, because of the composite nature
of the nucleon and, in particular, the dominant role of the 1

resonance, a spin-3/2, isospin-3/2 nucleon resonance, in pion-
nucleon scattering, many-body interactions arise quite naturally
in meson-exchange phenomenology.

For example, the Illinois 3N interaction [33] consists of
a dominant two-pion exchange (TPE)—the Fujita-Miyazawa
interaction [34]—and smaller multi-pion exchange components
resulting from the excitation of intermediate1’s. Themost recent
version, Illinois-7 (IL7) [35], also contains phenomenological
isospin-dependent central terms. The parameters characterizing
this 3N potential have been determined by fitting the low-lying
spectra of nuclei in the mass range A= 3–10. The resulting
AV18+IL7 Hamiltonian, generally utilized with QMC methods,
then leads to predictions of 100 ground- and excited-state
energies up to A= 12, including the 12C ground- and Hoyle-
state energies, in good agreement with the corresponding
experimental values [10]. However, when used to compute
the neutron-star equation of state, these interactions do not
provide sufficient repulsion to guarantee the stability of the
observed neutron stars with masses larger than two solar
masses against gravitational collapse [36]. Thus, in the context
of the phenomenological nuclear interactions, we do not
have a Hamiltonian that can predict the properties of all
nuclear systems, from NN scattering to dense nuclear and
neutron matter.

Furthermore, high-precision phenomenological potentials
suffer from several limitations, most notably the missing
connection with the low-energy QCD, and hence, the absence
of a guiding principle for the construction of interactions. As
a consequence, phenomenological interactions do not provide
rigorous schemes to consistently derive two- and three-body
forces and compatible electroweak currents. In addition, there
is no clear way to properly assess the theoretical uncertainty
associated with the nuclear potentials and currents.

2.3. Chiral Effective Field Theory
These drawbacks were addressed when a new phase in the
evolution of the basic model began in the early 1990’s with the
emergence of chiral effective field theory (EFT) [37–39].

Chiral EFT is a low-energy effective theory of QCD based
on the choice of baryons as effective degrees of freedom: in
chiral EFT one chooses pions and nucleons. At typical momenta
in nuclei, p ∼ mπ ∼ O(100MeV), this choice is accurate,
because shorter-range structures, e.g., the quark substructure, or
heavier meson exchanges, e.g., exchanges of the ρ-meson, are not
resolved, and can be absorbed in short-range nucleon contact
interactions. This separation of scales between typical momenta
p and scales of the same order, i.e., the pion mass mπ ∼ 140
MeV, and larger scales, e.g., the mass of the ρ, mρ ∼ 770 MeV,
can then be used to systematically derive an effective and most
general scheme accommodating all possible interactions among
the relevant degrees of freedom consistent with the symmetries
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of QCD. In some modern approaches, the choice of degrees
of freedom also includes the 1 isobar (delta-full chiral EFT),
because the 1-nucleon mass splitting is only 300 MeV∼ 2mπ .

The starting point in chiral EFT is themost general Lagrangian
in terms of the chosen degrees of freedom, which contains
all allowed interaction mechanisms in accordance with the
considerations in section 2.1. As a consequence, this Lagrangian
contains an infinite number of terms and needs to be truncated
using a given power-counting scheme. Most chiral interactions
used in nuclear structure calculations are based on Weinberg
power counting, which itself is based on naive dimensional
analysis of interaction contributions. Within Weinberg power
counting, the interactions are expanded in powers of the typical
momentum p over the breakdown scale 3b, Q = p/3b,
where the breakdown scale denotes momenta at which the short
distance structure becomes important and cannot be neglected
and absorbed into contact interactions anymore (see [40–43]
for recent review articles). It is worthwhile mentioning that
alternative power-counting schemes have been also suggested as
in Kaplan et al. [44, 45], Nogga et al. [46], Pavon Valderrama and
Ruiz Arriola [47], Long and Yang [48], and van Kolck [49].

This expansion defines an order by order scheme, defined
by the power ν of the expansion scale Q in each interaction
contribution: leading order (LO) for ν = 0, next-to-leading order
(NLO) for ν = 2, next-to-next-to-leading order (N2LO) for ν =

3 and so on. Similarly as for nuclear interactions, such a scheme
can also be developed for electroweak currents. Therefore, chiral
EFT provides a rigorous scheme to systematically construct
many-body forces and consistent electroweak currents, and tools
to estimate their uncertainties [50–55]. From this perspective,
it can be justifiably argued that chiral EFT has put the basic
model on a more fundamental basis, by providing a link between
QCD with all its symmetries, and the strong and electroweak
interactions in nuclei.

Figure 1 shows the state of the art of chiral contributions
to the NN and 3N interactions in the delta-less and delta-full
chiral EFT. Higher many-body forces, such as four-nucleon (4N)
or five-nucleon (5N) interactions, can naturally also be derived
within this framework [42], but they will not be discussed here.
Nuclear forces in chiral EFT are separated into pion-exchange
contributions and contact terms. Pion-exchange contributions
represent the long- and intermediate-range parts of nuclear
interactions and contain all chiral physics. Contact terms, on the
other hand, encode the unresolved short-range physics and their
strength is specified by unknown low-energy constants (LECs),
that need to be adjusted to experimental data.

At LO, besides the already mentioned OPE potential, there
are two NN contact terms with no momentum dependence
that contribute only to the S-wave. They are identified by the
four-nucleon-leg diagramwith amomentum-independent vertex
denoted by a small dot in the first row of Figure 1. The interaction
at LO is a very simple approximation, but already takes into
account some of the important features of the NN force. For
instance, the OPE generates the tensor component of the nuclear
force known to be crucial to properly describe the two-nucleon
bound state (deuteron).

The leading NN two-pion-exchange (TPE) contributions
appear at NLO. Diagrams involving virtual excitations of the

1-isobars [56–59] also appear at NLO in the delta-full chiral-EFT
approach. Most importantly, seven new momentum-dependent
contact terms can be constructed at this order, which are denoted
by the four-nucleon-leg graph with a solid square in the second
row of Figure 1. These additional contact terms are important
to correctly describe NN scattering in the S- and P-waves.
More details about these contributions are presented in the next
sections. Another important contribution at NLO is the leading
3N force, which can be described by the well-known Fujita-
Miyazawa diagram [34], which involves intermediate excitation
of the1-isobars between three nucleons. While this contribution
has to be considered in the 1-full approach, it can be shown that
the net contribution of 3N forces vanishes in the delta-less chiral
EFT [39, 49] at this order.

At next order, N2LO, the sub-leading NN TPE diagrams
contain vertices (large solid dots) proportional to the so-called
ci coefficients. The values of these parameters can be obtained
by pion-nucleon (πN) [60–67] or NN scattering data [41]. In
the delta-less chiral EFT, these coefficients mimic the effect
of the 1-isobar (or some other meson resonances) through
a mechanism known as resonance saturation. Hence, they
are enhanced in magnitude and found to be “unnaturally”
large. The explicit inclusion of the 1 isobar in the delta-
full theory reduces the strength of the ci’s and promotes
the corresponding contributions to a lower order (see gray
arrows in Figure 1). As a consequence, the convergence of the
expansion in the delta-full theory improves considerably at these
orders. In the delta-full approach, additional sub-leading TPE
contributions appear that have also been worked out at this
order [60].

In addition to the NN sector, additional 3N diagrams appear
at N2LO in both approaches. They involve a 3N TPE, a OPE-
contact interaction, and a true 3N contact diagram. The 3N TPE
potential also involves the ci parameters already present in the
TPE NN force. As in the case of the NN force, these contributions
absorb the presence of the 1-isobar in the delta-less approach,
while some of their strength is promoted to lower order in the
form of the already discussed Fujita-Miyazawa diagram in the
delta-full approach. The OPE-contact and 3N contact diagrams
include two purely three-body LECs that have to be adjusted to
A ≥ 3 data. Finally, the are no additional diagrams due to 1

contributions to the 3N force at N2LO [68].
At higher orders, the number of contributions to the NN

force dramatically increases. In Figure 1 only a few representative
diagrams are displayed. For instance, at N3LO more TPE
contributions occur—in both delta-less and delta-full chiral
EFT—involving leading two-loop and relativistic corrections. In
addition, leading three-pion (3π) exchange contributions arise
at this order but they are found to be negligible. The main
feature at N3LO is the presence of additional contact interactions
represented by the four-nucleon-leg with a solid diamond. Since
these interactions are ∼ p4, p′4, they have a relevant impact up
to the D waves. Their full operator structure will be discussed in
the next section. Additional complicated 3N diagrams appear at
N3LO, as well as the first contributions to four-nucleon forces
(4N).Wewill not discuss these diagrams here and refer the reader
to Bernard et al. [69, 70] and Epelbaum [71, 72]. For additional
contributions at N4LO and N5LO, we refer the interested reader
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FIGURE 1 | Chiral contributions to the NN and 3N interactions in the delta-less and delta-full chiral EFT based on Weinberg power counting. Solid lines represent

nucleons, dashed lines represent pions, and double lines represent the 1 isobar. Gray arrows indicate the shift of individual contributions within the two

power-counting schemes when explicit 1’s are accounted for. Figure adapted from Machleidt and Entem [41] and Machleidt and Sammarruca [42] under the Creative

Commons CCBY license.

to Entem et al. [73], Epelbaum et al. [74], Reinert et al. [75], and
Entem et al. [76].

An important aspect of nuclear interactions (and currents)
in the basic model is that they suffer from ultraviolet
(UV) divergences which need to be removed by a proper
regularization and renormalization procedure. There are two
sources of UV divergences that require regularization: first,
UV divergences appear in loop corrections, and second when
solving the Schrödinger or Lippmann-Schwinger equations or
when calculating matrix elements involving nuclear currents.
Loop divergences can be treated via dimensional regularization
(DR) or spectral-function regularization (SFR), where the
latter is implemented through the inclusion of a finite
cutoff in the spectral functions. To cure divergences when
solving the Schrödinger or Lippmann-Schwinger equations,
the nuclear potential is multiplied by regulator functions
that remove large-momentum contributions above a chosen
cutoff scale. The regularization of the potential (and current)
operators is followed by a renormalization procedure, i.e.,
dependencies on the regularization scheme and cutoff are
reabsorbed, order by order, by the LECs entering the potential
(and currents).

Nucleon-nucleon scattering has been extensively studied in
chiral EFT in the past two decades following the pioneering work

by Weinberg [37–39] and Ordonez et al. [58]. In particular, NN
potentials at N3LO in the chiral expansion are available since the
early 2000’s [77, 78] and have served as a basis for numerous ab
initio calculations of nuclear structure and reactions. Recently,
accurate and precise chiral EFT potentials up to fifth order in the
chiral expansion, i.e., N4LO, have been developed [73–76], and
provide an extremely accurate description of NN data bases up
to laboratory energies of 300 MeV with a χ2 per datum close
to one. These databases have been provided by the Nijmegen
group [26, 29], the VPI/GWU group [79], and more recently the
Granada group [80–82]. In the standard optimization procedure,
the NN potentials are first constrained through fits to neutron-
proton (np) and proton-proton (pp) phase shifts, and then refined
by minimizing the total χ2 obtained from a direct comparison
with theNN scattering data. However, new optimization schemes
are being explored in Carlsson et al. [83] and Ekström et al.
[84]. For instance, the optimization strategy of the N2LOsat

interaction of Ekström et al. [84] is based on a simultaneous
fit of the two- and three-nucleon forces to low-energy NN
data, the deuteron binding energy, and binding energies and
charge radii of hydrogen, helium, carbon, and oxygen isotopes
using consistent NN and 3N interactions at N2LO. However,
despite the good description of properties of 16O and 40Ca,
the NN component of this interaction shows deficiencies in
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reproducing the pp and np scattering data even at very
low energy.

Three-nucleon forces and their impact on nuclear structure
and reactions has become an important frontier in nuclear
physics, see Kalantar-Nayestanaki et al. [85] and Hammer
et al. [86] for review articles. As shown in Figure 1, chiral
contributions to the 3N interaction have been derived up
to N4LO in the chiral expansion [69, 70, 87–89]. However,
few- and many-nucleon calculations are, with very few
exceptions, still limited to chiral 3N forces at N2LO. At
this order, as we have mentioned above, 3N forces are
characterized by the presence of two unknown LECs that
have to be determined. The two LECs—namely cD in the
OPE-contact and cE in the 3N contact interaction– have
been constrained either by fitting exclusively strong-interaction
observables [90–93] or by relying on a combination of strong-
and weak-interaction observables [94–96]. This last approach
is made possible by the relation between cD in the OPE-
contact interaction and the LEC in the NN contact axial
current [94, 95, Schiavilla, private communication], established
in chiral EFT [97]. This connection allows one to use nuclear
properties governed by either strong or weak interactions
to constrain simultaneously the 3N interaction and NN
axial current.

As chiral EFT is a low-momentum expansion of nuclear
interactions, many of the chiral interactions available in the
literature are formulated in momentum space and have the
feature of being strongly non-local in coordinate space. This
makes them not well-suited for certain numerical algorithms, for
example QMC methods. In this context, an interaction is local if
it depends solely on the momentum transfer q = p − p′, which
Fourier transforms to dependencies on r. However, interactions
in momentum-space can also depend on the momentum scale
k = (p′ + p)/2, which Fourier transform to derivatives in
coordinate space. These k dependencies, and thus non-localities,
come about because of (i) the specific functional choice made to
regularize the momentum space potentials in terms of the two
momentum scales p and p′, and (ii) contact interactions that
explicitly depend on k.

QMC methods, for example variational (VMC) and Green’s
Function Monte Carlo (GFMC) [10, 98] techniques, provide
reliable solutions of the many-body Schrödinger equation—
presently for up to A= 12 nucleons—with full account of the
complexity of the many-body, spin- and isospin-dependent
correlations induced by nuclear interactions. The sampling of
configuration space in VMC and GFMC simulations gives access
to many important properties of light nuclei, such as spectra,
form factors, transitions, low-energy scattering, and response
functions. Auxiliary Field Diffusion Monte Carlo (AFDMC) [10,
98] uses Monte Carlo techniques to additionally sample the spin-
isospin degrees of freedom, enabling studies of, for example,
nuclei up to A= 16 [99, 100] and neutron matter [90, 91, 101–
103, Piarulli et al., private communication] that is so critical to
determining the structure of neutron stars. QMC simulations
have surely proved to be very valuable in attacking many nuclear-
structure problems over the last three decades but require
local chiral interactions as input. Therefore, there is a need to

develop local chiral interactions for the use in QMC methods
in order combine these accurate many-body methods with
systematic nuclear interactions and to test to what extent the
chiral EFT framework impacts our knowledge of few- and many-
body systems.

3. LOCAL HAMILTONIANS

3.1. Local Two-Nucleon Interactions
Amajor thrust of our work is based on the theoretical derivation,
optimization, and implementation of chiral interactions suitable
for QMC methods. In recent years, local configuration-space
chiral NN interactions have been derived by two groups [104–
107]. In this section, we will introduce these two families of
interactions, that are either derived in the delta-less [104, 105] or
delta-full [106, 107] approach. We begin by introducing general
features of both approaches and then describe the specifics.
We will be stating general considerations in momentum-space,
where q dependencies indicate local parts of interactions and
k dependencies indicate non-localities, and then switch to
coordinate-space where interactions are local if they only depend
on the relative distance r = ri − rj. Fourier transformations
connect interactions in momentum- and coordinate-space, with
q and r being associated variables, while k leads to appearances of
gradient terms.

As discussed before, nuclear interactions can generally be
separated into different interaction channels depending on their
operator structure. Obviously, chiral interactions can also be
separated into long-range physics, mediated by pion-exchange
interactions, and short-range physics, which is described by a set
of operators consistent with all symmetries and accompanied by
LECs adjusted to reproduce experimental data:

V(q, k) = Vcont(q, k)+ Vπ (q, k) . (4)

Each of these components can then be expanded in chiral order
ν as discussed before:

Vi =
∑

ν

V
(ν)
i = V

(0)
i + V

(2)
i + V

(3)
i + V

(4)
i + . . . . (5)

At LO, ν = 0, both delta-less and delta-full chiral EFT have the
same operator structure. At this order, only the leading contact
interactions as well as the one-pion exchange (OPE) interaction
contribute (see Figure 1). Generally, pion-exchange interaction
can be written as

Vπ = VC,π + τ i · τ jWC +
(

VS + τ i · τ jWS

)

σ i · σ j

+
(

VT + τ i · τ jWT

)

σ i · q σ j · q

+
(

VLS + τ i · τ jWLS

)

i(σ i + σ j) · q× k

+
(

VσL + τ i · τ jWσL

)

σ i · q× k σ j · q× k , (6)

with central, spin, tensor, spin-orbit and quadratic spin-
orbit components, respectively. In the local chiral interactions
discussed in this review, the spin-orbit and quadratic spin-orbit
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terms are not included as they are of higher order. The one-pion
exchange interaction is given in momentum space as

V
(0)
OPE(q) = −

g2A
4f 2π

σ i · qσ j · q

q2 +m2
π

τ i · τ j , (7)

where gA, fπ = 92.4 MeV, and mπ denote the axial-vector
coupling constant of the nucleon, the pion decay constant,
and the pion mass, respectively. As a consequence, the OPE
contributes to theWT channel.

Including isospin-symmetry breaking effects induced by the
mass difference between charged and neutral pions, the OPE
interaction can be rewritten as

V
(0)
OPE(q) =

[

vπ ,LO
στ (q) σ i · σ j + vπ ,LO

tτ (q) Sij(q)
]

τ i · τ j

+
[

vπ ,LO
σT (q) σ i · σ j + vπ ,LO

tT (q) Sij(q)
]

Tij , (8)

with the tensor operator Sij(q) in momentum space, Sij(q) =

3 σ i ·q σ j ·q−q2 σ i ·σ j, and the isotensor operator Tij = 3 τizτjz−

τ i · τ j. Hence, when including isospin-symmetry breaking, the
OPE adds to theWS andWT parts of Equation (6). The functions,

vπ ,LO
στ (q), vπ ,LO

tτ (q), vπ ,LO
σT (q), and vπ ,LO

tT (q) are defined as

vπ ,LO
στ (q) =

Y0(q)+ 2Y+(q)

3
, vπ ,LO

tτ (q) =
T0(q)+ 2T+(q)

3
,(9)

vπ ,LO
σT (q) =

Y0(q)− Y+(q)

3
, vπ ,LO

tT (q) =
T0(q)− T+(q)

3
,

with Yα(q) and Tα(q) given by

Yα(q) = −
g2A

3 (2fπ )2
q2

q2 +m2
πα

,Tα(q) = −
g2A

3 (2fπ )2
1

q2 +m2
πα

.

(10)
Here, mπα denotes the neutral (mπ0 ) and charged (mπ± ) pion
masses. When Fourier-transformed, the coordinate-space OPE is
given by

vπ ,LO(r) =
[

vπ ,LO
στ (r) σ i · σ j + vπ ,LO

tτ (r) Sij(r)
]

τ i · τ j

+
[

vπ ,LO
σT (r) σ i · σ j + vπ ,LO

tT (r) Sij

]

Tij (11)

where the individual functions can be obtained fromEquation (9)
with q → r and with the functions Yα(r) and Tα(r) given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα

, Tα(r) = Yα(r)

(

1+
3

xα

+
3

x2α

)

.

(12)
Here, xα = mπα r. Note that Equation (11) only holds in the case
r > 0. In addition, upon Fourier transformation a δ-function
appears, which has been dropped from Equation (11), because it
can be reabsorbed in the short-range contact terms at LO, which
we will discuss next.

The LO contact interactions are momentum-independent and
can be described by the most general operator set allowed by
all symmetries:

VLO
cont(q, k) = VLO

cont = α11+ α2 σ i · σ j + α3 τ i · τ j

+ α4 σ i · σ j τ i · τ j . (13)

As these terms describe the interactions of nucleons, i.e.,
fermions, these interactions are used between anti-symmetrized
wave functions. One can define the anti-symmetrized interaction
Vas = 1/2 (V −A[V]) by applying the anti-symmetrizer,
given by

A[V(q, k)] =
1

4
(1+ σ i · σ j)(1+ τ i · τ j)

× V

(

q → −2k, k → −
1

2
q

)

. (14)

One then finds

V
(0)
cont,as =

1

2

(

1−
1

4
(1+ σ i · σ j)(1+ τ i · τ j)

)

V
(0)
cont

=

(

3

8
α1 −

3

8
α2 −

3

8
α3 −

9

8
α4

)

+

(

−
1

8
α1 +

5

8
α2 −

3

8
α3 +

3

8
α4

)

σ i · σ j

+

(

−
1

8
α1 −

3

8
α2 +

5

8
α3 +

3

8
α4

)

τ i · τ j

+

(

−
1

8
α1 +

1

8
α2 +

1

8
α3 +

3

8
α4

)

σ i · σ j τ i · τ j

= C̃S + C̃T σ i · σ j +

(

−
2

3
C̃S − C̃T

)

τ i · τ j

+

(

−
1

3
C̃S

)

σ i · σ j τ i · τ j . (15)

It follows immediately that only two out of these four couplings
are linearly independent, describing the two possible S-wave
scattering channels. The two commonly chosen LO contact
operators are

V
(0)
cont = CS + CTσ i · σ j , (16)

but in principle any different two of the four contact interactions
can be chosen and lead to the same physical description for
fermionic systems. This is analogous to Fierz ambiguities and in
the following we will call this freedom to choose operators Fierz
rearrangement freedom.

Additionally, there are isospin breaking corrections to the LO
contact interactions that have to be taken into account. These
are due to different masses of u and d quarks, and account
for differences in neutron-neutron (nn), np, and pp S-wave
scattering lengths:

Vcont, CIB(r) = CCIB

1+ 4τ 3
i τ

3
j

2

1− σ i · σ k

4
, (17)

Vcont, CSB(r) = CCSB(τ
3
i + τ

3
j )
1− σ i · σ k

4
. (18)

At higher orders, the description of the potential changes
depending on the choice of delta-less or delta-full approach. In
the following, we will describe both approaches as pursued by
individual research groups.
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3.1.1. Without Delta Isobars

At NLO in chiral EFT, additional momentum-dependent contact
interactions as well as TPE interactions appear. For the TPE, we
give the expressions within the spectral-function representation
(SFR) as detailed in Epelbaum et al. [108], with spectral functions
ρi and ηi:

VC,π (r) =
1

2π2r

∫ 3̃

2Mπ

dµµ e−µr ρC(µ) , (19)

VS(r) = −
1

6π2r

∫ 3̃

2Mπ

dµµ e−µr
(

µ2ρT(µ)− 3ρS(µ)
)

, (20)

VT(r) = −
1

6π2r3

∫ 3̃

2Mπ

dµµ e−µr ρT(µ) (3+ 3µr + µ2r2) .

(21)

Here, 3̃ is the SFR cutoff. Similar expressions are valid for WC,
WS, and WT in terms of ηC, ηS, and ηT . The TPE spectral
functions at NLO are given by Kaiser et al. [109]

ρ
(2)
T (µ) =

1

µ2
ρ
(2)
S (µ) =

3g4A
128π f 4π

√

µ2 − 4m2
π

µ
, (22)

η
(2)
C (µ) =

1

768π f 4π

√

µ2 − 4m2
π

µ

(

4m2
π (5g

4
A − 4g2A − 1)

− µ2(23g4A − 10g2A − 1)+
48g4Am

4
π

4m2
π − µ2

)

. (23)

For the NLO contact interactions, the most general set of
operators is given by

VNLO
cont (q, k) = γ1 q

2 + γ2 q
2
σ i · σ j + γ3 q

2
τ i · τ j + γ4 q

2
σ i · σ jτ i · τ j

+ γ5 k
2 + γ6 k

2
σ i · σ j + γ7 k

2
τ i · τ j + γ8 k

2
σ i · σ jτ i · τ j

+ γ9 (σ i + σ j)(q× k)+ γ10 (σ i + σ j)(q× k)τ i · τ j

+ γ11(σ i · q)(σ j · q)+ γ12(σ i · q)(σ j · q)τ i · τ j

+ γ13(σ i · k)(σ j · k)+ γ14(σ i · k)(σ j · k)τ i · τ j . (24)

Using the same arguments as for the LO contact interactions, only
7 out of these 14 operators are linearly independent. To construct
local interactions, one typically chooses the 6 local operators
(proportional to γ1-γ4, γ11, and γ12) as well as the spin-orbit
operator (proportional to γ9):

V
(2)
cont = C1 q

2 + C2 q
2
τ i · τ j +

(

C3 q
2 + C4 q

2
τ i · τ j

)

σ i · σ j+

+ i
C5

2
(σ iσ j) · (q× k)+ C6 (σ i · q)(σ j · q)

+ C7 (σ i · q)(σ j · q) τ i · τ j . (25)

In coordinate space, this translates to

V
(2)
cont(r) = −(C1 + C2 τ i · τ j)1δ(r)− (C3 + C4 τ i · τ j) σ i · σ j1δ(r)

+
C5

2

∂rδ(r)

r
L · S+ (C6 + C7 τ i · τ j)

×

[

(σ i · r̂)(σ j · r̂)

(

∂rδ(r)

r
− ∂2r δ(r)

)

− σ i · σ j
∂rδ(r)

r

]

.

(26)

At N2LO, the subleading TPE interactions appear. The spectral
functions for these at N2LO read

ρ
(3)
C (µ) = −

3g2A
64µf 4π

(2m2
π − µ2)

(

2m2
π (2c1 − c3)+ c3µ

2
)

,

(27)

η
(3)
T (µ) =

1

µ2
η
(3)
S (µ) = −

g2A
128µf 4π

c4(4m
2
π − µ2) , (28)

where the ci denote the previously mentioned LECs of the
subleading pion-nucleon vertices. For the N2LO TPE, one can
solve Equations (19–21):

W
(3)
S (r) =

g2A
48π2f 4π

e−2x

r6
c4 (1+ x)(3+ 3x+ 2x2)

−
g2A

384π2f 4π

e−y

r6
c4

(

24+ 24y+ 12y2 + 4y3 + y4

− 4x2(2+ 2y+ y2)
)

, (29)

W
(3)
T (r) = −

g2A
48π2f 4π

e−2x

r6
c4 (1+ x)(3+ 3x+ x2)

+
g2A

768π2f 4π

e−y

r6
c4

(

48+ 48y+ 24y2 + 7y3 + y4

− 4x2(8+ 5y+ y2)
)

, (30)

and

V
(3)
C,π (r) =

3g2A
32π2f 4π

e−2x

r6

[

2c1 x
2(1+ x)2 + c3(6+ 12x+ 10x2

+ 4x3 + x4)

]

−
3g2A

128π2f 4π

e−y

r6

[

4c1x
2
(

2+ y(2+ y)− 2x2
)

+ c3

(

24+ y(24+ 12y+ 4y2 + y3)− 4x2(2+ 2y

+ y2)+ 4x4
)

]

, (31)

where x ≡ mπ r and y ≡ 3̃r.
The relativistic 1/mN corrections, with mN being the nucleon

mass, have been omitted here since, in the counting employed
here, they would appear at N3LO, provided the nucleon mass
is counted according to Q/mN ∼ Q2/32

b
as suggested in

Weinberg [38].
The delta-less chiral EFT approach has been used to construct

local interactions up to N2LO. At next higher order, N3LO,
contact interactions cannot be written down in a purely local
fashion, as only 8 out of 30 possible operators are local. A
possible way forward is the definition of “maximally local” N3LO
potentials, which has been pursued in the delta-full approach and
will be discussed in the next section.
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FIGURE 2 | Local delta-less chiral potential in the 1S0 partial wave at N2LO.

The smaller the coordinate-space cutoff R0, the smaller is the short-range

repulsive core. Figure taken from Gezerlis et al. [105] under the Creative

Commons CCBY license.

Finally, it is necessary to specify a regulator scheme. For
the delta-less local interactions of Gezerlis et al. [104, 105], the
following long- and short-range regulators are used:

flong(r) =

(

1− e
−

(

r
R0

)n1
)n2

, fshort(r) =
n

4π R30 Ŵ
(

3
n

) e
−

(

r
R0

)n

.

(32)

The long-range regulator multiplies each function Y(r), while
the short-range regulator replaces all δ functions. The regulator
functions depend on the cutoff scale R0, that determines how
long- and short-range physics are separated. For a smaller cutoff
R0 (i.e., for a larger momentum-space cutoff), the interactions is
probed at shorter distances, and typically shows stronger short-
range repulsion. We show the delta-less local chiral interactions
in the 1S0 channel in Figure 2 for different values of the cutoff.
Introducing a local regulator function leads to the appearance of
regulator artifacts that brake Fierz-rearrangement freedom. We
will address this topic in detail in section 4.1.

3.1.2. With Delta Isobars

In the delta-full local chiral interactions, coordinate-space
expressions for the TPE terms at NLO and N2LO are obtained
by using the spectral function representation [108, 109] but
with dimensional regularization (DR) [59]. This implies taking
the cutoff 3̃ in Equations (19–21) to infinity (3̃ → ∞).
Consequently, the terms depending on the variable y in
Equations (29–31) vanish. For the relevant radial functions
involved in the one- and two-delta diagrams up toN2LO, we refer
the interested reader to Appendix A (Supplementary Material).

The singularities at the origin of the OPE and TPE components
are regularized by cutoff functions of the form

f1long(r) = 1−
1

(r/RL)6 e(r−RL)/aL + 1
, (33)

where three values for the radius RL are considered: RL =

(0.8, 1.0, 1.2) fm with the diffuseness aL fixed at aL = RL/2 in
each case.

Another difference between the delta-less and delta-full
coordinate-space interactions lies in the operator structure
of their short-range components. In the delta-full potentials,
selected contact terms at N3LO are also retained in addition to
the LO and NLO contributions given in Equations (16) and (26).

The contact potential at order N3LO,VN3LO
cont (q, k), which involves

four gradients acting on the nucleon fields, is expressed in terms
of 15 independent operators [41] after considering the Fierz
rearrangement freedom. Its standard parametrization, adopted in
momentum-space potentials, is given by

VN3LO
cont (q, k) = D̃1 q

4 + D̃2 k
4 + D̃3 q

2 k2 + D̃4 (k× q)2

+
[

D̃5 q
4 + D̃6 k

4 + D̃7 q
2k2

+ D̃8 (k× q)2
]

σ i · σ j + i (D̃9 q
2 + D̃10 k

2) S ·
(

k× q
)

+ (D̃11 q
2 + D̃12 k

2) Sij(k)+ (D̃13 q
2 + D̃14 k

2) Sij(k)

+ D̃15 [σ i · (k× q) σ j · (k× q)] . (34)

However terms proportional to k2 and k4 in those expressions,
upon Fourier transformation, would lead to gradient operators
in coordinate-space (p −→ −i∇ is the relative momentum
operator), making the NN potential strongly non-local.

The number of non-localities can be reduced by reconsidering
the Fierz rearrangement freedom. However, some of these non-
local terms still persist at N3LO leading to the definition of
“minimally non-local” contact interactions:

VN3LO
cont (q, k) = D1 q

4 + D2 q
4
τ i · τ j + D3 q

4
σ i · σ j + D4 q

4
σ i · σ j τ i · τ j

+ D5 q
2 Sij(q)+ D6 q

2 Sij(q) τ i · τ j + iD7 q
2 S ·

(

k× q
)

+ i D8 q
2 S ·

(

k × q
)

τ i · τ j + D9

[

S ·
(

k× q
)]2

+ D10

(

k× q
)2

+ D11

(

k× q
)2

σ i · σ j + D12 q
2k2 + D13 q

2k2σ i · σ j

+ D14 k
2 Sij(q)+ D15 k

2 Sij(q) τ i · τ j . (35)

In coordinate space, this reads as

V
(3)
cont(r) =

[

11
∑

l=1

vlS(r)O
l
ij

]

+ { v
p
S(r)+ v

pσ
S (r) σ i · σ j

+ v
pt
S (r) Sij(r)+ v

ptτ
S (r) Sij(r) τ i · τ j , p

2 } , (36)

where

Ol=1,...,11
ij = {1 , τ i · τ j , σ i · σ j , σ i · σ j τ i · τ j , Sij , Sij τ i · τ j ,

L · S , L · S τ i · τ j , (L · S)2 , L2 , L2 σ i · σ j} , (37)
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referred to as c, τ , σ , στ , t, tτ for the first six operators, and b, bτ ,
bb, q, qσ for the remaining five operators. The four additional
terms, denoted as p, pσ , pt, and ptτ , in the anti-commutator of
Equation (36) are p2-dependent. For the definition of the radial
functions vlS(r) as well as those multiplying the p2-terms, we refer
the reader to Appendix A.

A comment is now in order. The strict adherence to power
counting would require the inclusion of additional one-loop as
well as two-loop TPE and three-pion exchange contributions
at N3LO. For the time being, these contributions have been
neglected, since part of their strength is promoted at lower
orders due to the inclusion of the 1 resonance, and some of
the remaining diagrams are also known to be small (see e.g.,
[41]). Furthermore, it is the Di LEC’s at N

3LO that are critical
for a good reproduction of phase shifts in lower partial waves,
particularlyD-waves, and a good fit to theNN database. However,
the consistency between the long- and short-range part at higher
orders in the delta-full chiral EFT is work in progress.

The local versions of these “minimally non-local” NN
potentials have been defined by dropping the terms proportional
to p2 in the anti-commutator when the optimization procedure
for estimating the LECs is carried out [107]. In Piarulli et al. [107]
we observed that the inclusion of the p2-dependent terms would
have improved the fits to the database in the laboratory energy
range up to 200 MeV only marginally. However, apart from the
small improvement that the p2-dependent terms would bring to
the total χ2 in the fit to the NN scattering data, the effect of these
terms on nuclear observables has not been studied.

Lastly, the delta-full local interactions contain additional
isospin breaking terms at NLO. They are parameterized by the
following operators

Ol=12,...,16
ij = {τ zi + τ zj , Tij, σ i · σ jTij, Sij Tij, L · STij} , (38)

referred to as τz, T, σT, tT, bT. The radial functions multiplying
these operators are also reported in Appendix A.

The short-range part of these potentials involve the local
regulator given in Equation (32) with n = 2,

f1short(r) =
1

π3/2R3S
e−(r/RS)

2
, (39)

where we consider, in combination with RL = (0.8, 1.0, 1.2) fm,
RS = (0.6, 0.7, 0.8) fm, corresponding to typical momentum-
space cutoffs 3S = 2/RS ranging from about 660 MeV down
to 500 MeV. Hereafter, we will denote the potential with cutoffs
(RL,RS) = (1.2, 0.8) fm as model a, that with (1.0, 0.7) fm as
model b, and that with (0.8, 0.6) fm as model c.

There are 26 LECs in the definition of the delta-full local
interactions. Of these, 20 LECs describe the charge-independent
part of the interaction: 2 at LO (Q0), 7 at NLO (Q2), and 11 at
N3LO (Q4). The remaining 6 LECs describe its charge-dependent
part: 2 at LO (one each from CIB and CSB), and 4 at NLO
from CIB. The optimization procedure to fix these 26 LECs
uses pp and np scattering data (including normalizations), as
assembled in the Granada database [80], theNN scattering length,
and the deuteron binding energy. The minimization of the χ2

objective function with respect to the LECs is carried out with
the Practical Optimization Using no Derivatives (for Squares)
routine, POUNDerS [110]. For each of three different sets of
cutoff radii (RS,RL), two classes of local interactions have been
developed, which only differ in the range of laboratory energy
over which the fits were carried out, either 0–125 MeV in class
I or 0–200 MeV in class II. The χ2/datum achieved by the fits in
class I (II) was. 1.1(. 1.4) for a total of about 2,700 (3,700) data
points. In the literature, we are referring to these NN interactions
generically as the Norfolk potentials (NV2s), and designate those
in class I as NV2-Ia, NV2-Ib, and NV2-Ic, and those in class II as
NV2-IIa, NV2-IIb, and NV2-IIc.

The NV2 interactions were found to provide insufficient
attraction in calculations of the ground-state energies of nuclei
with A= 3–6 [107]. To remedy this and similar shortcomings,
3N interactions at N2LO have to be included in both approaches.
This will be described in the next section.

3.2. Local Three-Nucleon Interactions
Three-nucleon forces are very important ingredients for the
correct description of physical systems. They naturally appear
within chiral EFT and are consistent with the NN sector. The
exact description of the 3N interactions depends on the choice
of delta-less vs. delta-full approach. In the following, we review
3N forces in both approaches.

3.2.1. Without Delta Isobars

In the delta-less chiral EFT approach, the leading 3N
contributions appear at N2LO in the power counting. They
an be separated into three topologies: (i) a long-range TPE
interaction named VC depending on the pion-nucleon LECs c1,
c3, and c4, that already appear in the NN sector, (ii) a one-pion-
exchange–contact interaction VD dependent on a new LEC cD,
and (iii) a 3N contact interaction VE dependent in a new LEC cE.
The LECs cD and cE solely describe 3N physics and need to be
adjusted to properties of A ≥ 3 systems. In momentum space,
these interactions are defined as

VC =
1

2

(

gA

2fπ

)2
∑

π(ijk)

σ i · qi σ k · qk

(q2i +m2
π )(q

2
k
+m2

π )
F

αβ

ijk
τ

α
i τ

β

k
, (40)

VD = −
gA

8f 2π

cD

f 2π3χ

∑

π(ijk)

σ k · qk

q2
k
+m2

π

σ i · qk τ i · τ k , (41)

VE =
cE

2f 4π3χ

∑

π(ijk)

τ i · τ k , (42)

where we sum over all permutations of the particles i, j, and k,
where the first pion carries a momentum qi from nucleon i to j,

while the second pion carries qk from j to k, and where F
αβ

ijk
is

given by

F
αβ

ijk
= δαβ

[

−
4c1m

2
π

f 2π
+

2c3

f 2π
qi · qk

]

(43)

+
∑

γ

c4

f 2π
εαβγ

τ
γ
j σ j · (qi × qk) .

Frontiers in Physics | www.frontiersin.org 10 January 2020 | Volume 7 | Article 245

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Piarulli and Tews Local Chiral Interactions

As one can easily see, all of these interactions are local, as long
as local regulator functions are applied. To obtain expressions
in coordinate space, these interactions have to be Fourier
transformed. For the part of VC proportional to c1, we find

V
ijk
C,c1

= −
c1m

2
π g

2
A

2f 4π

∑

π(ijk)

τ i · τ k

∫

d3qi

(2π)3
σ i · qi

q2i +m2
π

eiqi·rij

∫

d3qk

(2π)3
σ k · qk

q2
k
+m2

π

eiqk·rkj . (44)

This results in

V
ijk
C,c1

=
c1m

6
π g

2
A

2f 4π (4π)
2

∑

π(ijk)

τ i · τ k σ i · r̂ij σ k · r̂kj U(rij)Y(rij)U(rkj)Y(rkj) ,

(45)

where we have used

∫

d3qi

(2π)3
σ i · qi

q2i +m2
π

eiqi·rij = −i σ α
i ∂α e−mπ rij

4πrij

= i
m2

π

4π
σ α
i r̂αij U(rij)Y(rij) , (46)

and

Y(r) =
exp(−mπ · r)

mπ r
, U(r) = 1+

1

mπ r
. (47)

For the other parts of VC we find

VC,c3 =
g2Am

6
π c3

2304π2f 4π

∑

π(ijk)

{τ i · τ k, τ k · τ j}{Xik(rik),Xkj(rkj)} ,

(48)

VC,c4 = −
g2Am

6
π c4

4608π2f 4π

∑

π(ijk)

[τ i · τ k, τ k · τ j][Xik(rik),Xkj(rkj)] ,

(49)

where

Xij(r) = Xij(r)−
4π

m3
π

δ(r)σ i · σ j ,

Xij(r) =
(

Sij(r)T(r)+ σ i · σ jY(r)
)

, (50)

and

T(r) =

(

1+
3

mπ r
+

3

m2
π r2

)

Y(r) . (51)

For the one-pion-exchange–contact part VD we find

V
ijk
D =

gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rkj)

− σ i · σ k δ(rij)δ(rkj)

]

, (52)

and for the three-nucleon–contact interaction VE we find

VE =
cE

2f 4π3χ

∑

π(ijk)

τ i · τ kδ(rij)δ(rkj) . (53)

To regularize these 3N topologies, we choose consistent
regulators with the NN sector, i.e., we replace δ functions by
fshort(r) and multiply Yukawa functions with flong(r). The cutoff
scale for 3N interactions does not necessarily have to be the same
as for the NN sector, and we call it R3N in the following.

To adjust the appearing 3N couplings to experimental data,
one should select few-body observables that are uncorrelated.
In the delta-less approach, these observables have been chosen
to be the 4He binding energy and n-α scattering P wave phase
shifts (see Figure 3), where we show parameter curves for the
3N LECs for different 3N cutoffs R3N, chosen similar to R0, and
for different parameterizations that we will discuss in the next
section. Stars in the parameter curves mark fits that also describe
neutron-alpha scattering, shown in the right panel. For more
details, see Lynn et al. [91].

3.2.2. With Delta Isobars

In the delta-full chiral EFT approach, the structure of the 3N force
at N2LO is similar to the 3N force in the delta-less approach.
We still have the three topologies VC, VD, and VE at N2LO but,
in addition, the well-known Fujita-Miyazawa interaction [34]
(V1), which in the delta-less approach is absorbed byVC, appears
already at NLO in the power counting. In momentum space, it
reads as

V
ijk
1 = −

g2A h2A
16 f 4π

1

m1N (q2i +m2
π )(q

2
k
+m2

π )
[

σ k · qk S
†
j · qk Sj · qi σ i · qi τ k · T

†
j Tj · τ i (54)

−σ i · qi S
†
j · qi Sj · qk σ k · qk τ i · T

†
j Tj · τ k

]

, (55)

where S, S† and T, T† are the transition spin and isospin
operators: The operator S (T) converts a spin (isospin) 1/2 into
a spin (isospin) 3/2 particle.

The configuration-space expression follows from

V
ijk
1 = −

g2A h2A
16 · 144π2

m6
π

m1N f 4π
[

XII †
jk

XII
ji T

†
j · τ k Tj · τ i + XII †

ji XII
jk T

†
j · τ i Tj · τ k

]

, (56)

where the following definitions have been introduced:

XII
ij = T(rij) S

II
ij + Y(rij) Si · σ j , SIIij = 3 Si · r̂ij σ j · r̂ij − Si · σ j (57)

and the dimensionless functions Y(r) and T(r) defined before.
The term [ · · · ] in Equation (56) can be written as

[· · · ] =
1

2

[ (

XII †
jk

XII
ji + h.c.

) (

T
†
j · τ k Tj · τ i + h.c.

)

+
(

XII†
jk

XII
ji − h.c.

) (

T
†
j · τ k Tj · τ i − h.c.

) ]

, (58)
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FIGURE 3 | (Left) Parameter curves for the LECs cD and cE for the binding energy of 4He for different cutoffs and 3N parameterizations discussed in section 4.

(Right) Reproduction of n-α P wave phase shifts at NLO and at N2LO for the parameter combinations marked by a star in the left panel. Figures taken from Lynn et al.

[91] under the Creative Commons CCBY license.

and the transition-spin and transition-isospin operators can be
eliminated using the identities

XII†
jk

XII
ji + h.c. =

2

3

{

Xjk , Xji

}

, (59)

XII†
jk

XII
ji − h.c. = −

1

3

[

Xjk , Xji

]

, (60)

T
†
j · τ k Tj · τ i + h.c. =

2

3

{

τ j · τ k , τ j · τ i

}

, (61)

T
†
j · τ k Tj · τ i − h.c. = −

1

3

[

τ j · τ k , τ j · τ i

]

, (62)

to obtain

V
ijk
1 = −

g2Ah
2
A

72 · 144π2

m6
π

m1N f 4π

[

{

Xij , Xjk

}{

τ i · τ j , τ j · τ k

}

+
1

4

[

Xij , Xjk

][

τ i · τ j , τ j · τ k

]

]

, (63)

where the function Xij was defined in the previous section. In the
definitions above, the δ(r)-function terms have been dropped.

In analogy to the 3N delta-less chiral EFT, we regularize the
3N contributions in the delta-full chiral EFT by replacing the
δ functions with f1

short
(r) and multiplying the Yukawa functions

with f1
long

(r). Note that the implementation of VC and VD in

the delta-full chiral EFT does not retain the terms proportional
to σ i · σ j in the definition of Xik, in Equations (50) and (52).
They can be reabsorbed in the redefinition of the short-range
contact terms.

In the delta-full chiral EFT, two different sets for the
values of cD and cE were obtained, leading to two different
parametrization of the 3N interaction [93, 96]. In the first,
these LECs were determined by simultaneously reproducing
the experimental trinucleon ground-state energies and neutron-
deuteron (nd) doublet scattering length, as shown in the left

panel of Figure 4. In the second set, these cD and cE were
constrained by fitting, in addition to the trinucleon energies,
the empirical value of the Gamow-Teller matrix element in
tritium β decay [96], see right panel of Figure 4. Because of the
much reduced correlation between binding energies and the GT
matrix element, the second fit procedure leads to a more robust
determination of cD and cE then attained in the first one. Note
that these observables have been calculated with hyperspherical-
harmonics (HH) expansion methods [5] as described in Piarulli
et al. [93], Gazit et al. [94], Marcucci et al. [95], and Baroni
et al. [96].

4. FINITE CUTOFF AND REGULATOR
ARTIFACTS

The derivations of local interactions in the last sections did
not include any of the local regulator functions that necessarily
have to be applied to the interactions to make them suitable
for the use in nuclear many-body methods. Generally, when
introducing a regulator function, terms beyond the order at
which one is working are affected. Hence, the use of such
regulator functions with finite values for the cutoff leads to
the appearance of regulator artifacts, that might influence
calculations of many-body observables. In this section, we will
address the different regulator artifacts that can appear in
calculations with local interactions.

4.1. Violation of Fierz-Rearrangement
Freedom

The first regulator artifact for local interactions affects
short-range operators. In previous sections we had
shown how only half of the operators at each order
are linearly independent due to their insertion between
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FIGURE 4 | (Left) The cD-cE trajectories obtained by fitting the experimental trinucleon binding energies (solid line) and nd doublet scattering length (dashed line) (the

intercept of these two lines gives the cD and cE values that reproduce these two observables simultaneously). Figure taken from Piarulli et al. [93] under the Creative

Commons CCBY license. (Right) The calculated ratio GTth/GTexp as function of cD (solid line; each point on his line reproduces the trinucleon binding energies).

Figure taken from Baroni et al. [96] under the Creative Commons CCBY license.

FIGURE 5 | (Left) Ground-state energies of 4He at LO and NLO for different LO operator choices. Figure taken from Huth et al. [111] under the Creative Commons

CCBY license. (Right) Regulator artifacts in pure neutron matter due to the violation of the Fierz rearrangement freedom for the 3N contact interactions. The three

different bands correspond to three different operator choices, where the green band projects the 3N interaction on triples with S = 1/2 and T = 1/2. Figure taken

from Lynn et al. [91] under the Creative Commons CCBY license.

antisymmetric fermionic states (see e.g., Equation 15).
However, this argument changes when a regulator function
is applied. The discussion in this section will follow Huth
et al. [111].

In general, a regulator function can depend on two
momentum scales, fR(q, k). Local regulators, on the other hand,
only depend on q, fR,loc(q). The derivation of Equation (15)
remains valid if the regulator function commutes with the
anti-symmetrizer and, hence, reduces to a simple pre-factor in

Equation (15), i.e., when

fR(q, k) = fR

(

−2k,−
1

2
q

)

. (64)

We can immediately see, that a purely local regulator can never
fulfill this condition while typical non-local regulators of the
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form [76–78, 83, 84]

fR(p, p
′) = exp

[

−

(

p

3

)2n
]

exp

[

−

(

p′

3

)2n
]

, (65)

do. As a consequence,

V
(0,loc)
cont,as =

1

2

(

1−
Pm

4
(1+ σ i · σ j)(1+ τ i · τ j)

)

V
(0)
contfR(q)

= 1

(

C1
2

fR(q)−
1

8

(

C1 + 3Cσ + 3Cτ + 9Cστ

)

fR(2k)

)

+ σ i · σ j

(

Cσ

2
fR(q)−

1

8

(

C1 − Cσ + 3Cτ − 3Cστ

)

fR(2k)

)

+ τ i · τ j

(

Cτ

2
fR(q)−

1

8

(

C1 + 3Cσ − Cτ − 3Cστ

)

fR(2k)

)

+ σ i · σ jτ i · τ j

(

Cστ

2
fR(q)−

1

8

(

C1 − Cσ − Cτ + Cστ

)

fR(2k)

)

,

(66)

and the Fierz-rearrangement freedom is violated. For general
regulator functions as defined in the previous sections, this
leads to

V
(0,loc)
cont,as =

(

C̃S + C̃Tσ i · σ j +

(

−
2

3
C̃S − C̃T

)

τ i · τ j

+

(

−
1

3
C̃S

)

σ i · σ jτ i · τ j

)

fR(q)+ V
f
corr(p · p′) , (67)

where V
f
corr(p · p′) captures all the regulator artifacts that

are of higher-order in the EFT. It depends on the functional
form of the regulator and the cutoff value. One can also see,
that the corrections can be angle-dependent, which leads to
a mixing of different partial waves. As a consequence, when
applying these regulators to a three-neutron system, for example,
pure contact interactions, that otherwise would vanish due to
the Pauli principle, start to contribute. This mixing of partial
waves complicates the fitting procedure, increases theoretical
uncertainties, and makes calculated observables dependent on
the operator structure that was chosen.

In Figure 5 we show results for the 4He ground-state energy
for different LO operator choices. As one can see, the ground-
state energies can vary by ∼10 MeV at LO, depending on
the operator choice. However, when going to higher order
and including subleading contact operators, regulator artifacts
get partially absorbed and corrected. Then, only higher-order
artifacts remain, which improves the situation considerably,
as can be seen for the NLO results. In this case, the spread
originating from different choices of LO operators reduces
to∼4 MeV.

A similar effect appears in the 3N sector, where the VE contact
interaction suffers from a similar violation of the Fierz freedom
when local regulators are applied. While 3N forces are typically
fit to symmetric systems where this dependence can then be
approximately accounted for, in triples with S = 3/2 or T = 3/2
(where typically no 3N contact force can contribute due to the
Pauli principle) regulator artifacts appear, and lead to a finite

contribution from 3N contact interactions that depend on the
operator choice. We show this behavior in Figure 5 in the right
panel in the case of pure neutron matter, where all triples have T
= 3/2. The three different bands explore three choices for the 3N
contact operators. At nuclear saturation density, we find that the
regulator artifacts introduce a spread of∼5 MeV. Unfortunately,
higher-order correction terms only appear at N4LO and, to date,
are not systematically included in any calculation.

Finally, we mention that the finite cutoff also introduces an
ambiguity in theVD term, that depends on the choice of the initial
spin-isospin structure when Fourier transforming:

V
ijk
D,1 =

gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rkj)

− σ i · σ k δ(rij)δ(rkj)

]

, (68)

V
ijk
D,2 =

gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rik)

− σ i · σ k δ(rij)δ(rik)

]

.

Both expressions are identical for true δ functions (infinite cutoff)
but differ when a finite cutoff is applied.

4.2. Weaker Pion Exchanges
A second regulator artifact for local regulators affects the pion
exchanges. In Tews et al. [90] it was shown that locally regulated
pion exchanges lead to less 3N repulsion than non-locally
regulated pion exchanges. At the Hartree-Fock level, for a typical
cutoff of 2.5fm−1, when applying non-local regulators ≈ 97% of
the infinite cutoff result is recovered, while local regulators only
recover ≈ 60%. To reproduce the momentum-space results, the
cutoff has to be considerably increased.

Local regulators for pion exchanges have been investigated in
detail in Dyhdalo et al. [112] in both the NN and 3N sector. The
fact that the contribution due to pion exchanges is weaker for
local than for non-local regulator functions is easy to understand
in the Hartree-Fock approximation. At the Hartree-Fock level,
there are both a direct and an exchange term. The momentum
transfer q = p − p′ vanishes in the direct term because p = p′,
but it is q = 2p in the exchange term because p = −p′. A
typical local regulator of the form exp

(

−
( q

3

)n)
, thus, evaluates

to 1 in the direct term, but to exp
(

−
(

p
3/2

)n)

in the exchange

term. Therefore, compared to non-local regulators for which

both terms are identical, exp
(

−
( p

3

)n
)

, local regulators have a

very different behavior. In particular, local regulators have an
effectively lower cutoff in the exchange channel. In the Hartree-
Fock approximation, where the direct term vanishes for spin-
dependent interactions like pion exchanges, only the exchange
term contributes and, hence, is weaker for local than for non-
local regulators.

While the situation is more complicated when abandoning
the Hartree-Fock approximation, this reasoning qualitatively
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FIGURE 6 | (Left) Spectra of light nuclei up to 12C obtained with GFMC with chiral interactions obtained in the delta-full approach (red) compared to experimental

data (green) and GFMC calculations with phenomenological interactions (blue). Figure taken from Piarulli et al. [93] under the Creative Commons CCBY license.

(Right) Ground-state energies for nuclei up to 16O at different orders in the chiral expansion for AFDMC calculations with local interactions in the delta-less approach.

Reprinted from Lonardoni et al. [99] with permission from the American Physical Society.

remains valid and locally regulated pion exchanges are weaker
than non-locally regulated pion exchanges.

5. SELECTED RESULTS

In this section, we will briefly show the successes of Quantum
Monte Carlo calculations with local chiral interactions for light
atomic nuclei and infinite matter.

5.1. Light Nuclei
Local chiral interactions, both in the delta-less and delta-full
approach, have been used to successfully describe properties
of light nuclei using QMC methods. In Figure 6, we show
GFMC results for ground- and excited states for nuclei up to
12C within the delta-full approach compared to experimental
data. In addition, the results obtained with chiral EFT are
compared to results with phenomenological interactions. The
results clearly show that chiral interactions describe spectra of
light nuclei with great success and are compatible to the accuracy
of phenomenological interaction in these systems. In addition,
we also show ground-state energies obtained in the AFDMC
method for nuclei up to 16O for delta-less chiral interactions.
Results are given at LO, NLO, and N2LO for two different 3N
parameterizations to explore regulator artifacts. Again, chiral
interactions agree well with experimental results, which are
shown as green points.

In addition to energies, local chiral interactions describe
charge radii well. In Figure 7, we present order-by-order
AFDMC results for the charge radii of nuclei up to 16O,
compared to experiment. Again, the description is accurate.
In addition, as mentioned before, delta-less chiral interactions
have been adjusted to reproduce neutron-alpha scattering phase
shifts (see Figure 3). While NN interactions alone cannot
reproduce the P wave splitting in this system (NLO calculations
in Figure 3), chiral Hamiltonians at N2LO, including 3N

FIGURE 7 | Same as Figure 6 (right) but for radii of nuclei up to 16O.

Reprinted from Lonardoni et al. [99] with permission from the American

Physical Society.

interactions, reproduce the neutron-α P wave scattering phase
shifts accurately.

5.2. Infinite Matter
In addition to properties of atomic nuclei, local chiral
interactions have been used to study infinite matter, and in
particular, pure neutron matter. In the right panel of Figure 3,
we have already shown results for the energy per particle of
pure neutron matter. Results are shown for three Hamiltonians
at N2LO, that explore the uncertainty due to regulator artifacts
and the truncation of the chiral series. While uncertainties in
pure neutron matter are enhanced due to the local regulator
artifacts discussed before, indicated by the differences between
the three bands, the resulting neutron-matter equation of
state (EOS) is consistent with other ab initio determinations
within uncertainties.
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These calculations have been successfully used to study the
EOS of neutron stars, and it has been found that the resulting
equations of state are consistent with astrophysical observations
of pulsar masses. The EOS have also been used to study
gravitational waves from neutron-star mergers [102, 113, 114].

6. CONCLUSION AND OUTLOOK

The quest to understand properties of nuclear systems in terms
of forces acting between the nucleons has been considered
one of the most challenging efforts of nuclear theory. During
the past quarter century, particular emphasis has been devoted
to the systematic framework provided by chiral EFT. This
approach allows for a consistent description of the two- and
many-body interactions and ensuing many-body currents, and a
quantification of the theoretical uncertainty due to the truncation
error in the chiral expansion.

In this review, we have presented a comprehensive description
of the two families of local chiral interactions that have been
developed for the use in QMC methods: one within the delta-
less and one within the delta-full approach. We provided many
details about the theoretical derivation and optimization of these
nuclear models addressing their similarities and differences.
For completeness, we also presented selected QMC results for
light nuclei and neutron matter. These results show that the
combination of local chiral EFT interactions with powerful
QMC many-body methods can accurately describe ground-
and excited-state energies, radii of nuclei up to 16O, and n-α
scattering, as well as the equation of state of neutron matter.

These local chiral interactions have also been used to calculate
the distribution of nucleons in a nucleus in both momentum
and coordinate space which are related to experimental
observations [99, 100, 115, 116], in benchmark calculations of the
energy per particle of pure neutron matter as a function of the
baryon density [103] and in studies of neutrinoless double-beta
decays [117].

In future, local chiral interactions will continue to serve as
input for precise QMC methods to systematically study, for
example, electroweak reactions, along the lines of Pastore et al.
[118], Marcucci et al. [119], Lovato et al. [120, 121], Pastore et al.
[122], Schiavilla et al. [123], and Pastore et al. [124] and infinite
matter also at finite proton fractions.

Improvements to the interactions that reduce uncertainties
due to the scheme and scale dependence of the interactions, e.g.,
the inclusion of higher orders in the chiral expansion in both the
NN and 3N sectors, will provide exciting prospects and permit
precision studies of many nuclear systems.
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