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Distributed-order fractional differential operators provide a powerful tool for mathematical

modeling of multiscale multiphysics processes, where the differential orders are

distributed over a range of values rather than being just a fixed fraction. In this work,

we consider the Rayleigh-Stokes problem for a generalized second-grade fluid which

involves the distributed-order fractional derivative in time. We develop a spectral Galerkin

method for this model by employing Jacobi polynomials as temporal and spatial

basis/test functions. The suggested approach is based on a novel distributed order

fractional differentiation matrix for Jacobi polynomials. Numerical results for one- and

two-dimensional examples are presented illustrating the performance of the algorithm.

The results show that our scheme can achieve the spectral accuracy for the problem

under consideration with smooth solution and allows a great flexibility to deal with

multi-dimensional temporally-distributed order fractional Rayleigh-Stokes problems as

the global behavior of the solution is taken into account.

Keywords: distributed order fractional derivative, Rayleigh-Stokes problem, Galerkin spectral method,

operational matrix, multidimensions

1. INTRODUCTION

Let 3 ⊂ R
d (d = 1, 2) be a bounded convex domain with a polygonal boundary ∂3, and T > 0

be a fixed time. The purpose of this paper is to extend the approach in Hafez and Zaky [1] to the
distributed-order time-fractional Rayleigh-Stokes problem for a generalized second-grade fluid in
one and two space dimensions. The mathematical model is given by

∂tU(x, t)−
(
1+ 0D

w(ν)
t

)
1U(x, t) = H(x, t), x ∈ 3, t ∈ (0, T ], (1)

with initial-boundary conditions:

U(x, 0) = f (x), x ∈ 3, (2)

U(x, t)
∣∣
x∈∂3

= g(x, t), t ∈ (0, T ], (3)
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where 1 is the Laplacian operator, ∂3 is the boundary of 3,
H(x, t), f (x), and g(x, t) are given smooth functions on 3. The

distributed-order fractional derivative 0D
w(ν)
t is defined by

0D
w(ν)
t U(x, t) =

∫ 1

0
w(ν) C0D

1−ν
t U(x, t)dν, (4)

where w(ν) is a non-negative smooth weight function satisfying
the conditions

w(ν) ≥ 0, w(ν) 6≡ 0,

∫ 1

0
w(ν)dν < ∞,

0CDν
t U(x, t) =

1

Ŵ(1 - ν)

∫ t

0
(t − ξ )−ν ∂U(x, ξ )

∂ξ
dξ , 0 < ν < 1.

(5)
The fractional-order derivatives appearing in (4) is defined
in the Caputo sense. Unlike Riemann-Liouville derivatives,
Caputo derivatives are not singular on the domain boundaries.
That feature makes them particularly appealing for non-local
numerical methods, like the spectral methods. Zhang et al. [2]
have also confirmed that Riemann-Liouville derivatives could
cause mass-balance errors on bounded domains. The time
derivative is thus defined in the Caputo sense.

Recently, the fractional-order Rayleigh-Stokes problem has
received considerable attention in recent years. This model plays
an important role in describing the behavior of some non-
Newtonian fluids [3, 4]. In order to gain insights into the
behavior of the solution of this model, there has been substantial
interest in deriving a closed form solution for the special case
w(ν) = δ(ν − 1 + β), where δ(·) is the Dirac delta function
and β ∈ (0, 1). For example, Shen et al. [4] derived exact
solutions of this model using the Fourier transform and the
fractional Laplace transform. Girault and Saadouni [5] analyzed
the existence and uniqueness of a weak solution of a closely
related time-dependent grade-two fluid model. Zhao and Yang
[6] obtained exact solutions using the eigenfunction expansion.
Xue and Nie [7] obtained also closed form solutions of this
model in a porous half-space using both Fourier and fractional
Laplace transforms. The exact solutions obtained in these studies
involve infinite series and special functions, e.g., generalized
Mittag-Leffler functions, and thus are inconvenient for numerical
evaluation. Further, closed-form solutions are available only for
a restricted class of problem settings. Hence, it is imperative to
develop efficient and optimally accurate numerical algorithms for
problem (1). Wu [8] developed an implicit numerical scheme
by transforming the above mentioned problem into an integral
equation. Lin and Jiang [9] introduced a numerical sachem based
on the reproducing kernel space. Mohebbi et al. [10] compared
a fourth-order compact scheme with radial basis functions
meshless approach. Recently, Bazhlekova et al. [11] developed
two fully discrete schemes based on the backward difference
method and backward Euler method and a semidiscrete scheme
based on the Galerkin finite element method. Abdelkawy and
Alqahtani [12] proposed spectral collocation techniques for
solving fractional Stokes’ first problem for a heated generalized

second grade fluid. Bhrawy et al. [13] developed two shifted
Jacobi-Gauss collocation schemes. More recently, Dehghan
and Abbaszadeh [14] developed a finite element method for
two-dimensional fractional Rayleigh–Stokes model on complex
geometries. Shivanian and Jafarabadi [15] developed a spectral
meshless radial point nterpolation technique. Zaky [16] develop
efficient algorithms based on the Legendre-tau approximation for
one- and two-dimensional fractional Rayleigh–Stokes problems
for a generalized second-grade fluid. Yang and Jiang [17]
proposed a numerical algorithm based on the L1 finite difference
scheme for the temporal direction while the Legendre spectral
method for the spatial direction.

Theoretical studies on numerical methods for fractional
differential equations involving distributed-order derivatives
have received considerable attention in the last decade [18–
20]. A general form of distributed-order fractional ordinary
differential equation is solved in Katsikadelis [21], Mashayekhi
and Razzaghi [22], and Zaky et al. [23]. Numerical methods for
solving distributed-order time-fractional diffusion equations are
presented in Morgado and Rebelo [24], Abdelkawy et al. [25],
and Zaky andMachado [26]. Numerical methods for distributed-
order space-fractional diffusion equations are provided in
Abbaszadeh [27], Kazmi and Khaliq [28], and Fan and Liu
[29]. Numerical methods for multi-dimensional distributed-
order generalized Schrödinger equations are provided in Bhrawy
and Zaky [30]. For numerical methods for solving distributed-
order fractional optimal control problems, see [31, 32]. In this
paper, we use a non-local representation of the solution of
the distributed-order time-fractional Rayleigh-Stokes problem
to introduce spectral solutions. The spectral and pseudospectral
methods are well-known for their high accuracy and have
been used extensively in scientific computation, see [33–41]
and the references therein. The main contribution of this
paper is to develop Jacobi-Galerkin algorithms for solving the
multidimensional distributed-order time-fractional Rayleigh-
Stokes problem (1).

The outline of this work is as follows. In section 2, we
introduce the distributed-order fractional differentiation matrix
of the shifted Jacobi polynomials. In section 3, we derive a time-
space discretization for the one-dimensional distributed-order
fractional Rayleigh–Stokes problem. In section 4, we consider the
numerical solution of the two-dimensional case. In section 5, we
present various numerical results exhibiting the efficiency of our
numerical schemes. We end this paper with a few concluding
remarks in section 6.

2. DISTRIBUTE-ORDER FRACTIONAL
DIFFERENTIATION MATRIX

In this section, we first introduce some basic properties of
Jacobi polynomials. Then, we construct the operational matrix of
distributed-order fractional derivative for the Jacobi polynomials.

The Jacobi polynomials J
(γ ,η)
i (z); γ > −1, η > −1, z ∈ (−1, 1)

are defined by the following three term recurrence relation:

J
(γ ,η)
i+1 (z) = (R̃iz − B̃i)J

(γ ,η)
i (z)− C̃iJ

(γ ,η)
i−1 (z), i ≥ 1,
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with

J
(γ ,η)
0 (z) = 1, J

(γ ,η)
1 (z) =

1

2
(η + γ + 2)z +

1

2
(−η + γ ),

where

R̃i =
(γ + η + 2i+ 1)(γ + 2i+ η + 2)

2(1+ i)(γ + i+ η + 1)
,

B̃i =
(γ + η + 2i+ 1)(η2 − γ 2)

2(1+ i)(γ + i+ η + 1)(γ + 2i+ η)
,

C̃i =
(γ + η + 2i+ 2)(γ + i)(i+ η)

(1+ i)(γ + i+ η + 1)(γ + 2i+ η)
.

Using the linear map z =
2x

L
− 1, the interval [−1, 1] can be

rescaled onto [0, L]. Hence, the set of shifted Jacobi polynomials

J
(γ ,η)
L,i (x); x ∈ [0, L] can be generated by:

J
(γ ,η)
L,i+1(x) = (Ẽix− K̃i)J

(γ ,η)
L,i (x)− C̃iJ

(γ ,η)
L,i−1(x), i ≥ 1,

where

Ẽi =
(γ + 2i+ η + 1)(2+ γ + 2i+ η)

L(1+ i)(1+ i+ γ + η)
,

K̃i =
(γ + 2i+ η + 1)(2i2 + (η + 1)(γ + η)+ 2i(γ + 1+ η))

(1+ i)(1+ i+ γ + η)(γ + 2i+ η)
.

The terminal values of the shifted Jacobi polynomials satisfy

J
(γ ,η)
L,i (0) = (−1)i

Ŵ(1+ i+ η)

Ŵ(1+ η)i!
, J

(γ ,η)
L,i (L) =

Ŵ(1+ i+ γ )

Ŵ(1+ γ )i!
,

(6)

The J
(γ ,η)
L,j (x) satisfies the following orthogonality relation

∫ L

0
J
(γ ,η)
L,j (x)J

(γ ,η)
L,i (x)w

(γ ,η)
L (x)dx = δjih

(γ ,η)
L,i , (7)

where w
(γ ,η)
L (x) = xη(L− x)γ is the weight function, and

h
(γ ,η)
L,i =

L1+γ+ηŴ(i+ 1+ γ )Ŵ(i+ 1+ η)

(2i+ 1+ γ + η)i!Ŵ(i+ 1+ γ + η)
. (8)

The following Jacobi-Gauss quadrature rule is commonly used to
approximate the previous integrals

∫ L

0
ϕ(x)w

(γ ,η)
L (x)dx =

N∑

i=0

̟
(γ ,η)
G,L,i ϕ(x

(γ ,η)
G,L,i ), ∀ϕ ∈ P2N+1(3),

(9)
where PN(3) is any sequence of polynomials of degree not

exceeding N, ̟
(γ ,η)
G,L,i and x

(γ ,η)
G,L,i (0 ≤ i ≤ N) are the shifted Jacobi

Gauss wights and nodes in 3, respectively.
For the shifted Jacobi-Gauss: The weights are given by

̟
(γ ,η)
G,L,i =

C
(γ ,η)
L,N

(L− x
(γ ,η)
G,L,i ) x

(γ ,η)
G,L,i

[
∂xJ

(γ ,η)
N+1 (x

(γ ,η)
G,L,i )

]2 , 0 ≤ i ≤ N,

(10)

where

C
(γ ,η)
L,N =

Lγ+η+1Ŵ(N + γ + 2)Ŵ(N + η + 2)

(N + 1)!Ŵ(N + γ + η + 2)
,

and the nodes x
(γ ,η)
G,L,i (0 ≤ i ≤ N) are the zeros of J

(γ ,η)
L,N+1(x).

Lemma 2.1. (see [42]) The q times differentiation of the Jacobi

polynomials J
(γ ,η)
L,j (x) are given by

DqJ
(γ ,η)
L,j (x) =

j−q∑

i=0

Aq(j, i, γ , η)J
(γ ,η)
L,i (x), q ∈ N

+, (11)

where

Aq(j, i, γ , η) =
(λ + j)q(j+ q+ λ)i(q+ 1+ i+ γ )j−i−q Ŵ(i+ λ)

Lq(j− q− i)! Ŵ(λ + 2i)

× 3F2




q+ i− j, i+ q+ λ + j, 1+ i+ γ

; 1

q+ i+ 1+ γ , 2i+ 1+ λ


 ,

(12)

where (·)i is the Pochhammer symbol, λ = γ + η + 1, and 3F2 is
the generalized hypergeometric function.

Lemma 2.2. (see [43]) The Caputo fractional derivative of order
ν ∈ (0, 1) of the shifted Jacobi polynomials is given by

C
0D

ν
x J

(γ ,η)
L,i (x) ≈

N∑

j=0

G(i, j, γ , η, ν)J
(γ ,η)
L,j (x), i = 1, · · · ,N, (13)

where G(i, j, γ , η, ν) =
i∑

k=1

θijk, and

θijk =

(−1)i−k Lγ+η−ν+1 Ŵ(1+ j+ η)
Ŵ(1+ i+ η) Ŵ(1+ k+ γ + i+ η)

h
(γ ,η)
L,j Ŵ(η + j+ γ + 1) Ŵ(η + k+ 1) (i− k)!

Ŵ(η + i+ γ + 1) Ŵ(k+ 1− ν)

×

j∑

ℓ=0

(−1)j−ℓŴ(j+ ℓ + 1+ γ + η) Ŵ(1+ γ )
Ŵ(ℓ + k− ν + γ + ℓ + 1)

Ŵ(ℓ + 1+ η) (ℓ)! (j− ℓ)!
Ŵ(ℓ + 2+ γ + k− ν + ℓ)

. (14)

Lemma 2.3. Let x
(0,0)
G,L,r and ̟

(0,0)
G,L,r (0 ≤ r ≤ N) be the set of nodes

and the weights of the Legendre-Gauss quadrature formula given in
(10). Then, the distributed-order fractional derivative of the shifted
Jacobi polynomials is given by

0D
w(ν)
t J

(γ ,η)
L,i (x) ≈

N∑

j=0

Âω(i, j, γ , η)J
(γ ,η)
L,j (x), i = 1, . . . ,N,

(15)
where

Âω(i, j, γ , η) =

N∑

r=0

ω(x
(0,0)
G,L,r)̟

(0,0)
G,L,rG

(
i, j, γ , η, 1− x

(0,0)
G,L,r

)
.
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3. ONE-DIMENSIONAL CASE

We consider the following one-dimensional distributed-order
fractional Rayleigh–Stokes problem:

∂tU(x, t)−
(
1+ 0D

w(ν)
t

)
∂2xU(x, t) = H(x, t), (x, t) ∈ � : = 3×I,

(16)

U(x, 0) = 0,

U(0, t) = U(L, t) = 0.
(17)

Let PN(3) and PM(I) denote the set of polynomials of degree
N in space and M in time, respectively. Since we have
the homogeneous initial and boundary conditions, we choose
appropriate basis for the space ansatz from

PsN(3) =
{
U ∈ PN(3)

∣∣U(0) = U(L) = 0
}
, (18)

as well as for time

PtM(I) =
{
U ∈ PM(I)

∣∣U(0) = 0
}
. (19)

For the sake of clarity, we define the multiindex L = (N,M) and

WL : = PtM(I)⊗ PsN(3),

SL : = PM(I)⊗ PN(3).
(20)

To simplify the notation, we introduce the following integral
operators for the Jacobi–Galerkin spectral formulation:

〈〈〈·〉〉〉 ≡

∫ L

0

∫ L

0

∫
T

0
· w

(γ ,η)
L (x) w

(γ ,η)
L (y) w

(γ ,η)
T

(t) dx dy dt,

〈〈·〉〉 ≡

∫ L

0

∫
T

0
· w

(γ ,η)
L (x) w

(γ ,η)
T

(t) dx dt,

〈·〉x ≡

∫ L

0
· w

(γ ,η)
L (x) dx,

〈·〉t ≡

∫
T

0
· w

(γ ,η)
T

(t) dt.

(21)

The spectral-Galerkin approximation of the solution U ∈ WL is
given by

U(x, t) ⋍ Û(x, t) =

N−2∑

i=0

M−1∑

j=0

θ
(γ ,η)
L,i (x)Uijϑ

(γ ,η)
T ,j (t), (22)

where θ
(γ ,η)
L,i (x) ∈ PsN(3), ϑ

(γ ,η)
T ,j (t) ∈ PtM(I), and Uij are

the unknown coefficients. The key idea behind the Galerkin

approximation is to fined Û ∈ WL such that

〈〈
Ŷ∂tÛ

〉〉
−

〈〈
Ŷ0D

w(ν)
t

(
∂2x Û

)〉〉
−

〈〈
Ŷ∂2x Û

〉〉
=

〈〈
HŶ

〉〉
, ∀Ŷ ∈ WL.

(23)

The actual linear system for (23) depends on the choice of
basis functions ofWL. We shall construct below suitable spectral

basis functions θ
(γ ,η)
L,i (x) and ϑ

(γ ,η)
T ,j (t) of WL. Therefore, we

construct basis functions using compact combinations of the
Jacobi polynomials. In this case, we define

θ
(γ ,η)
L,i (x) = J

(γ ,η)
L,i (x)+ κiJ

(γ ,η)
L,i+1(x)+ λiJ

(γ ,η)
L,i+2(x),

ϑ
(γ ,η)
T ,j (t) = J

(γ ,η)
T ,j (t)+ µjJ

(γ ,η)
T ,j+1(t),

(24)

where the parameters µj, κi and λi are chosen to satisfy the
boundary conditions in (17). Such basis functions are referred to
as modal basis functions. (11).

Lemma 3.1. (see [1]) For all i, j ≥ 0, there exists a unique set of{
κi, λi, µj

}
such that

θ
(γ ,η)
L,i (x) = J

(γ ,η)
L,i (x)+ κiJ

(γ ,η)
L,i+1(x)+ λiJ

(γ ,η)
L,i+2(x),

ϑ
(γ ,η)
T ,j (t) = J

(γ ,η)
T ,j (t)+ µjJ

(γ ,η)
T ,j+1(t),

(25)

verify the boundary conditions in (17).

The set of basis functions θ
(γ ,η)
L,i (x) ∈ PsN+2(3) and

ϑ
(γ ,η)
T ,j (t) ∈ PtM+1(I) are linearly independent. Hence, by

dimension argument, we obtain

PtM(I) = span
{
ϑ
(γ ,η)
T ,j (t) : j = 0, 1, 2, . . . , M − 1

}
,

PsN(3) = span
{
θ
(γ ,η)
L,i (x) : i = 0, 1, 2, . . . , N − 2

}
.

(26)

It is clear that the Galerkin formulation of (23) is equivalent to
following discrete discretization

〈〈
θ
(γ ,η)
L,i (x)∂tÛ(x, t)ϑ

(γ ,η)
T ,j (t)

〉〉

−
〈〈

θ
(γ ,η)
L,i (x)0D

w(ν)
t

(
∂2x Û(x, t)

)
ϑ
(γ ,η)
T ,j (t)

〉〉

−
〈〈

θ
(γ ,η)
L,i (x)∂2x Û(x, t)ϑ

(γ ,η)
T ,j (t)

〉〉
=

〈〈
θ
(γ ,η)
L,i (x)H(x, t)ϑ

(γ ,η)
T ,j (t)

〉〉
,

(27)

for 0 ≤ j ≤ M − 1 and 0 ≤ i ≤ N − 2. Throughout this paper,
we assume that the indices j and s vary between 0 andM − 1 and
that the indices i and r vary between 0 and N − 2. Moreover, we
assume that repeated indices are summed over. Thus, the matrix
form of (27) becomes

〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x
Uij

〈
dϑ

(γ ,η)
T ,j

dt
ϑ
(γ ,η)
T ,s

〉

t

−

〈
θ
(γ ,η)
L,i

d2θ
(γ ,η)
L,r

dx2

〉

x

Uij

〈
0D

w(ν)
t ϑ

(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

−

〈
θ
(γ ,η)
L,i

d2θ
(γ ,η)
L,r

dx2

〉

x

Uij

〈
ϑ
(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

=
〈〈

θ
(γ ,η)
L,i (x)H(x, t)ϑ

(γ ,η)
T ,j (t)

〉〉
.

(28)
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Let us denote

U =
(
Uij

)
, H =

(
Hij

)
, A = (Air) , B = (Bir) , C =

(
Cjs

)
,

Dω =
(
Dω

js

)
, E =

(
Ejs

)
, H =

(
Hjs

)
,

where H is the matrix whose entries are Hij =〈〈
θ
(γ ,η)
L,i (x)H(x, t)ϑ

(γ ,η)
T ,j (t)

〉〉
, U is the matrix of unknown

coefficients, and the non-zero elements of the matrices
A, B, C, Dω and E are given explicitly by Theorem 3.2. The
previous integrals can be computed using the Jacobi-Gauss
quadrature rule (9). The discretization of the distributed-order
fractional Rayleigh–Stokes problem (16) is equivalent to the
following matrix equation

AUC− BUDω − BUE = H. (29)

In order to be able to solve (29), we shall recast it in a more
convenient form. To do so, we make use of the Kronecker
product (represented by ⊗). If we consider the matrices H ∈

R
n,m and G ∈ R

q,p, then the Kronecker product of H and G is
defined as follows

H⊗ G =




h11G h12G · · · h1mG
h21G h22G · · · h2mG
...

...
. . .

...
hn1G hn2G · · · hnmG


 ∈ R

nq,mp.

Let hi ∈ R
n denote the columns of H ∈ R

n,m so that H =[
h1, . . . , hm

]
. Then vec(H) is defined to be the nm-vector formed

by stacking the columns ofH on top of one another, i.e.,

vec(H) =



h1
...
hm


 ∈ R

nm.

The Kronecker product has the useful property that for any three
matrices H, G and H for which the matrix product is defined,
we have:

vec(HGF) =
(
FT ⊗H

)
vec(G),

where T denotes the transpose. Equation (29) can finally be
expressed in matrix form as follows:

(
CT ⊗ A−DT

ω ⊗ B− ET ⊗ B
)
vec(U) = vec(H). (30)

Theorem 3.2. Let

Air =
〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x
, Bir =

〈
θ
(γ ,η)
L,i

d2θ
(γ ,η)
L,r

dx2

〉

x

,

Cjs =

〈
dϑ

(γ ,η)
T ,j

dt
ϑ
(γ ,η)
T ,s

〉

t

, D
ω
js =

〈
0D

w(ν)
t ϑ

(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t
,

Ejs =
〈
ϑ
(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t
.

(31)

Then the non-zero elements Air , Bir , Cjs, D
ω
js , and Ejs are given by

Aii = h
(γ ,η)
L,i + κ2

i h
(γ ,η)
L,i+1 + λ2i h

(γ ,η)
L,i+2,

Ai+1,i = Ai,i+1 = κih
(γ ,η)
L,i+1 + λiκi+1h

(γ ,η)
L,i+2,

Ai+2,i = Ai,i+2 = λih
(γ ,η)
L,i+2,

(32)

Bii =λiA2(i+ 2, i, γ , η)h
(γ ,η)
L,i ,

Bir =O2(r, i, γ , η)h
(γ ,η)
L,i + O2(r, i+ 1, γ , η)κih

(γ ,η)
L,i+1

+ O2(r, i+ 2, γ , η)λih
(γ ,η)
L,i+2, r = i+ n, n ≥ 1,

(33)

Cjj = µjA1(j+ 1, j, γ , η)h
(γ ,η)
T ,j ,

Cjs = χ1(s, j, γ , η)h
(γ ,η)
T ,j + χ1(s, j+ 1, γ , η)µjh

(γ ,η)
T ,j+1,

s = j+ n, n ≥ 1,

(34)

D
ω
js =

(
Âω(s, j, γ , η)+ µsÂω(s+ 1, j, γ , η)

)
h
(γ ,η)
T ,j

+µj

(
Âω(s, j+ 1, γ , η)+ µsÂω(s+ 1, j+ 1, γ , η)

)
h
(γ ,η)
T ,j+1,

(35)

Ejj = h
(γ ,η)
T ,j + µ2

j h
(γ ,η)
T ,j+1,

Ej+1,j = Ej,j+1 = µjh
(γ ,η)
T ,j+1,

(36)

where

Oσ (r, i, γ , η) =Aσ (r, i, γ , η)+ κrAσ (r + 1, i, γ , η)

+ λrAσ (r + 2, i, γ , η),
(37)

χσ (s, j, γ , η) =Aσ (s, j, γ , η)+ µsAσ (s+ 1, j, γ , η), (38)

and h
(γ ,η)
L,i is given by (8).

Proof: We shall only determine the non-zero elements of A as
the proof for the non-zero entries of the other matrices can easily
be obtained similarly. From (25), we have

Air =
〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x

=
〈(
J
(γ ,η)
L,i (x)+ κiJ

(γ ,η)
L,i+1(x)

+λiJ
(γ ,η)
L,i+2(x)

) (
J
(γ ,η)
L,r (x)+ κrJ

(γ ,η)
L,r+1(x)+ λrJ

(γ ,η)
L,r+2(x)

)〉
x
.

(39)

Using the orthogonality relation (7), we obtain

Aii = h
(γ ,η)
L,i + κ2

i h
(γ ,η)
L,i+1 + λ2i h

(γ ,η)
L,i+2,

Ai+1,i = Ai,i+1 = κih
(γ ,η)
L,i+1 + λiκi+1h

(γ ,η)
L,i+2,

Ai+2,i = Ai,i+2 = λih
(γ ,η)
L,i+2.

(40)
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In particular, the special cases for the shifted Legendre basis can
be obtained directly by taking γ = η = 0, and for the shifted
Chebyshev basis of the first and second kinds can be obtained
directly by taking γ = η = − 1

2 and γ = η = 1
2 , respectively.

Using a proper transformation the problems with non-
homogeneous initial-boundary conditions can be transformed
into problems with homogeneous initial-boundary conditions.
Let

U(x, t) = Ue(x, t)+ Ũ(x, t), (41)

where Ũ is an unknown function satisfying the modified problem

∂tŨ(x, t)−
(
1+ 0D

w(ν)
t

)
∂2x Ũ(x, t) = H∗(x, t), (x, t) ∈ �, (42)

with the homogeneous initial and boundary conditions

Ũ(x, 0) = 0, x ∈ [0, L],

Ũ(0, t) = Ũ(L, t) = 0, t ∈ [0, T ],
(43)

where

H∗(x, t) = H(x, t)− ∂tUe(x, t)+
(
1+ 0D

w(ν)
t

)
∂2xUe(x, t), (44)

while Ue(x, t) is an arbitrary function satisfying the original
non-homogeneous boundary conditions.

4. TWO-DIMENSIONAL CASE

In this section, we consider the following two-dimensional
distributed-order fractional Rayleigh–Stokes problem:

∂tU −
(
1+ 0D

w(ν)
t

) (
∂2xU + ∂2yU

)
= H(x, y, t), (x, y, t) ∈ 32 × I,

(45)

with homogeneous initial and boundary conditions, where32 =
3 × 3. The two-dimensional Galerkin approximation can be
written as

U(x, y, t) ≃ Û(x, y, t) =

N−2∑

i=0

N−2∑

i′=0

M−1∑

j=0

θ
(γ ,η)
L,i (x)θ

(γ ,η)
L,i′ (y)Ûii′jϑ

(γ ,η)
T ,j (t).

(46)
Then the spectral Jacobi–Galerkin scheme (28) in

the two-dimensional case can be expressed in the

following form

〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x

〈
θ
(γ ,η)
L,i′ θ

(γ ,η)
L,r′

〉
y
Ûii′j

〈
dϑ

(γ ,η)
T ,j

dt
ϑ
(γ ,η)
T ,s

〉

t

−

〈
θ
(γ ,η)
L,i

d2θ
(γ ,η)
L,r

dx2

〉

x

〈
θ
(γ ,η)
L,i′ θ

(γ ,η)
L,r′

〉
y
Ûii′j

〈
0D

w(ν)
t ϑ

(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

−
〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x

〈
θ
(γ ,η)
L,i′

d2θ
(γ ,η)
L,r′

dy2

〉

y

Ûii′j

〈
0D

w(ν)
t ϑ

(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

−

〈
θ
(γ ,η)
L,i

d2θ
(γ ,η)
L,r

dx2

〉

x

〈
θ
(γ ,η)
L,i′ θ

(γ ,η)
L,r′

〉
y
Ûii′j

〈
ϑ
(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

−
〈
θ
(γ ,η)
L,i θ

(γ ,η)
L,r

〉
x

〈
θ
(γ ,η)
L,i′

d2θ
(γ ,η)
L,r′

dy2

〉

y

Ûii′j

〈
ϑ
(γ ,η)
T ,j ϑ

(γ ,η)
T ,s

〉
t

=
〈〈〈

θ
(γ ,η)
L,i (x)θ

(γ ,η)
L,i′ (y)H(x, y, t)ϑ

(γ ,η)
T ,j (t)

〉〉〉
.

(47)

Let us denote

Û = [U0,U1, . . . ,UM−1],

Ui = [Ui,0,Ui,1, . . . ,Ui,N−2]
T ,

Ui,i′ = [Ûi,i′ ,0, Ûi,i′ ,1, . . . , Ûi,i′ ,N−2]
T ,

(48)

TABLE 1 | Case I: The L∞-error for Example 5.1.

α CFDA [44] Present method (γ = −η = −1/2)

τ 2
= h4

=
1

625 N = M = 5 N = M = 10 N = M = 15

0.1 3.059× 10−5 2.783× 10−6 2.663× 10−8 1.418× 10−9

0.3 5.789× 10−5 3.747× 10−6 3.772× 10−8 2.692× 10−9

0.5 6.463× 10−5 4.288× 10−6 3.890× 10−8 3.062× 10−9

0.7 6.434× 10−5 3.816× 10−6 2.405× 10−8 2.339× 10−9

0.9 6.227× 10−5 2.666× 10−6 5.968× 10−9 9.764× 10−9

TABLE 2 | Case II: The L∞-error for example 5.1.

α = κ INAS [8] RKM [9] Present method (γ = −η = −1/2)

τ 2
= h4

=
1

256 τ 2
= h4

=
1

256 N = M = 5 N = M = 10 N = M = 15

0.5 7.621× 10−4 1.637× 10−4 3.269× 10−5 7.519× 10−7 .875× 10−8

0.6 8.426× 10−4 1.789× 10−4 2.810× 10−5 5.052× 10−7 6.197× 10−7

0.7 9.259× 10−4 1.912× 10−4 2.130× 10−5 3.062× 10−7 4.443× 10−7

0.8 1.016× 10−3 2.031× 10−4 1.363× 10−5 1.561× 10−7 2.540× 10−7

0.9 1.119× 10−3 2.172× 10−4 6.108× 10−6 5.898× 10−8 7.882× 10−8

TABLE 3 | Case III: The L∞- errors for Example 5.1 vs. κ with γ = η = 0.

N = M κ = 2 κ = 1.5 κ = 0.5

5 1.607× 10−6 2.112× 10−5 5.266× 10−5

10 5.714× 10−9 5.187× 10−8 1.121× 10−7

15 1.980× 10−10 4.003× 10−9 6.413× 10−7
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and

Ĥ = [H0,H1, . . . ,HM−1],

Hi = [Hi,0,Hi,1, . . . ,Hi,N−2]
T ,

Hi,i′ = [Ĥi,i′ ,0, Ĥi,i′ ,1, . . . , Ĥi,i′ ,N−2]
T ,

(49)

where Ĥ is the matrix whose entries are Hii′j =〈〈〈
θ
(γ ,η)
L,i (x)θ

(γ ,η)
L,i′ (y)H(x, y, t)ϑ

(γ ,η)
T ,j (t)

〉〉〉
and Û is the matrix

of unknown coefficients. The Jacobi–Galerkin discretization (47)
is equivalent to the following matrix equation

(A⊗ A) ÛC− (B⊗ A) ÛDω − (A⊗ B) ÛDω − (B⊗ A) ÛE

− (A⊗ B) ÛE = Ĥ.

(50)

For computational convenience, we recast Equation (50) using
the Kronecker product in the following matrix form

(
CT ⊗ A⊗ A−DT

ω ⊗ B⊗ A−DT
ω ⊗ A⊗ B

−ET ⊗ B⊗ A− ET ⊗ A⊗ B
)
vec(Û) = vec(Ĥ).

(51)

Using a suitable iterative method the above linear system
can be solved to obtain the numerical solution (46). In our
implementation, the Mathematica function FindRoot with zero
initial approximation has been used to solve this system.

5. NUMERICAL RESULTS AND
COMPARISONS

In this section, we present numerical results to verify the
efficiency of the spectral Galerkin algorithms. We consider

FIGURE 1 | The space-time graphs of the absolute error functions for Example 5.2 at various choices of t with γ = −η = 1/2, N = M = K = 8 and

ω(ν) = Ŵ(1+ α + ν), α = 0.5.
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TABLE 4 | The L∞- errors for Example 5.2 with ω(ν) = δ(ν − 1+ α).

α ENAS [45] INAS [45] Present method (N = M = K = 8)

( 18 ,
1
8 ,

1
4900 ) ( 1

32 ,
1
32 ,

1
1024 ) γ = η =

1
2 γ = η = 0 γ = η = −

1
2

0.7 4.96387× 10−4 1.45673× 10−4 2.46304× 10−6 2.36983× 10−6 4.02935× 10−6

0.8 4.95910× 10−4 2.34842× 10−4 1.56185× 10−6 1.53191× 10−6 2.27030× 10−6

0.9 4.96864× 10−4 3.52382× 10−4 6.51387× 10−7 6.49498× 10−7 9.03830× 10−7

TABLE 5 | The L∞- errors for Example 5.2 with ω(ν) = δ(ν − 1+ α).

α CFDA [10] Present method (N = M = K = 8)

( 18 ,
1
8 ,

1
640 ) γ = η =

1
2 γ = η = 0 γ = η = −

1
2

0.55 1.7808× 10−5 4.6535× 10−6 4.9220× 10−6 6.2965× 10−6

one-and two-dimensional examples with smooth and non-
smooth solutions. All computations are carried out using
Mathematica version 12.

Example 5.1. We test the next problem:

∂U(x, t)

∂t
=

(
1+ 0D

w(ν)
t

) ∂2U(x, t)

∂x2
+ g(x, t). (52)

The initial condition, the boundary conditions and the function
g(x, t) are selected such as the continuous problem has an exact
non-smooth solution in time direction U(x, t) = extκ+2.

Here, we consider the following three cases:

• Case I: ω(ν) = δ(ν − 1+ α), α ∈ (0, 1), κ = 1.
• Case II: ω(ν) = δ(ν − 1+ α), α = κ ∈ (0, 1).
• Case III: ω(ν) = Ŵ(2+ κ + ν), κ = 0.5, 1.5, 2.

In Tables 1, 2, we compare the L∞-errors of the present method
with the compact finite difference approximation (CFDA)
[44], implicit numerical approximation scheme (INAS) [8] and
reproducing kernel method (RKM) [9]. We see in these tables
that the results are accurate for even small choices of N and M.
These results are in perfect agreement with what was expected
for a spectral method. Also, this result indicates that the Jacobi–
Galerkin method can converge reasonably well for problem (52)
with non-smooth data. In Table 3, we list 1the L∞-errors of the
present method for case III.

Example 5.2. Consider the following two-dimensional problem:

∂U(x, y, t)

∂t
=

(
1+ 0D

w(ν)
t

)(
∂2U(x, y, t)

∂x2
+

∂2U(x, y, t)

∂y2

)

+H(x, y, t),

(53)

The initial condition, the boundary conditions and the right side
function H are selected such as the continuous problem has an

exact non-smooth solution in time direction U(x, y, t) = ex+ytα+1.

The space-time graphs of the absolute error functions with
ω(ν) = Ŵ(1+ α + ν) at different values of t = 0.25, 0.5, 0.75, 1
with γ = −η = 1/2 and N = M = K = 8 are displayed
in Figure 1. A comparison between the results obtained by the
Jacobi–Galerkin method with the corresponding results obtained
by the explicit numerical approximation scheme (ENAS) [45],
the Implicit numerical approximation scheme (INAS) [45] and
the compact finite difference approximation (CFDA) [10] are
displayed in Tables 4, 5, respectively.

6. CONCLUSION

We have presented a Galerkin technique for solving the
distributed-order time-fractional Rayleigh-Stokes problem for a
generalized second-grade fluid with Jacobi polynomials that is
efficient, adaptable to different operators, and easily generalizes
to multiple dimensions. By expanding the model solution in
terms of Jacobi polynomials in both time and space, we were
able to derive adaptable schemes those easily accommodate
the distributed fractional-order differential operator. All the
calculations can be performed numerically with reasonable
accuracy and with relatively small number of degrees of freedom.
It should be pointed out that the proposed method to discretize
the model equation could also accommodate other numerical
methods. For instance, if the model solution is not smooth
in time, the order of convergence of the spectral Galerkin
schemes may be deteriorated. That could be prevented by
simply replacing the Jacobi basis functions in time by fractional
order Jacobi functions or using smoothing transformations and
deriving the corresponding mass and diffusion matrices
by following the same procedure as we described in
this study.
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