
MINI REVIEW
published: 05 February 2020

doi: 10.3389/fphy.2019.00239

Frontiers in Physics | www.frontiersin.org 1 February 2020 | Volume 7 | Article 239

Edited by:

Joshua Albert Dijksman,

Wageningen University &

Research, Netherlands

Reviewed by:

Masoud Hoore,

Helmholtz Center for Infection

Research, Helmholtz Association of

German Research Centers

(HZ), Germany

Prateek Kumar Jha,

Indian Institute of Technology

Roorkee, India

*Correspondence:

Elias C. Aifantis

mom@mom.gen.auth.gr

Specialty section:

This article was submitted to

Soft Matter Physics,

a section of the journal

Frontiers in Physics

Received: 12 September 2019

Accepted: 16 December 2019

Published: 05 February 2020

Citation:

Aifantis EC (2020) A Concise Review

of Gradient Models in Mechanics and

Physics. Front. Phys. 7:239.

doi: 10.3389/fphy.2019.00239

A Concise Review of Gradient
Models in Mechanics and Physics

Elias C. Aifantis*

Laboratory of Mechanics and Materials, School of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

The various mathematical models developed over the years to interpret the behavior

of materials and corresponding processes they undergo were based on observations

and experiments made at that time. Classical laws for solids (Hooke) and fluids

(Navier–Stokes) form the basis of current technology. The discovery of new phenomena

with the aid of newly developed experimental probes have led to various modifications

of these laws, especially at small scales. The emergence of nanotechnology is ultimately

connected with the design of novel tools for observation and measurements, as well

as with the development of new methods and approaches for quantification and

understanding. This paper first reviews the author’s previously developed weakly non-

local or gradient models for elasticity, diffusion, and plasticity. It then proposes a similar

extension for fluids and electrodynamics. Finally, it suggests a gradient modification of

Newton’s law of gravity, with a possible connection to the strong force of elementary

particle physics.

Keywords: gradient elasticity, plasticity, fluidity, gradient electrodynamics, gradient gravity

INTRODUCTION

In a recent chapter inAdvances of AppliedMechanics [1], an extensive review of the author’s internal
length gradient (ILG) mechanics framework is presented. It is based on the assignment of internal
lengths/ILs (associated with the local geometry/topology of material nano/microstructures) as
scalar multipliers of extra Laplacian terms that are introduced into classical constitutive equations
to account for heterogeneity effects and weak non-locality. Related background work for this
framework can be found in the references quoted therein, as well as in earlier published articles by
the author and his coworkers on gradient elasticity/plasticity [2, 3] and higher order diffusion/heat
conduction [4, 5].

The motivation for the ILG framework goes back to van der Waals work on liquid/vapor
interfaces, as extended by Landau’s school through the introduction of a gradient-dependent order
parameter and, more recently, adopted in Cahn–Hilliard theory of spinodal decomposition [6, 7].
In this connection, it is also pointed out that the plethora of more recent phenomenological phase
field models, as well as subatomic generalized functional density theories, are essentially based on
the introduction of higher order gradients in the free energy of the system under consideration.

At very small scales, mechanical and chemical effects are often equipresent, and an
extended chemomechanical ILG framework is necessary to consider higher order IL couplings,
as suggested in Aifantis [1]. In view of the fact that mechanical and chemical ILs
are introduced as scalar multipliers of corresponding Laplacian terms, it turns out that
such coupled chemomechanical formulation is appealing and robust. Since in models of
mathematical biology [8, 9], cells are commonly represented by scalar concentration fields
(i.e., in the same way as chemical species), the formulation could be easily adapted for
the description of higher order couplings between mechanical and biochemical ILs. Such

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00239
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00239&domain=pdf&date_stamp=2020-02-05
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mom@mom.gen.auth.gr
https://doi.org/10.3389/fphy.2019.00239
https://www.frontiersin.org/articles/10.3389/fphy.2019.00239/full
http://loop.frontiersin.org/people/808155/overview


Aifantis Gradients in Mechanics and Physics

an extended ILG mechanics framework, including synergistic
effects between mechanical and chemical or biological ILs, can be
employed to consider chemomechanical instabilities in lithium-
ion battery/LiB anodes [10] and biomechanical instabilities in
brain tumors [11]. In this connection, it should be pointed
out that the Laplacian of the elastic Hookean stress in the
author’s model of gradient elasticity/GradEla [3, 5] enters in
the same way as in Murray’s treatment of morphogenesis in
biology [8, 9]. Similarly, the Laplacians of the immotile/motile
cancer cell densities in the go or grow/GoG model [11] were
introduced in the same way as in the Walgraef-Aifantis/W-A
model of immobile/mobile dislocation densities for persistent
slip bands [12].

ILG IN SOLIDS:

ELASTICITY/PLASTICITY/DIFFUSION AND

CHEMOELASTICITY

For elastic deformations, the term ℓ2ε∇2[λεmmδij+2Gεij]—where
ℓε denotes elastic IL, εij is the elastic strain, and (λ,G) are the
Lamé constants—is incorporated into classical Hooke’s law σij =
λεmm δij+ 2Gεij, which now reads [1, 3] σij = λεmm δij+ 2Gεij−
c∇2

[

λεmm δij + 2Gεij
]

; c = ℓ2ε . Similarly, the term ℓ2p∇2γ p–

where ℓp denotes plastic IL and γ
p =

∫

γ̇ pdt;γ̇ p =
√

2ε̇
p
ijε̇

p
ij is the

equivalent plastic strain with ε
p
ij denoting the plastic strain tensor

and a superimposed “·” denotes time derivative—is introduced in

the classical von Mises yield condition τ = κ(γ p); τ ≡ 1
2

√

σ ′
ijσ

′
ij,

σ ′
ij = σij − (1/3) σmm δij, which now reads [1, 2] τ = κ(γ p) −

c∇2γ p; c = ℓ2pκ
′(γ p).

For diffusion problems, the IL enters through the additional
term ℓ2

d
∇2ji—where ℓd is a diffusional internal length and ji

denotes the diffusion flux—which generalizes the classical Fick’s
law ρ̇ = D∇2ρ by the expression ρ̇ = D∇2ρ − c∇4ρ; c = ℓ2

d
D,

in a manner formally similar to the Cahn–Hilliard theory [7] of
spinodal decomposition. For collective dislocation phenomena,
the IL enters through the extra Laplacian terms Di,m∇2ρi,m,
where ρi,m denote (immobile, mobile) dislocation densities and
Di,m “effective” diffusion-like transport coefficients [12], which
are absent from conventional dislocation dynamics models.

For coupled elasto-diffusion processes, higher order IL
couplings have not been adequately considered with the
exception of some recent works on chemomechanical damage
of LiB anodes and propagation of lithiation fronts. Colossal
mechanical stresses develop during lithiation, and the following
gradient enhanced stress-assisted diffusion equation may be used
to model Li intercalation

∂ρ

∂t
=

(

D+ Nσ 0
h

)

∇2
[

ρ − ℓ2ρ∇2ρ
]

−M∇σ 0
h · ∇

[

ρ − ℓ2ρ∇2ρ
]

. (1)

In the above expression, ρ is the Li concentration, σ 0
h
denotes the

hydrostatic component of mechanical stress, and (D,N,M) are
phenomenological coefficients, whereas ℓρ denotes a diffusional
internal length entering in an analogous (slightly different) way

as ℓd above. It is noted that Equation (1) is an IL extension of
the stress-assisted diffusion equation earlier used for hydrogen
embrittlement [13]. It is an uncoupled equation, since σ 0

h
is assumed to be determined by the solution of a separate
elasticity problem.

Higher order elasto-diffusion couplings were consideredmore
recently in Tsagrakis and Aifantis [14] to model the propagation
of lithiation fronts. The corresponding constitutive equations for
the stress (σ ) and the chemical potential (µ) are given by

σ = 2Gε + λ(tr ε)1− ℓ2
ε
∇2[2Gε + λ(tr ε)1

−(2G+ 3λ)Mρ1,

µ = µ0 + RT

[

ln

(

ρ

1− ρ

)

+ α(1− 2ρ)

]

−κ∇2ρ −�σh. (2)

Here again, ρ is a normalized Li concentration, ε is the
strain, (λ, G) denote the Lamé constants, and (M, �) are
chemomechanical phenomenological coefficients. The quantities
µ0(reference value of µ) and α denote chemical parameters of
ideal solution theory, whereas ℓε and κ denote the mechanical
and diffusional internal lengths, respectively.

ILG IN RHEOLOGY: NEWTONIAN AND

COMPLEX FLUIDS

In this section, we suggest various possibilities for a gradient
enhancement of constitutive equations used in the fluid
mechanics and rheology communities. In this connection, it is
pointed out that (following the author’s work on gradient theory),
a number of such generalizations have already been proposed in
these communities [15–19]. In the spirit of the ILG formulation,
such type of generalizations can readily be deduced by formally
replacing the local fields for the fluid density ρ, stretching tensor
D = 1

2 [∇ v+(∇v)T], and vorticity tensorW = 1
2 [∇ v−(∇ v)T],

with their gradient-dependent counterparts ρ − ℓ2ρ∇2ρ,D −
ℓ2
D
∇2

D,W− ℓ2
W
∇2

W, respectively.
Another possibility is to include the Laplacian of the

viscoelastic stress 6, as proposed in the diffusive Johnson–
Segalman (DJS) model, i.e.,

T = −p1+ 2µD+ 6; divT = 0, (3)

with p denoting pressure, µ being the solvent’s shear viscosity
[not to be confused with the same symbol used for the chemical
potential in Equation (2)], and the second equation standing for
quasi-static equilibrium. The newly introduced viscoelastic stress
6 obeys the following evolution equation

o

6 +
1

τ
6 =

2µ∗

τ
+ D∇2

6, (4)

where τ denotes relaxation time, µ∗ is the micelle (polymer-like)
viscosity,D is a diffusion-like coefficient, and a superimposed “o”
denotes corotational time derivative.
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On returning to the topic of an appropriate generalization of
the Navier–Stokes (N–S) equations for incompressible fluids, i.e.,
of the constitutive equation T = −p1 + 2µD, we can propose
the following gradient model

T− ℓ2T∇
2
T = −p1+ 2µ(D− ℓ2D∇2

D), (5)

where ℓT and ℓD denote internal lengths associated with stress
and strain rate inhomogeneities. On assuming that ℓT can
be neglected and introducing Equation (5) in the equation of
momentum balance ρv̇ = divT, we obtain the following gradient
generalization of the N–S equations

ρv̇ = −∇p+ µ(1v− ℓ2D12
v), (6)

where 1 = ∇2 and 12 = ∇4 denote the Laplacian and
biharmonic operators, respectively [16]. A slightly generalized
model to consider turbulence, reads

ρv̇ = −∇p+ µ(1− α21)1v+ 2ρα2div
∇
D, (7)

where the α parameter [not to be connected with the same
symbol used in Equation (2)] denotes a statistical correlation

length and
∇
D = D +DW−WD denotes the usual Jaumann rate.

Steady-state solutions of Equation (6) may be determined by
employing the operator split method (or the use of Ru–Aifantis
theorem [20]) utilized to eliminate singularities from dislocation
lines and crack tips in the theory of gradient elasticity (see also
[1]). This same procedure leads to the cancelation of singularities
in typical fluid flow calculations involving immersed objects. It
turns out, for example, that the resulting gradient Oseen tensor
O

G
ij , which generalizes its classical counterpartOij

Oij =
1

8πµ r

(

δij +
rirj

r2

)

, (8)

where ri denotes the position vector and r its magnitude, reads

O
G
ij =

1

8πµ r

{[

1− 2e−r/ℓ −
2ℓ

r
e−r/ℓ +

2ℓ2

r2
(1− e−r/ℓ)

]

δij

+
[

1+ 2e−rℓ +
6ℓ

r
e−rℓ −

6ℓ2

r2
(1− e−r/ℓ)

]

rirj

r2

}

. (9)

This expression is essentially the same with the exponential
regularization of the Green’s tensor emerged in gradient
elasticity/GradEla and used to rederive non-singular expressions
for the stresses and strains in dislocation lines and crack tips.
More details on such gradient fluids aspects can be found in
Giusteri and Fried [21], the authors of which it seems not to have
been aware of analogous developments in gradient elasticity.

ILG IN OTHER DISCIPLINES AND SCALES

In this section, we summarize the applicability of the ILG
framework to other disciplines and scales ranging from earth
scales to quantum scales.

ILG in Geology
Some initial work on introducing internal lengths and Laplacians
of strain in geomodels has been published by the author
and coworkers to model shear banding and related instability
phenomena in soils/rocks and snow/ice (see, for example
[22–33]). Various types of gradient-dependent constitutive
equations for such classes of geomaterials have also been
proposed and elaborated upon in detail by many other authors.
This was due to the fact that the Laplacian regularizes unstable
behavior in the geomaterial’s softening regime and allows for the
determination of shear band thickness/spacing, eliminates mesh-
size dependence, and establishes convergence of corresponding
finite element calculations [2]. The popularization of the
approach in the geomechanics community is mainly due to the
follow-up works by Vardoulakis and collaborators for soils, as
well as de Borst and collaborators for concrete. These are too
many tomention here, andmost of them can be found in the web.

In connection with the above, it is worth noting that
the Walgraef-Aifantis/W-A model for dislocation patterning
has recently been used by Ord and Hobbs [34] to interpret
fracture patterns in frictional, cohesive, granular materials. Their
article was one contribution of 17 to a Theme Issue “Patterns
in our planet: Applications of multi-scale non-equilibrium
thermodynamics to Earth-system science”.

ILG in Electrodynamics
The inclusion of higher order gradients in deforming materials
under the action of electromagnetic fields has also become very
popular in recent years due to emerging applications and novel
design of piezoelectric (induction of electricity due to applied
stress/strain) and flexoelectric (induction of electricity due to
strain gradients) components. The number of written articles is
prohibitive for mentioning them here, and we only refer to recent
publications by the author and coworkers [35–37], as well as to
the bibliography listed there for recent literature related to size
effects in micro-/nanoelectromechanical systems.

In relation to the issue of eliminating singularities and
introducing screening effects (e.g., Debye screening) in the
electric field, the following gradient modification of Coulomb’s
law of electrostatics has been used [see, for example, [38] where,
in addition, a fractional generalization of Debye screening is also
discussed], as follows:

∇28(r)−
1

r2D
8(r) = −

1

ε0
ρ(r). (10)

In this equation, 8 is the electrostatic potential [E(r) =
−∇8(r) ; E(r) is the electric field], ρ(r) denotes the charge
density, ε0 is the vacuum permittivity, rD is the Debye screening
distance, and r denotes the spatial radial coordinate. The classical
Coulomb’s potential for a point charge of strength Q has the
form 8(r) = Q/4πε0 r, while its Debye-screened counterpart
obtained from Equation (10)—which is identical in form to the
reduced equation for gradient elasticity [20]—reads

8(r) =
Q

4πε0r
e−r/rD . (11)
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In concluding this discussion on gradient electrodynamics,
an interesting possibility is outlined below for a gradient
extension of the MacCullagh–Fitzgerald formal analogy between
elastic deformation and light transmission/reflection/refraction
in transparent media (also discussed briefly by Sommerfeld in
his lectures), as pointed out in Truesdell and Toupin [39]. On
assuming first that the ether behaves as an elastic medium with
its stress T depending linearly on rotations ω(instead of strains),
we can write

T = 2kω,ω = 1/2[∇u− (∇u)T]; divT = ρü, (12)

where u denotes displacement, ρ denotes density, and k is a
constant. These lead to the equation k curl curl u + ρü = 0
and by formally setting k curl ü → α E and ρu̇ → αβ (with
E/B denoting electric/magnetic fields and α being an arbitrary
proportionality constant), we arrive at Maxwell’s equations [39]

∂B

∂t
+ curlE = 0; divB = 0 &

∂E

∂t
−

1

µ0ε0
curlB = 0;

divE = 0, (13)

where the identities divcurlu = 0 and curl (∂u/∂t) −
∂(curl u)/∂t = 0 were used, along with the following
identification of the various coefficients (β = kε0, µ0= ρ/β ,
with β being an arbitrary constant). The symbols (ε0,µ0) are
the fundamental vacuum constants of electromagnetism with
ε0µ0 = 1/c2 and c denoting the speed of light in vacuum. By
repeating the same procedure as above but replacing Equation
(12)1 for the ether’s elastic stress with its gradient counterpart

T = 2k(ω − ℓ2∇2
ω) , (14)

we arrive at the following generalization of Maxwell’s equations

∂B

∂t
+ curl[(1− ℓ2∇2)E] = 0; divB = 0,

∂E

∂t
−

1

µ0ε0
curlB = 0; divE = 0. (15)

It is noted that for electrostatics (with the usual assumption
that the electric field E is proportional to a potential gradient
∇8), Podolsky’s non-quantum equation for the electric potential,
∇2(1− ℓ2∇2)Φ = 0, is obtained [40, 41]1.

ILG in Atomistics and Quantum Mechanics
We conclude this section on the applicability of the ILG
framework to various disciplines and scales by focusing on
two specific topics: a possible gradient generalization of the
molecular dynamics stress, and an analogous generalization of
the quantummechanical stress. In this connection, it is noted that
the following expressions were proposed for these stresses:

〈σ 〉 =
1

V

[〈

1

2

∑

i

fij ⊗
(

ri − rj

)

〉

−
〈

∑

i

miυ i ⊗ υ i

〉]

, (16)

1Podolsky has derived a generalization of Maxwell’s equations through a

variational principle, leading also to the appearance of∇2
B in addition to∇2

E. This

is also possible through the aforementioned analogy by replacing uwith u−ℓ2∇2
u.

in Zimmerman et al. [42], and

σαβ = −
1

V

∑

i

〈

piαpiβ

mi

〉

−
1

2V

∑

i,j
(j 6= i)

〈
(

ri − rj

)

α

(

ri − rj

)

β
∣

∣ri − rj

∣

∣

U
′
ij

(∣

∣ri − rj

∣

∣

)

〉

,(17)

in Maranganti and Sharma [43], with the various symbols having
their usual meaning [42, 43]. The formal similarity between
these two expressions and their resemblance to the virial stress
and other statistical stress measures is striking. However, the
problem to connect such discrete “microscopic” stress measures
with the continuum “macroscopic” measure of Cauchy stress in a
“seamless” way is a challenging issue. A gradient generalization of
the force fields fij in Equation (16) and the interaction potential
Uij in Equation (17) may turn out to be quite useful in this
respect. Among other things, it could also naturally introduce
screening distances and eliminate associated singularities.

The effect of strain ε on the electronic structure has been
described [44] through the equations

(Ec −
h̄2

2m∗∇
2)ψ(r)+ actr(ε)ψ(r) = Eψ(r) and

ε = ε
0; σ = [C] ε; divσ = 0, (18)

where ψ(r) denotes the wavefunction, [C] is the Hookean
(generally anisotropic) elasticity matrix, ac is the so-called
deformation potential constant, and the rest of the symbols have
their usual quantum mechanical meaning [44, 45]. This is an
uncoupled framework where strain can affect the electronic state
but not vice versa. A generalization to account for the inverse
effect on strain due to changes in the quantum field through the
wavefunction ψ(r) has already been proposed as follows [45]:

(Ec −
ℏ
2

2m∗∇
2)ψ(r)+ actr(ε)ψ(r) = Eψ(r) and

ε = ε
0 −

ac

3K
|ψ(r)|21; σ = [C] ε; divσ = 0, (19)

where K is the isotropic bulk elastic modulus. A possible gradient
modification is then to replace ε with its gradient counterpart
ε − ℓ2

ε
∇2

ε, and this formal generalization may be of interest to
further explore.

ILG MODIFICATION OF NEWTON’S

GRAVITATION LAW

In this final section, we venture a gradient generalization of
Newton’s Law, which allows for the corresponding gravitational
force to attain values larger than the electromagnetic force and
even reach the levels of the nuclear/strong force which keeps
matter together2.

2This question first emerged in discussions with my daughter during my visit in

February 2019 to Florida and follow-up discussions with my university classmate

Vayenas during his visit in June 2019 to Thessaloniki.
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We begin with the following nonlocal generalization of the
gravitational force f in its component form (fi)

fi(r) =
∫

Gij(r− r
′) Fj(r

′) d3r′ (20)

where Gij(r − r
′) is a non-local interaction kernel, and Fj is

the classical Newton’s force. By Fourier transforming Equation
[26], Taylor series expanding up to the second-order term and
inverting, the following differential equation is obtained for the
above listed expression of the generalized force f

(1− ℓ2∇2)f = F; ℓ2δij =
1

2

∣

∣

∣

∣

∣

d2G̃ij(0)

dk2

∣

∣

∣

∣

∣

(21)

where k = |k| denotes wave vector, G̃ij is the Fourier transform
of Gij, and ℓ is an internal length, with δij appearing due to
the assumed isotropy/spherical symmetry [In general the sign
in front of the Laplacian term in Equation (21) may be positive
or negative depending on the sign of d2G̃ij(0)/dk

2 of the second
order term in the Taylor expansion without assuming its absolute
due to stability considerations]. Such a formal derivation can also
be established by viewing the two point masses M0 and M in
the classical Newton’s Law, as being distributed and bounded by
spheres of finite radii. By considering, for example, the reference
mass M0 (M0 =

∑

imi) as being distributed within a sphere
of radius R0, summing up the interactions of each point mass
mi (located at distance ri from the center of the sphere where
ri = 0) with the other distant mass M (viewed as a point mass),
and expanding in Taylor series the density ρ(ri) around ρ0 =
ρ(0) by keeping terms up to the second order, we obtain the
following relationship

f =
GMV

R2
(ρ0 + ℓ2∇2ρ0)eR ; ℓ2 =

R20
10

, (22)

where eR = R/R denotes the unit vector along the line
connecting the center of the reference mass M0 with the second
distant point mass M. On setting

∫

V

ρ0dV = M0, we then have

f = (1+ ℓ2∇2)F, which by inversion leads to (1− ℓ2∇2)f = F.
On assuming a radial dependence of f and F[f =

f (r) er ; F = F er , F = A/r2 , with A denoting Newton’s
classical gravitational proportionality parameter and setting
eR = er], we can readily solve the scalar radial counterpart of
Equation (21) in spherical coordinates, i.e.

f − ℓ2(
∂2f

∂r2
+

2

r

∂f

∂r
−

2f

r2
) =

A

r2
, (23)

by also requiring that F → 0 as r → ∞. The result is

f =
A

r2
[1+ Be−r/ℓ(1+

r

ℓ
)], (24)

where B is a new parameter to evaluate in connection with
experiments. It is noted that the above expression of Equation
[30] reduces to Newton’s classical force FN = A/r2 as r → ∞

and to the expression FSF = AB/r2 as r → 0. By adjusting the
value of the new parameter B (B >> 1), we can attain values of
the nuclear and strong force for FSF , as outlined below.

First, we note that the internal length parameter (ℓ) can be
identified with de Broglie relativistic length, the Compton length,
the Planck length, or the Schwarzschild distance, according to
the configuration at hand. If, for example, ℓ is identified with
de Broglie relativistic length used in the Vayenas [46] rotating
neutrino model (RNM), it follows that ℓ = h̄/γm0c = 6.31 ×
10−16 m, where h̄ denotes the Planck constant, c is the speed
of light, and m0 denotes the rest mass of neutrino, whereas G is
the classical Newton’s gravitational constant (not to be confused
with the same symbol earlier used for the shear modulus), and

γ is the Lorentz factor (γ = 1/
√

1− (v/c)2; with v denoting
particle speed).

To proceed further, we adopt next the Vayenas and coworkers
RNM method [46, 47] as applied to the nucleus (proton or
neutron), but we use the gradient enhanced Newton’s Law as
given by Equation (24) with B 6= 0 instead of the classical
Newton’s Law expression (B = 0). To this end, we shall equate f
in Equation (24) with the centrifugal force FC = γm0c

2/r. Here,
r denotes the radius of the nucleus modeled by the three rotating
neutrinos whose total relativistic mass is mN = 3γm0. For a
proton nucleus (mN ≡ mp), an estimate of γ can be obtained
by equating the proton energy mpc

2 with the one corresponding
to the relativistic neutrino mass. This gives the value of γ =
mp

3m0
, which, according to experimental measurements for mp

(= 9.38× 108eV/c2 = 1.67× 10−27kg) andm0 (= 0.04 eV/c2 =
7.13× 10−38 kg) turns out to be equal to 7.818 × 109.

Having such a value of γ available, we can make effective use
of the equality between gravitational and centrifugal forces, as
proposed in the RNM approach, to deduce the relationship

FR =
A

√
3r2

[1+ Be−
√
3r/ℓ(1+

√
3r

ℓ
)] = FC =

γm0c
2

r
, (25)

where the factor
√
3 rises by considering the resultant

gravitational force FR = f /
√
3. One possibility for the constantA

is to assume that it is given by the expression A = Gm2
0γ

2 to
account for relativistic effects (during the interaction of each pair
of the rotating neutrinos in the assumed RNM configuration) in
the same manner as in the expression for the centrifugal force
FC (where the square is now introduced due to the fact that
two neutrinos are involved). The above relationship (with ℓ

identified with de Broglie’s relativistic length, as discussed in the
previous paragraph, i.e., ℓ = 6.31× 10−16m) gives

A = 2.07× 10−65 N ·m2 and B =
√
3e

√
3h̄c

(1+
√
3)Gm2

0γ
2
= 5.47× 1039.

(26)

The resulting value of FR is

FR = 7.92× 104N, (27)
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i.e., the value of the strong force obtained for the RNM
configuration [46, 47] using an entirely different approach. In
that approach, Equation (25) with B = 0 was used with A =
Gm2

0γ
6, giving a value for γ = 31/12m

1/3
pl

m
−1/3
0 = 7.167 × 109,

wherempl is the Planckmass (mpl =
√

ℏc/G), and the value ofm0

was taken as m0 = 0.0436 eV/c2. Since γ = mp/3m0, this gives
mp = 9.38× 108 eV/c2, i.e. the same value as the one used in the
previous paragraph by properly adjusting the parameters (A,B),
as well as by identifying the internal length parameter ℓ with de
Broglie relativistic length. Other choices of (A,B, ℓ ) are possible
not only for the RNM configuration at hand but also other more
complex geometric models for elementary particles represented
by several neutrinos where a potential is convenient to use. This
topic will be pursued independently in a future article.

CONCLUSIONS

A concise review of gradient models (across scales, materials, and
processes) was provided based on the author’s ILG approach. As
a result, earlier references on generalized continuum mechanics
and recent contributions on gradient and non-local theories
were not discussed due to space limitation. For solids, one
should single out the contributions of Eringen [48], Fleck and
Hutchinson [49, 50], Gurtin and Anand [51], Gao et al. [52], Nix
and Gao [53], de Borst et al. [54, 55], Geers et al. [56], Peerlings et
al. [57], Willis et al. [58], Aifantis and Willis [59], and Polizzotto
[60, 61]. Many more are included in a most recent and detailed
article by Voyiadjis and Song [62] focusing on gradient plasticity.
Gradients in fluid and granular flows were considered most
recently by Goddard [63, 64]. For additional recent developments
on granular flow, one may also consult references [65–69], while
for internal length interpretations based on kinetic theory, one
may consult [70]. After writing this article, it came to the
attention of the author that an expression similar to that derived

herein and given by Equation (24) was also proposed on rather
intuitive grounds by Fischbach et al. [71] in an effort to re-
interpret existing measurements on earth’s gravity (see also [72]).
The values of their constants were entirely different than ours,
as they used it for a reanalysis of the Eötvös experiment on
Earth’s gravitational field. There has been a vast literature on this
expression, subsequently referred to as the “fifth force,” which we
will discuss in a forthcoming publication, as this is beyond the
scope of the present review.
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