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This research paper studies the semi-analytical and numerical solutions of the non-linear

long-short wave interaction system. This represents an optical field that does not change

through multiplication due to a sensitive balance being struck between linear and

non-linear impacts in an elastic medium, defined as a medium that can adjust its shape

as a consequence of deforming stress and return to its original form when the force is

eliminated. In this medium, a wave is produced by vibrations that are a consequence of

acoustic power, known as a sound wave or acoustic wave. The Adomian decomposition

method and the cubic and septic B-spline methods are applied to the suggested system

to obtain distinct types of solutions that are used to explain the novel physical properties

of this system. These novel features are described by different types of figures that

show more of the physical properties of this model. Also, the convergence between

the obtained solutions is discussed through tables that show the values of absolute error

between them.

Keywords: nonlinear long-short wave interaction system, adomian decomposition method, cubic B-spline

method, septic B-spline method, semi-analytical and numerical solutions

1. INTRODUCTION

Optical study is considered as one of the most important methodologies in this age due to its
different and important applications in several fields. To develop a deeper understanding of
this type of study, mathematicians have derived many analytical, semi-analytical, and numerical
schemes to obtain distinct types of solutions that are used to characterize the physical properties
of optical soliton waves. The optical soliton constitutes an optical field that does not alter through
multiplication due to a sensitive balance being struck between linear and non-linear impacts in the
medium [1–5]. Optical soliton can be of two types:

• Spatial solitons: the non-linear influence balances the diffraction. The electromagnetic field can
alter the refraction index of the medium while propagating, thus establishing an architecture
identical to a graded-index fiber [6–10].

• Temporal solitons: if the electromagnetic field is already spatially restricted, it is feasible to
transmit pulses that will not alter their form, as the non-linear impacts will be in equilibrium
with the dispersion [11–15].

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00230
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00230&domain=pdf&date_stamp=2020-01-23
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:qhymath@hotmail.com
mailto:mostafa.khater2024@yahoo.com
https://doi.org/10.3389/fphy.2019.00230
https://www.frontiersin.org/articles/10.3389/fphy.2019.00230/full
http://loop.frontiersin.org/people/830367/overview
http://loop.frontiersin.org/people/824510/overview


Qin et al. Numerical Study of Non-linear Evolution Equation

The non-linear long-short wave interaction system describes the
interaction between one short transverse wave and one long
longitudinal wave propagating in a generalized elastic medium.
This system has the following form:

{

i8t + 8x x − 89 = 0,
9t + 9x +

(

|8|2
)

x
.

(1)

where 8(x, t) represents the slowly varying envelope of the short
transverse wave,9(x, t) discriminates the long longitudinal wave,
(x) is the locational harmonization, and (t) is the time. Waves
in plasmas are defined as an interrelated set of particles and
fields that disseminate in a periodically duplicating fashion. A
plasma is a quasi-neutral, electrically conductive fluid. Plasma
waves have an EM character of two types, electrostatic and
electromagnetic. Electrostatic and electromagnetic waves have
oscillating species in electrons and ions. Some examples of the
dispersion relationships of plasma waves in electrostatic and
electromagnetic terms are as follows:

• Plasma oscillation: rapid oscillations of the electron intensity
in conducting media such as plasmas or metals in the
ultraviolet zone

• Upper hybrid oscillation: a form of oscillation of magnetized
plasma

• Ion acoustic wave: one kind of longitudinal oscillation of the
ions and electrons in a plasma

• Electrostatic ion cyclotron wave: a longitudinal wobble of
the ions in a magnetized plasma, with dissemination nearly
perpendicular to the magnetic field

• Langmuir wave
• Lower hybrid oscillation: a longitudinal fluctuation of ions and

electrons in a magnetized plasma
• Light wave: a wave made of oscillating magnetic and electric

fields; comprises radio waves, microwaves, ultraviolet, visible
light, infrared, gamma rays, and X-rays

• O wave
• X wave
• R wave (whistler-mode)
• L wave
• Alfvén wave: a kind of magnetohydrodynamic wave in which

ions oscillate in response to a restoration strength presented
by an effective tension on the magnetic field lines; this kind of
wave was named after Hannes Alfvén

• Magnetosonic wave: a longitudinal wave of ions in a
magnetized plasma disseminating perpendicular to the
stationary magnetic field.

All of the properties and abilities of the non-linear
partial differential equations are used to describe these
natural phenomena. According to these properties, many
mathematicians have developed methods and are still trying to
find new general methods to obtain exact and single traveling
wave solutions for these models. For more details about these
methods, please see [16–36].

The rest of this paper is arranged as follows. In section 2,
the Adomian decomposition method [37–40] and Cubic and

septic B-spline method [41–50] are used to obtain approximate
solutions of the non-linear long-short wave interaction system.
In section 4, the conclusion is given.

2. APPLICATION

This section applies the Adomian decomposition method as
the semi-analytical scheme and the cubic & septic B–spline
methods as numerical schemes to the non-linear long-short wave
interaction system [51–55] that is given by:

{

i8t + 8x x − 89 = 0,
9t + 9x +

(

|8|2
)

x
.

(2)

Using the wave transformation 8(x, t) = ei η 3(ε), 9(x, t) =

ϕ(ε) where η = (ρ x + c t), ε = (a x + b t) transforms the non-
linear partial differential equation (2) into the following ordinary
differential equation:

{
(

b+ 2 a ρ
)

i3 −
(

ρ2 + c
)

3 + a2 3′′ − 3ϕ = 0,

(a+ b)ϕ′ + a
(

32
)′
= 0.

(3)

Equating the complex term to zero leads to

b = −2 a ρ. (4)

Integrating the second equation of the system (3) with zero
constant of integration yields:

ϕ =
−a

a+ b
32. (5)

Substituting (4) and (5) into the first equation in the
system (3) yields:

a2 3′′ −
(

ρ2 + c
)

3 +
1

1− 2 ρ
33 = 0. (6)

According to the analytical solutions obtained in Raghda et al.
[Submitted], the exact solution of Equation (6) takes the
following formula

3(ε) = 8 tanh
(ε

2

)

. (7)

2.1. Semi-analytical Solution
This section applies the Adomian decomposition method
to Equation (6) by using its exact solution (6) with the
following conditions:

3(0) = 0, 3′(0) = 4,

where

[

σ = 6, a = 4, α = 1, β = 5, ρ = 4.5

]

. Implementation

of the Adomian decomposition method on Equation (6) yields

30 = 4 ε, (8)
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31 = 0.025 ε5 − 1.17708 ε3, (9)

32 = 0.000416667 ε10 − 0.031529 ε8 − 0.00105097 ε7

+0.103914 ε5, (10)

βi(ε) =
1

6 h3























(ε − εi−2)3, ε ∈ [εi−2, εi−1],
−3 (ε − εi−1)3 + 3 h (ε − εi−1)2 + 3 h2 (ε − εi−1)+ h3, ε ∈ [εi−1, εi],
−3 (εi+1 − ε)3 + 3 h (εi+1 − ε)2 + 3 h2 (εi+1 − ε)+ h3, ε ∈ [εi, εi+1],

(εi+2 − ε)3, ε ∈ [εi+1, εi+2],
0, otherwise,

(14)

33 = 0.000618538 ε10 + 0.00196005 ε9 − 0.0148781 ε7

−0.0000501598 ε11 − 5.5733112373737385× 10−6 ε12

+3.7560096153846164× 10−7 ε13, (11)

According to (8–11), we get

3Semi–analytical = 3.7560096153846164 × 10−7 ε13

−5.5733112373737385 × 10−6 ε12

−0.0000501598 ε11 + 0.0010352 ε10

+0.00196005 ε9 − 0.031529 ε8 − 0.0159291 ε7

+0.128914 ε5 − 1.17708 ε3 + 4 ε + . . . (12)

2.2. Numerical Solutions
This section studies the numerical solutions of the modified BBM
equation by applying the cubic and septic B-spline techniques,
which are considered as the most accurate numerical tools for
getting this type of solution.

2.2.1. Cubic-Spline

According to the cubic B–spline, the numerical solution of the
modified BBM equation (6) is given by

3(ε) =
n+1
∑

i=−1

λi βi, (13)

TABLE 1 | Computational, semi-analytical, and absolute error values obtained by

using the Adomian decomposition method.

Value of ε Analytical

value

Semi-analytical

value

Value of absolute

error

0.000 0.000 0.000 0.0000000000

0.001 0.004 0.004 8.4375 × 10−10

0.002 0.008 0.008 6.75 × 10−9

0.003 0.012 0.012 2.27812 × 10−8

0.004 0.0160000 0.0159999 5.39999 × 10−8

0.005 0.0200000 0.0199999 1.05468 × 10−7

0.006 0.0239999 0.0239997 1.82249 × 10−7

0.007 0.0279999 0.0279996 2.89405 × 10−7

0.008 0.0319998 0.0319994 4.31997 × 10−7

0.009 0.0359998 0.0359991 6.15088 × 10−7

0.010 0.0399997 0.0399988 8.4374 × 10−7

where λi, βi fulfill the conditions:

L3(ε) = ∅(εi,3(εi)) where (i = 0, 1, ..., n)

and

where i ∈ [−2, n + 2], so that the numerical formula of the
solution is given as

3i(ε) = λi−1 + 4 λi + λi+1. (15)

Substituting Equation (15) into (6), leads to a system of equations.
Solving this system of equations gives the value of λi. Replacing
the values of λi, βi into Equation (13) gives the data shown
in Table 2.

TABLE 2 | Computational, numerical, and absolute error values obtained by using

the cubic B–spline scheme.

Value of ε Val. Com. Val. Nu. Value of abs. error

0.000 0.0000000 0.0000000000 0.0000000000

0.001 0.004 0.0040001 8.35327× 10−8

0.002 0.008 0.0080002 1.62003× 10−7

0.003 0.012 0.0120002 2.30348× 10−7

0.004 0.0160000 0.0160003 2.83505× 10−7

0.005 0.0200000 0.0200003 3.16411× 10−7

0.006 0.0239999 0.0240003 3.24004× 10−7

0.007 0.0279999 0.0280002 3.01222× 10−7

0.008 0.0319998 0.0320001 2.43003× 10−7

0.009 0.0359998 0.0359999 1.44283× 10−7

0.010 0.0399997 0.0399997 6.93889 × 10−18

TABLE 3 | Computational, numerical, and absolute error value obtained by using

the septic B–spline scheme.

Value of ε Val. Com. Val. Nu. Value of abs. error

0.000 0.0000000 0.0000000000 0.0000000000

0.001 0.0040000 0.0040001 7.5153×10−8

0.002 0.0080000 0.0080002 1.70905× 10−7

0.003 0.0120000 0.0120002 2.31487× 10−7

0.004 0.0160000 0.0160003 2.88889× 10−7

0.005 0.0200000 0.0200003 3.19377× 10−7

0.006 0.0239999 0.0240003 3.3083×10−7

0.007 0.0279999 0.0280002 3.01294× 10−7

0.008 0.0319998 0.0320001 2.59145× 10−7

0.009 0.0359998 0.0359999 1.26976× 10−7

0.010 0.0399997 0.0399997 6.93889× 10−18
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2.2.2. Septic-Spline

Based on the septic B-spline, the suggested solution of the
ordinary differential form of the modified BBM equation (6) is
given as follows:

3(ε) =
n+1
∑

i=−1

λi βi, (16)

where λi, βi satisfies the conditions

L3(ε) = ∅(εi,3(xi)) where (i = 0, 1, ..., n)

and

FIGURE 1 | Three, two-dimensional, and contour plots of Equation (12), respectively.

FIGURE 2 | Combined, separated, and radar plots of analytical (7) and semi-analytical solutions (12) of Equation (6), respectively.

FIGURE 3 | Combined, bar, and contour plots of the computational, numerical, and absolute error values.
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βi(ε) =
1

h5























































(ε − εi−4)7, ε ∈ [εi−4, εi−3],
(ε − εi−4)7 − 8(ε − εi−3)7, ε ∈ [εi−3, εi−2],

(ε − εi−4)7 − 8(ε − εi−3)7 + 28ε(ε − εi−2)7, ε ∈ [εi−2, εi−1],
(ε − εi−4)7 − 8(ε − εi−3)7 + 28(ε − εi−2)7 + 56(ε − εi−1)7, ε ∈ [εi−1, εi],
(εi+4 − ε)7 − 8(εi+3 − ε)7 + 28(εi+2 − ε)7 + 56(εi+1 − ε)7, ε ∈ [εi, εi+1],

(εi+4 − ε)7 − 8(εi+3 − ε)7 + 28(εi+2 − ε)7, ε ∈ [εi+1, εi+2],
(εi+4 − ε)7 − 8(εi+3 − ε)7, ε ∈ [εi+2, εi+3],

(εi+4 − ε)7, ε ∈ [εi+3, εi+4],
0, otherwise,

(17)

where i ∈ [−3, n + 3]. Thus, the approximate solution is
given by:

vi(ε) = λi−3 + 120 λi−2 + 1191 λi−1 + 2416 λi + 1191 λi+1

+120 λi+2 + λi+3. (18)

Substituting Equation (18) into Equation (6) produces a
system of equations. Solving this system gives the data shown
in Table 3.

3. RESULTS AND DISCUSSION

This section details a comparison between the
numerical solutions obtained in our paper

to determine which one of them is the
more accurate.

The comparison between the numerical solutions depends
on showing which one of the schemes obtains the smallest
value of the absolute value of error. To find these values, the
obtained values of the total value of error in each method
used are plotted in Figure 5, which shows that all the methods
used are accurate and have almost the same amount of
absolute failure.

4. CONCLUSION

This research paper succeeded in the application of the Adomian
decomposition method and the cubic and septic B–spline

FIGURE 4 | Combined and scattering matrix plots of the computational, numerical, and absolute error values.

FIGURE 5 | Combined, radar, and contour plots of the absolute value of error for the Adomian, cubic, and septic schemes.
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method to the non-linear long-short wave interaction system
and in obtaining semi-analytical and numerical solutions for
this system. Moreover, a comparison between the distinct
types of solutions obtained is detailed, and the absolute
values of error between them are shown in Tables 1–3
and Figures 1–5. Both semi–computational and numerical
schemes are shown to be powerful, effective, and able
to be applied to many and various forms of non-linear
evolution equations.
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