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This pagination is executed to exemplify flow features exhibited by viscous fluid between

two coaxially rotated disks. Thermal analysis is performed by using Cattaneo-Christov

heat flux theory. Porosity aspects are also taken into account. Mathematically

structured non-linear PDEs are transmuted into non-linear ODEs by employing Karman

transformations. Afterward, solution is heeded by applying implicit finite difference

scheme renowned as Keller box method. Interpretation of flow controlling parameters

on axial, tangential, and radial components of velocity, thermal distribution is exhibited.

Assurance of computed data is done by managing comparison for skin friction

coefficients at walls of disks. From the attained outcomes, it is addressed that the

magnitude of axial and radial velocities diminishes at lower disk contrary to upper disk

for intensifying magnitude of Reynolds number. Increment in tangential component of

velocity is also demonstrated for uplifts values of Reynolds number. It is also concluded

that thermal field decrements for increasing of Pr and thermal relaxation parameter. It is

worthy to mention that shear drag coefficient at wall of lower disk decreases conversely

to the wall shear coefficient magnitude at wall of upper disk.

Keywords: Cattaneo Christov heat flux model, permeable medium, fluid flow with coaxially rotated disks, implicit

finite difference scheme, coaxially rotated disks, viscous fluid

INTRODUCTION

Rotational fluid flow generated by coaxial disks is one of the classical problems of fluid mechanics.
In recent years, it has become a popular research area and has persuaded researchers due to
magnificent theoretical and practical significance in engineering and applied sciences. Some
important practical fields in which rotatory flow is capitalized are rotor–stator system, gas
turbine engineering, air rotational cleaners, medical equipment, chemical engineering, and thermal
power–generating systems. In view of its capitalization in various processes, researcher fraternity is
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examining such type of flows in current days. Inaugurated work
on flow induced due to rotating disk is performed by Karman
[1]. He introduced transformations and provided a mathematical
framework for construction of ordinary differential systems of
rotational flows from Navier Stokes theory. Cochran [2] also
used these transformations to scrutinize rotating disk flow by
using numerical integration scheme. Batchelor [3] validated that
Karman transformation can be evenly used for fluid flow between
two coaxial rotating disks. Rotating flow by two coaxial disks is
primarily examined by Stewartson [4]. Chapple and Stokes [5]
elucidated the flow features of fluid between two coaxially rotated
disks. Mellor et al. [6] bestowed comprehensive treatment of fluid
flow restricted between two coaxial infinite disks, one rotating,
and other stationary. Thermal aspects of fluid between rotational
disks were discussed by Arora and Stokes [7]. Interpretation
of flow phenomenon between porous stationary disk and solid
rotating disk was manipulated by Kumar et al. [8]. Xun et al. [9]
considered rotating disk of variable thickness and adumbrated
the flow features of Power law fluid. Hall effects on an unsteady
MHD (magneto hydrodynamics) flow of viscous incompressible
electrically conducting fluid between two rotating disks with non-
coincident parallel axes embedded in a porous viscous medium
were accorded by Das et al. [10]. Asgher et al. [11] conducted
Lie group analysis on the thermal features of fluid manifested
by rotating disks. Elmaboud et al. [12] discussed peristaltic flow
induced by sinusoidal wave propagating with constant speed on
the walls of two-dimensional infinite rotating channel by heeding
semi-analytical solutions.

In the most recent couple of decades, researcher fraternity
has shown fantastic energy in exploring the heat propagation
by means of a wave mechanism rather than essentially by
diffusion. Late studies affirm that this is not just a low-
temperature phenomenon but heat transfer mechanism also
occurs at high temperature through diffusion. Just about 200
years prior, thermal features in various circumstances and
especially in flowing fluid environment were interpreted by
Fourier law of heat conduction [13]. However, this law is
inadequate in comprehending complete description about the
heat exchange procedure among multiple connected surfaces
in various conditions because of its disablement to fulfill the
principle of causality. Later on, in 1948, Cattaneo [14] modified
Fourier law by viewing the inadequateness generated by Fourier
law of heat conduction and explored that this law explains
the thermal attribute at low temperature because it generates
parabolic heat equation in which initial disturbance are felt
throughout the domain. After getting thorough analysis about
Fourier law and viewing vector field aspect of heat flux, he
included thermal relaxation time term to control generated
thermal inertia, which is known as Maxwell-Cattaneo law.
Afterward, Christov [15] proposed that objective time derivative
instead of material time derivative is used for exact fulfillment of
causality principle. He changed the time derivative in Maxwell-
Cattaneo model by Oldryod upper convective derivative, which
has successfully preserved the material invariant formulation
and famously known as Cattaneo-Christov heat flux law.
Cattaneo-Christov heat flux model has bounteous applications in
engineering and modern industrial procedures like in skin burns

and nanofluids, cooling of electronic devices, food technology,
nuclear reactor cooling, power generation, heat exchangers,
heat propagation in tissues, and so many. The uniqueness and
stability of the solution for governing temperature equations
by Cattaneo-Christov model in some initial and boundary
value problems were proven by Straughan [16]. Additionally,
steadiness of structure of Cattaneo-Christov heat flux model with
uniqueness was revealed by Ciarletta and Straughan [17]. Tibullo
and Zampoli [18] explicated the behavior of Cattaneo-Christov
heat flux model in incompressible fluid flows. Aqsa [19] and
Haddad [20] heeded numerical solution for thermal convection
of an incompressible viscous fluid by obliging Cattaneo-Christov
heat flux model. Mekheimer and Elmaboud [21] interpreted
the aspects of temperature-dependent viscosity and thermal
conductivity on peristaltic flow of a Newtonian fluid in a vertical
asymmetric channel. Mekneimer [22] addressed heat transfer
features of peristaltic couple stress fluid in asymmetric channel
generated by wave with different phase and amplitudes. All
of the abovementioned thought-provoking investigations have
generated prodigious interest of researchers toward the analysis
of flow in the presence of thermal aspects [23–26].

Transport procedures through porous space are commonly
encountered in various chemical, mechanical, geophysical,
electrochemical, and metallurgical routines. The theory about
macroscopic movement of fluid in porous medium comprises
differential equation that expresses linear relation between
velocity and pressure gradient. Initially, Henry Darcy [27] (in
1856) presented a law to explicate the dynamic phenomenon
in porous medium by working on the flow of sandy water
through pebbles. Several technological processes depend on
porous media theory, such as hydrology, oil exploration, solar
collectors, porous insulations, packed beds, chromatography,
heterogeneous catalysis, control of shear stresses at the seabed
bottom, and oscillatory flow through seabed ripples. Darcy
theory has promising applications in the field of biomedicine
and the development of biological clogging and flow through
tissues [28]. Granular material [29] where significant amount of
pore structures exist has application in manufacturing, paper,
ceramic products, and textiles. Taseer et al. [30] addressed
the flow behavior of Maxwell nanofluid in porous medium by
implementing zero mass flux condition. They capitalized on
Darcy-Forchheimer law to depict the flow pattern. They found
that porosity parameter mounts the magnitude of temperature
and concentration of particles. Seddeek [31] probed convective
heat transfer in fluid immersed in porous medium. Analytical
results for Darcy flow was described by Jha and Kaurangini [32].
Aziz et al. [33] computed the traveling wave solution for the
time-dependent viscoelastic fluid by way of a porous flat plate.

Magnetohydrodynamics is the study of the interaction
between magnetic field and conductive fluid. The essence about
magnetization is that the external magnetic field controls the
turbulence in flow field. In addition, the magnetized flows differ
from ordinary fluids because the generated current in the bulk
fluid produces volumetric Lorentz force that extensively modifies
the features. In recent years, magnetization and its impact on flow
features have attained pervasive focus due to its extraordinary
industrial applications, such as magnetized materials processes,
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manufacturing of glass, and MHD controlled electric generators.
So the analysis of application of magnetic field has experienced
great development and diversity. Andersson [34] performed
exclusive study by manipulating electromagnet hydrodynamic
waves mathematically. The stretched flow of two-dimensional
Newtonian fluid under the effects of applied magnetic field was
contemplated by Andersson [34]. Liu [35] extended the work
of Andersson [34] and described the heat and mass transfer of
MHD viscous fluid flow over stretching surface. He computed
exact solution of the problem by following the procedure of
Andersson [34]. The impact of normally impinging magnetic
field on boundary layer flow of Newtonian fluid over permeable
stretching sheet was analyzed by Kumaran et al. [36]. Yirga
and Tesfay [37] developed the numerical simulations for MHD
viscous fluid flow over non-linear stretching sheet. The fluid flow
equations were solved via Keller-Box method, and variations in
physical quantities were presented regarding different parametric
conditions. Recently, Yasin et al. [38] simulated the problem
of two-dimensional MHD viscous nanofluid flow over porous
stretched sheet. The formulated equations were solved by
implementing well-known shooting technique. Mabood et al.
[39] developed the approximate analytic solution of MHD
boundary layer fluid flow over exponentially stretching surface.
Some of the literature regarding the mentioned aspects is
accessed through the references [40–43].

Present disquisition is addressed to excogitate thermophysical
features exhibited in viscous fluid flow between two coaxially
rotating disks embedded in permeable medium by obliging
Cattaneo-Christov heat flux law. According to author’s
knowledge and available literature survey, it is found that
very concise work is done so far in this direction. Tremendous
engineering and practical application generated by rotating
disk flows make present analysis highly potential. The authors
hope that this manuscript will serve as a reference study
for future researches. The article is strategized in such a
way that the literature assessment is presented in section
Introduction, whereas the mathematical structuring is provided
in section Mathematical Model. The explanation about
the solution methodology is debated in section Numerical
Procedure. Comprehensive analysis and interpretation of
flow controlling parameters are disclosed in section Results
and Discussion. Last, the outcome norms are listed in
section Conclusions.

MATHEMATICAL MODEL

Consider a steady, incompressible flow of viscous fluid between
two coaxially rotated disks. The lower disk is placed at z = 0,
whereas the distance between the disks is h units. Lower and
upper disks possess angular velocities �1 and �2, respectively,
and a1 and a2 are corresponding stretching rates (Figure 1).
Porous medium between disks is considered, and Cattaneo-
Christov heat flux model is obliged to analyze thermal features
of fluid flow model.

We have used cylindrical coordinates (r, θ , z) with velocity
components (û, v̂, ŵ) to the velocity profile and temperature

equations as follows:

∂ û

∂r
+

û

r
+

∂ŵ

∂z
= 0, (1)

û
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∂ û
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FIGURE 1 | Physical configuration of the problem.

FIGURE 2 | Schematic representation of domain.
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FIGURE 3 | Behavior of f (ξ ) for different Re.

FIGURE 4 | Behavior of f ′(ξ ) for different Re.

ρCp

(

û
∂T̂

∂r
+ ŵ

∂T̂

∂z

)

= −∇ · −→q , (5)

with boundary conditions:

û = ra1, v̂ = r�1, ŵ = 0, T̂ = T̂1 at z = 0,

û = ra2, v̂ = r�2, ŵ = 0, T̂ = T̂2 at z = h,
(6)

where Equations (3–5) are referred to Hayat et al. [25], also

pressure is expressed as p̂, T̂1and T̂2 are the temperatures of upper
and lower disks, and flux of heat−→q satisfies:

−→q +γ

(

∂
−→q

∂t
+ V.∇−→q −−→q .∇V+ (∇.V)−→q

)

= −k∇T̂, (7)

where γ is the thermal relaxation parameter (It is defined as the
parameter that controls the speed of heat waves produced within

the system and makes them move with finite speed to follow the
principle of causality), and k is the thermal conductivity. Now, we
omit q from the Equations (5, 7) and obtain:

(

û
∂T̂

∂r
+ ŵ

∂T̂

∂z

)

=
k

ρCp

(

∂2T̂

∂r2
+

1

r
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+
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(

û2
∂2T̂
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+ ŵ2 ∂2T̂

∂z2
+ 2ûŵ

∂2T̂

∂r∂z

+

(

û
∂ û

∂r
+ ŵ

∂ û

∂z

)

∂T̂

∂r
+

(

û
∂ŵ

∂r
+ ŵ

∂ŵ

∂z

)

∂T̂

∂z

)

. (8)

Equations (2–5) and Equation (8) are transformed into
ordinary differential equations by obliging Von Karman
transformations [1]:

û = r�1f
′ (ζ ) , v̂ = r�1g (ζ ) , ŵ = −2h�1f (ζ ) ,
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FIGURE 5 | Behavior of f (ξ ) for different A1.

FIGURE 6 | Behavior of f ′(ξ ) for different A1.

θ =
T̂ − T̂2

T̂1 − T̂2

,

p̂ = ρf�1vf

(

P (ζ ) +
1

2

r2

h2
ǫ

)

, ζ =
z

h
. (9)

Mass conservation is identically satisfied, and Equations (2–4, 6,
8) take the following form:

f ′′′ + Re

(

2ff ′′ − f ′
2
+ g2 −

1

β
f ′ +Mf ′

)

− ǫ = 0, (10)

Re

(

2f ′g − 2fg′ +
1

β
g +Mg

)

− g′′ = 0, (11)

P′ = Re

(

2

β
f − 4ff ′

)

− 2f ′′, (12)

1

Pr
θ ′′ + 2Ref θ ′ − 4λRe

(

f 2θ ′′ + ff ′θ ′
)

= 0, (13)

with

f (0) = 0, f (1) = 0, f ′ (0) = A1, f
′ (1) = A2, g (0) = 1,

g (1) = τ , θ (0) = 1, θ (1) = 0, P (0) = 0, (14)

where

Re =
�1h

2

vf
, Pr =

(

ρCp

)

f
vf

kf
, λ = γ�1,

A1 =
a1

�1
, A2 =

a2

�2
, τ =

�2

�1
,β =

k0�1

v
,

(15)

where Re denotes Reynolds number, Pr is the Prandtl
number, A1 and A2 are scaled stretching parameters, λ is
the thermal relaxation, τ and β are rotational number and
porosity parameter.
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FIGURE 7 | Behavior of f ′(ξ ) for different A2.

FIGURE 8 | Behavior of f (ξ ) for different A2.

To make a simpler form of Equation (10), we removed ǫ.

f (iv) + Re

(

2ff ′′′ + 2gg′ −
1

β
f ′′ −Mf ′′

)

= 0. (16)

The pressure parameter ǫ can be found by using Equations (10
and 14) as:

ǫ = f ′′ (0) − Re

(

(

f ′ (0)
)2

−
(

g (0)
)2

+
1

β
f ′ (0) −Mf ′ (0)

)

.

(17)

Equation (17) vanishes due to the given initial conditions in
Equation (14).

The radial and tangential components of shear stress at lower
disk are τzr and τzθ

τzr = µ
∂ û

∂z

∣

∣

∣

∣

z=0

=
µr�1f

′′(0)

h
, τzθ = µ

∂ v̂

∂z

∣

∣

∣

∣

z=0

=
µr�1g

′(0)

h
. (18)

where τw is the total shear stress, which is defined as:

τw =

√

τ 2zr + τ 2zθ. (19)

Cf 1 and Cf2 are the skin friction coefficients at lower and upper
disks defined as:

Cf 1 =
τw|z=0

ρ(r�1)
2
=

1

Rer

(

(

f ′′ (0)
)2

+
(

g′ (0)
)2
)1/2

, (20)

Cf 2 =
τw|z=h

ρ(r�1)
2
=

1

Rer

(

(

f ′′ (1)
)2

+
(

g′ (1)
)2
)1/2

, (21)

where Rer =
r�1h
v is the local Reynolds number.
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FIGURE 9 | Behavior of g(ξ ) for different Re.

FIGURE 10 | Behavior of g(ξ ) for different A2.

NUMERICAL PROCEDURE

Manipulation of accurate solution is necessary for physical
interpretation of current work. Initially, equations are modeled
by using Karman approximation and afterward, we have
attained an intricate system of ordinary differential Equations
(10–13) along with boundary conditions in Equation (14).
We have applied Keller-box scheme referred to [40, 44–
46], that is, the implicit finite difference scheme. For the
implementation of this technique, first, we have to transform it
into a system of first-order equations and define new variables
u
(

y, ζ
)

, v
(

y, ζ
)

,

w
(

y, ζ
)

, s
(

y, ζ
)

, t
(

y, ζ
)

and θ
(

y, ζ
)

= q(y, ζ ) are

f ′ = u, u′ = v, v′ = w, g′ = s and q′ = t, (22)

and Equations (11–13, 16) are reduced to

s′ − Re

(

2ug − 2fs+Mg +
1

β
g

)

= 0, (23)

t′ + 2PrReft − 4PrλRe
(

f 2t′ + fut
)

= 0, (24)

w′ + Re

(

2fw+ 2gs−Mv−
1

β
v

)

= 0. (25)

Similarly, the boundary conditions are converted into the
following forms

f (0) = 0, u (0) = A1, g (0) = 1, q (0) = 1,
f (1) = 0, u (1) = A2, g (1) = τ , q (1) = 0.

(26)

Average and center difference gradients at the point of net
derivatives are demarcated in Figure 2 and mathematically
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FIGURE 11 | Behavior of g(ξ ) for different τ .

FIGURE 12 | Behavior of g(ξ ) for different β.

as below

ηo = 0, ηk = ηk−1 + ηk, k = 1, 2, 3, . . . , k ηk = η∞.

Applying the Newton iteration fk+1 = fk + δfk, for all dependent
variables involved in linearized non-linear algebraic equations
and substituting these expressions in non-linear equations and
neglecting quadratic and higher order terms in δ, a linear
tridiagonal system is presented as follows:

δfk − δfk−1 −
hk

2

(

δuk + δuk−1

)

= (r1)
k−

1

2

,

δuk − δuk−1 −
hk

2

(

δvk + δvk−1

)

= (r5)
k−

1

2

,

δvk − δvk−1 −
hk

2

(

δwk + δwk−1

)

= (r6)
k−

1

2

,

δgk − δgk−1 −
hk

2

(

δsk + δsk−1

)

= (r7)
k−

1

2

,

δqk − δqk−1 −
hk

2

(

δtk + δtk−1

)

= (r8)
k−

1

2

,

(a1)k δfk + (a2)k δfk−1 + (a3)k δuk

+ (a4)k δuk−1 + (a5)k δgk + (a6)k δgk−1 + (a7)k δsk

+ (a8)k δsk−1 = (r2)k− 1/2 ,
(

b1
)

k
δfk +

(

b2
)

k
δfk−1 +

(

b3
)

k
δuk +

(

b4
)

k
δuk−1

+
(

b5
)

k
δtk +

(

b6
)

k
δtk−1 = (r3)k− 1/2 ,
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FIGURE 13 | Behavior of θ (ξ ) for different Re.

FIGURE 14 | Behavior of θ (ξ ) for different β.

(c1)k δfk + (c2)k δfk−1 + (c3)k δvk + (c4)k δvk−1

+ (c5)k δwk + (c6)k δwk−1 + (c7)k δgk + (c8)k δgk−1

+ (c7)k δsk + (c8)k δsk−1 = (r4)k− 1/2 ,

with boundary conditions are:

δfo = 0, δuo = A1, δgo = 1, δqo = 1,
δfk = 0, δuk = A2, δgk = τ , δqk = 1,

where

(a1)k = (a2)k = hRe
(

sk−1/2

)

,

(a3)k = (a4)k = hRe
(

gk−1/2

)

,
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(
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1

β
+M

)

,
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(
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)

,
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(
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)

,
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b1
)

k
=
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b2
)

k
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(

wk−1/2

)

,

(

b3
)

k
=
(

b4
)

k
= hRe

(

M +
1

β

)

,

(

b5
)

k
= 1+ 2hRe

(

fk−1/2

)

,
(

b6
)

k
= −1+ 2hRe

(

fk−1/2

)

,
(

b7
)

k
=
(

b8
)

k
= 2hRe

(

sk−1/2

)

,
(

b9
)

k
=
(

b10
)

k
= 2hRe

(

gk−1/2

)

,

(c1)k = (c2)k = 2hRePr
(

tk−1/2 − 2λfk−1/2

)

,

(c3)k = (c4)k = 2hRePrλ
(

tk−1/2

) (

fk−1/2

)

,

(c5)k = 1+ 2hRePr
(

tk−1/2 − 2λ
(

fk−1/2

)2
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+
(

uk−1/2

) (

fk−1/2

)

)

,

(c6)k = −1+ 2hRePr
(

tk−1/2 − 2λ
(

fk−1/2

)2

+
(

uk−1/2

) (

fk−1/2

)

)

,

and

(r1)k = fk−1 − fk + h
(

uk−1/2

)

,

(r5)k = uk−1 − uk + h
(

vk−1/2

)

,

(r6)k = vk−1 − vk + h
(

wk−1/2

)

,

(r7)k = gk−1 − gk + h
(

sk−1/2

)

,

(r8)k = qk−1 − qk + h
(

tk−1/2

)

,

(r2)k = sk−1 − sk + hRe



2uk−1/2gk−1/2 − 2f
k−

1

2

s
k−

1

2

+

(

M +
1

β

)

gk−1/2
1

2
s
k−

1

2



 ,

(r3)k = wk−1 − wk + hRe
(

2fk−1/2wk−1/2 + 2gk−1/2sk−1/2

−

(

M +
1

β

)

vk−1/2

)

,

(r4)k = tk−1 − tk + hRePr
(

2fk−1/2tk−1/2 − 4λ
(

fk−1/2fk−1/2

+fk−1/2uk−1/2tk−1/2

)

)

.

Now, we consist the tridiagonal blockmatrices of given linearized
equations in the form:

Aδ = r (27)

where
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. . .

. . .

. . .
. . .

. . .

. . .
. . .
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]
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Ak−1
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[δ2]
...
[

δk−1

]
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[r1]
[r2]
...
[

rk−1

]

[rk]



















(28)

In Equation (28), the elements are defined as:

[A1] =

























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 −1 −ek 0 0 0 0 0

0 0 −1 −ek 0 0 0 0

0 0 0 0 −1 −ek 0 0

0 0 0 0 0 0 −1 −ek

























, ek =
1
2hk

[αk] =

























1 −ek 0 0 0 0 0 0

(a1)k 0 (a3)k (a5)k (a7)k (a9)k 0 0
(

b1
)

k

(

b3
)

k
0 0

(

b5
)

k

(

b7
)

k
0 0

(c1)k (c3)k 0 0 0 0 0 (c5)k
0 −1 −ek 0 0 0 0 0
0 0 −1 −ek 0 0 0 0
0 0 0 0 −1 −ek 0 0
0 0 0 0 0 0 −1 −ek

























,

2 < k < K − 1,

[αK] =

























1 −ek 0 0 0 0 0 0

(a1)k 0 (a3)k (a5)k (a7)k (a9)k 0 0
(

b1
)

k

(

b3
)

k
0 0

(

b5
)

k

(

b7
)

k
0 0

(c1)k (c3)k 0 0 0 0 0 (c5)k
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

























,

[βk] =

























−1 −ek 0 0 0 0 0 0

(a2)k 0 (a4)k (a6)k (a8)k (a10)k 0 0
(

b2
)

k

(

b4
)

k
0 0

(

b6
)

k

(

b8
)

k
0 0

(c2)k (c4)k 0 0 0 0 0 (c6)k
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

2 < k < K

[Ck] =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 −ek 0 0 0 0 0
0 0 1 −ek 0 0 0 0
0 0 0 0 1 −ek 0 0
0 0 0 0 0 0 1 −ek

























, 1 < k < K − 1,
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FIGURE 15 | Behavior of θ (ξ ) for different A1.

FIGURE 16 | Behavior of θ (ξ ) for different Pr.

FIGURE 17 | Behavior of θ (ξ ) for different λ.
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, 1 < k < K,

A = LU, (29)

These computations are repeated until some convergence criteria
are satisfied.

RESULTS AND DISCUSSION

Current segment is dedicated to elucidate the numerical
and graphical impact of velocity parameters involved and
temperature profile and coefficient of skin friction. Variation in
axial velocity against Reynolds number is adorned in Figure 3. It
is found that axial velocity at lower disk decays with increment
in Re. The reason behind this fact is that Re has direct relation
with inertial forces. Therefore, with increase of Re, inertial effects
dominate and cause the velocity of lower disk to decelerate.
Figure 4 expresses the impact of Re on radial component of
velocity. It is explored that with the increase of Re, velocity of
lower disk diminishes and upper disk uplifts. It is seen from
the picture that half of its portion from 0.0 to 0.6 represents
velocity pattern of lower disk and from 0.6 to 1.0, it discloses
radial velocity for upper plate. Impact of scaled stretching
parameter on axial component of velocity at lower disk is
exemplified in Figure 5. It is evidenced that with the increment
of A1, f (ξ) mounts at lower disk because stretching rate is
decreasing continuously. Figure 6 is portrayed to manifest the
variation in radial against A1 velocity for lower and upper
disks. It is found that radial component of velocity increases
for the lower disk as compared to upper disk. This is due
to the stretching rate of the lower disk that is continuously
increasing and upper disk decrements. It is exhibited in Figure 7

that f ′(ξ ) decays with A2 for lower disk and mounts in the
case of upper disk. The justification behind this impact is
that stretching rate of the upper disk is more than that of
the lower disk. The behavior of axial velocity with stretching
scaled parameter A1 of upper disk is depicted in Figure 8.
For larger values of A2, the axial velocity of fluid decrements
near the upper disk and upsurging behavior is noticed at the
lower disk. By increasing A2, velocity magnitude along radial
direction in the vicinity of the upper disk increases, so velocity
along axial direction as an outcome depreciates. The impact of Re
on tangential component of velocity g(ξ ) is disclosed in Figure 9.
It is fond that with increase of Re, g(ξ ) suppresses. By increasing
Re, inertial forces increase so more velocity is induced by the
inertial forces. Behavior of tangential velocity g(ξ ) against A2

is stretched in Figure 10. It is found that g(ξ ) decrements and
f ′(ξ ) uplifts for A2. With increase of A2, stretching rate of the
upper disk increases, and as an outcome, axial velocity increases
and tangential velocity decreases. The variation in g(ξ ) with
rotational parameter is revealed in Figure 11. Positive attribute
in g(ξ ) is observed against τ . With the increase of rotational
parameter τ , centrifugal force is induced, which as an outcome
uplifts the tangential component of velocity. Curves investigating
the aspects of β on tangential component of velocity are adorned
in Figure 12. It is justified by the fact that momentum equation
1
β

is a dimensionless parameter, so with the increase of β ,

momentum profile is tangential and its direction diminishes.
Positive impact on thermal distribution against Re is observed
in Figure 13. With increase of Re, viscous forces decrement
and velocity of fluid particle increases. Thus, the temperature
is defined as average motion of fluid molecules so thermal
field molecules due to uplifts of movement of particles. The
impact of θ(ξ ) against β is anticipated and shown in Figure 14.
Increase in thermal magnitude is observed if β is increased.
Since increase in β raises the rotation of disks, by increasing
the rotation of disk, more rotational motion in fluid is generated
and as a consequence kinetic energy of fluid molecule increases.
The increase in kinetic motion raises the temperature profile.
Variation in thermal profile by varying A1 in the range of
(0.0 ≤ A1 ≤ 1.5) is revealed in Figure 15. It is observed that
temperature of fluid boosts against the values of A1. As we
increase the A1, the stretching rate increases, the fluid particles
between disks exceeds, and hence temperature boosts up. The
impact of Prandtl number Pr on θ(ξ ) is exhibited in Figure 16.
It is found that thermal distribution decreases with Pr. This is
due to the fact that Pr is the ratio of viscous diffusion to thermal
diffusion. Thus, by increasing Pr, thermal diffusion decreases
so temperature decreases. Figure 17 is adorned to study the
impact of thermal relaxation parameter on thermal distribution.
Declined attribute in temperature against thermal relaxation
parameter λ is depicted. It is because of the fact that with the

TABLE 1 | Influence of skin friction coefficient at wall of upper and lower disks.

β A2 Re A1 τ Cf0 Cf1

0.9 2.408192 2.408998

1 0.4 0.01 0.4 0.8 2.408139 2.409217

1.1 2.408104 2.409237

0.5 2.607267 2.808388

0.9 0.6 0.01 0.4 0.8 2.806343 3.207760

0.4 2.408201 2.418441

0.1 2.40905 2.42920

0.9 0.4 0.2 0.4 0.8 2.409095 2.4292

0.01 2.807079 2.608925

0.5 3.2062 2.808669

0.1 0.5 0.2 0.6 2.401948 2.403120

0.4 2.399815 2.401084

0.7 2.399815 2.401084

0.1 0.5 0.2 0.4 0.9 2.399810 2.401089

1 2.399560 2.401093
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TABLE 2 | Comparison of f ′′(0) and g′(0) with Stewartson [4], Hayat et al. [24], and Hayat et al. [25] when φ = A1 = A2 = 0 and Re = 1.

τ f′′(0) −g′(0) f′′(0) −g′(0) f′′(0) −g′(0) f′′(0) −g′(0)

Stewartson [4] Hayat et al. [23] Hayat et al. [25] Present

−1 0.06666 2.00095 0.06666 2.00095 0.06666 2.00095 0.06666 2.00094

−0.8 0.08394 1.80259 0.08394 1.80259 0.08399 1.80259 0.08396 1.80257

−0.3 0.10395 1.30442 0.10395 1.30442 0.10395 1.30443 0.10395 1.30445

0 0.09997 1.00428 0.09997 1.00428 0.09997 1.00428 0.09997 1.0043

0.5 0.0663 0.50261 0.06663 0.50261 0.06667 0.50261 0.06668 0.50265

increase of λ, fluid particles will take more time to transfer heat
to its neighboring particles, thus the temperature decreases.

Table 1 numerically discloses the influence of porosity
parameter β, stretching parameters A1 and A2, and Reynolds
number Re. The skin friction coefficient increases for greater
value of Re and stretching parameters A1 and A2, whereas it
decreases for increasing values of porosity parameter β and
rotating parameter τ at the upper and lower disks. Table 2
gives assurance of present work by constructing comparison
with previously published literature for skin friction coefficient
along radial and tangential components. Here, τ ≥ 0
shows the rotation of both disks in the same direction,
τ ≤ 0 represents the direction of rotation of both disks
in opposite direction, and τ = 0 means upper disk
is fixed.

CONCLUSIONS

Current exertion is devoted to analyze the impact of Cattaneo-
Christov heat flux theory on fluid flow between the two
parallel rotating disks. Equations are modeled in the form of
partial differential equations and then transformed into ordinary
differential expressions. These ODE (ordinary differential
equations) are tackled by Keller-box scheme. The key findings are
summarized as follows:

• At the lower disk, the radial and axial velocity profile increases

for maximum value of A1 while the same effects at upper disk

for greater A2.
• For rotational and stretching parameters, the tangential

velocity profile increases at disk with variation of parameters.
• Thermal effects are reduced for both thermal relaxation and

Prandtl number.
• The skin friction coefficient at both disks is less for greater

value of rotational parameter.
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NOMENCLATURE

(û,v̂,ŵ) Dimensional velocity components (f,g,h) Dimensionless velocity components

Cp Specific heat Cf 1 Local radial skin friction coefficient on the lower disk

Cf 2 Local tangential skin friction coefficient on upper disk Pr Prandtl number

p Fluid pressure q Heat flux

(r,ϕ, z) Thermophoresis parameter Re Reynolds number

T̂1 Temperature in lower disk T̂2 Temperature at the upper disk

Greek Symbols

A1,A2 Scaled stretching parameters ǫ Pressure parameter

ζ Dimensionless similarity variable λ Thermal conductivity

τ Rotational number β Porosity

a1,a2 Stretching rate θ Dimensionless temperature

ρ Fluid density �1,�2 Angular velocity on the disks
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