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The Fåhraeus and Fåhraeus-Lindqvist effects are both associated with the concentration

of red blood cells (RBCs) in the core region of microvessels. The annular region is

a cell-free layer. Blood flow dynamics and both effects are related to the hematocrit

level profile. The aim is to propose a model for blood flow in microvessels that is not

compute intensive like many other models such as those using finite element methods.

Modeling blood flow requires solving for both the hematocrit level and velocity profiles

as blood viscosity depends on the hematocrit level. The two-zone shear-induced model

for blood flow is adopted while including an annular cell-free layer, as in the marginal

zone theory and in consistency with experimental observations. In the core region, the

hematocrit level is not considered to be uniform, and the concentration and viscous

fluxes are equal in magnitude and opposite in directions in the fully developed velocity

and concentration profiles case. The momentum and hematocrit balance equations are

solved. Both analytical and numerical solutions for the velocity and hematocrit level

profiles are determined. The numerical results are found to exactly match the analytical

solutions, and to be in very good agreement with published experimental data for the

cell-free layer thickness, the velocity profile, and the hematocrit ratio.

Keywords: blood flow, blood viscosity, velocity profile, Fåhraeus effect, Fåhraeus-Lindqvist effect, cell-free layer,

hematocrit level, hematocrit ratio

INTRODUCTION

Resistance to blood flow mainly occurs in the microvascular system [1]. For tubes of small
diameter, RBCs concentrate in the core region, leaving a cell-free layer near the capillary wall.
The apparent viscosity decreases for D as low as about 10µm (the size of red blood cells being
about 8µm) [1]. The decrease in the tube hematocrit as compared to the discharge hematocrit
is known as the Fåhraeus effect, and the drop in the apparent viscosity as the tube diameter
decreases below 300µm is termed the Fåhraeus-Lindqvist effect. The Fåhraeus [2] and Fåhraeus-
Lindqvist effects [3, 4] are both associated with the concentration of red blood cells (RBCs) in
the core region of microvessels, leading to lower tube hematocrit compared to the discharge
hematocrit level, and to lower viscosity for vessel radius in the approximate range of 15–500µm
[5]. Further details about the two effects can be found in Fåhraeus [2], Martini et al. [3], Fåhraeus
and Lindqvist [4], Fournier [5], Pries [6], Secomb and Pries [1], and Toksvang and Berg [7].
Models of blood viscosity including Newtonian and non-Newtonian models are reviewed in Hund
et al. [8]. At small shear rates, aggregates of red blood cells of comparable size to the tube
diameter form, and treating blood as homogeneous is improper [5]. However, shear rates are
typically high, and the case of small shear rates is not a concern [5]. Using dissipation particle
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dynamics, Lei et al. [9] concluded that using the continuum
approach is not appropriate for stress analysis for capillary
diameter less than 100µm, and suggested the change from a
no-slip to a slip model along with a continuum approach. The
marginal zone model introduced by Haynes [10], in which the
annular zone is a cell-free layer (with all the RBCs concentrated
in the core region), is extended in Fournier [5], Sharan and Popel
[11], Sriram et al. [12], and Chebbi [13] with blood flow in vessel
bifurcations also addressed in Chebbi [13]. The core region is
assumed of uniform hematocrit level, and the two layers are
treated as continuum, assuming a Newtonian fluid behavior for
the core region in Fournier [5], Sharan and Popel [11], Sriram
et al. [12], and Chebbi [13], and a Non-Newtonian (Quemada)
rheological model in Sriram et al. [12] along with a finite-element
method to solve the problem [12]. The cell-free layer (CFL) is
considered of higher viscosity than plasma in Sharan and Popel
[11] to account for viscous dissipation at the interface between
the two layers resulting from the roughness of the interface
between the two layers.

Hematocrit level gradients were accounted for by using one of
the two following models:

(i) The shear-induced migration model in Weert [14] Mansour
et al. [15], and Chebbi [16] using the model of Phillips et al.
[17], which is an extension of a previous model by Leighton
and Acrivos [18] to analyze blood flow

(ii) The elastic-stress induced migration model in Moyers-
Gonzalez et al. [19], Moyers-Gonzalez and Owens [20]
and Dimakopoulos et al. [21], which is an extension of a
previous model by Mavrantzas and Beris [22, 23] to examine
blood flow.

The models in Weert [14] and Mansour et al. [15] use the
Quemada model of blood viscosity [24] and were solved using
finite element methods. In contrast, the treatment in Chebbi [16]
extends the Krieger-Dougherty viscosity model of viscosity, used
by Phillips et al. [17] to analyze blood flow while considering
analytic and numerical solutions of the ordinary differential
equations governing velocity and hematocrit level gradients
for the fully developed profiles case. The results are in good
agreement with published velocity profiles and hematocrit ratio,
and match closely with the results obtained in Weert [14] and
Mansour et al. [15] using finite element methods and considering
the samemodel of viscosity (Krieger-Dougherty viscositymodel).

In contrast to the previous model [16], not including the
cell-free layer, the present one includes two zones as in the
marginal zone theory: an annular cell-free layer in consistency
with experimental observations, and a core region. However, in
contrast to models based on Haynes model [5, 11–13] including
a core region of uniform hematocrit level and a CFL, the core
region has a non-uniform hematocrit level in the present model,
with both the shear-induced migration model and the Krieger-
Dougherty model of viscosity used to find the velocity profile and
the hematocrit-level variations. Both analytical and numerical
solutions are provided, and the results are validated against
published experimental data for the cell-free layer thickness, the
velocity profile and the hematocrit ratio.

GOVERNING EQUATIONS

Hematocrit Level Profile
The tube and discharge hematocrit levels are obtained by
applying the formulas in Roselli and Diller [25] while accounting
for the absence of RBCs in the cell-free layer

HT =

∫

A

H dA

A
=

R−δ
∫

0

2πrHdr

πR2
(1)

HD =

∫

A

H vz dA

∫

A

vz dA
=

R−δ
∫

0

2πrHvzdr

πR2vav
(2)

The limits of integration account for the cell-free layer
thickness δ.

Core Region
The developments in Chebbi [16] and Phillips et al. [17] are
only valid in the core region. The core zone extends from
the centerline (r = 0) to r = R-δ, where δ is the cell-free
layer thickness.

The RBC conservation equation for the fully developed
hematocrit level and velocity profiles case yields [16]

0 = −
1

r

d
[

r
(

Jc + Jµ
)]

dr
(3)

where the concentration and viscosity hematocrit fluxes are [17]

Jc = −Kca
2

(

H2 dσ

dr
+Hσ

dH

dr

)

; Jµ = −KµσH2 a
2

µ

dµ

dr
(4)

in which a is the RBC size and σ is the shear rate [26]

σ = −
dvz

dr
(5)

Integrating Equation 3 while using the requirement that Jc and Jµ
are finite at the centerline yields

Jc + Jµ = 0 (6)

The velocity profile is governed by the momentum balance [26]

1

r

d

dr
(rτ) = −

dP

dz
(7)

where the shear stress τ is equal to the product of µ and σ.
The requirement that the shear stress must be finite at r = 0
yields after integration of Equation 7 and in consistency with
Fournier [5]

τ = µσ = −
dP

dz

r

2

Combining the hematocrit balance and the momentum balance
equations yields as in Chebbi [16]

r
dH

dr

[

1+
ζ − 1

µ
H
dµ

dH

]

= −H; ζ = Kµ/Kc (8)
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Cell-Free Layer
The viscosity in the annular layer is assumed equal to the plasma
viscosity. The zone is annular and extends from r = R-δ to R.
The hematocrit level is zero, while the velocity profile satisfies a
similar momentum balance to the one above for the core region

τ = µpσ = −
dP

dz

r

2
(9)

where µp is the plasma viscosity.

DIMENSIONLESS EQUATIONS

Viscosity Model
The viscosity of the core region is assumed to satisfy the Krieger-
Dougherty model [27]

µ

µp
=

(

1−
H

Hm

)−n

(10)

where Hm is the maximum hematocrit level.
The dimensionless velocity, radial coordinate and viscosity are

defined as

v̄z =
vz

�vav
; r̄ =

r

R
; µ̄ =

µ

µp
;� = −

dP

dz

R2

vav µp
(11)

Using Poiseuille equation yields the following expression for� as
a function of the reduced apparent viscosity

� = 8
µapp

µp
(12)

Combining Equations 11 and 12 while using the definition of the
average velocity yields as in Chebbi [16]

µapp

µp
=

1

16
1
∫

0

v̄z r̄ dr̄

(13)

Cell-Free Layer
The dimensionless velocity profile satisfies

dv̄z

dr̄
= −

r̄

2
(14)

subject to the no-slip boundary condition

at r̄ = 1, v̄z = 0 (15)

The hematocrit level is zero in the cell-free layer.

Core Region
The viscosity is hematocrit-level dependent, and the
dimensionless velocity profile satisfies

dv̄z

dr̄
= −

r̄

2

(

1−
H

Hm

)n

(16)

subject to the velocity continuity condition at the interface
between the two zones

at r̄ = 1− δ̄, v̄z = v̄z,δ (17)

where v̄z,δ is the velocity at the edge of the cell-free layer.
Substituting for the viscosity expression fromEquation 10 into

Equation 8, gives as in Chebbi [16]

r̄
dH

dr̄

[

1+
(ζ − 1) n

Hm
H

(

1−
H

Hm

)−1
]

= −H (18)

However, this is subject to the following boundary condition.

at r̄ = 1− δ̄, H = Hδ (19)

Dimensionless Expressions for Tube and
Discharge Hematocrit Levels
In the cell-free layer, the hematocrit level is zero. Therefore, the
integration domain extends from 0 to 1 − δ̄in the following
dimensionless expressions for HT and HD obtained from
Equations 1 and 2

HT = 2

1−δ̄
∫

0

r̄Hdr̄ (20)

HD =

1−δ̄
∫

0

r̄Hv̄zdr̄

1
∫

0

v̄z r̄ dr̄

(21)

ANALYTICAL SOLUTION FOR THE
HEMATOCRIT LEVEL AND VELOCITY
PROFILES

Hematocrit Level Profile
In the core region, the hematocrit level varies from Hδ to
Hm. Integration of Equation 18 using the boundary condition
(Equation 19) yields.

r̄ =
(

1− δ̄
) Hδ

H

[

Hm−H

Hm −Hδ

](ζ−1)n

(22)

Velocity Profile
Cell-Free Layer
Integrating Equation 14 while using the no-slip boundary
condition (Equation 15) gives.

v̄z =
1

4

(

1− r̄2
)

(23)

Core Region
Substituting for r̄ from Equation 22 into Equation 16 and
using the velocity continuity condition, Equation 17, along with
Equation 23 gives

v̄z =
1

4
δ̄
(

2− δ̄
)

+
(

1− δ̄
)2 H2

δ

2Hn
m(Hm −Hδ)

2q
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×

H
∫

Hδ

(Hm−H)s

H3

[

Hm +
(

q− 1
)

H
]

dH;

s = (2ζ − 1) n− 1; q = (ζ − 1) n (24)

Using a Taylor series expansion for H near Hm, and integrating
Equation 24 yields

v̄z =
1

4
δ̄
(

2− δ̄
)

+
(

1− δ̄
)2 H2

δ H
s−n
m

2(Hm −Hδ)
2q

[

Hm A+
(

q− 1
)

B
]

(25)

where

A =
1

2

(

H−2
δ −H−2

)

+ b1
(

H−1
δ −H−1

)

+b2 ln

(

H

Hδ

)

+

∞
∑

k=3

bk

k− 2

(

Hk−2
−Hk−2

δ

)

;

B = −
1

H
+

1

Hδ

+ b1 ln

(

H

Hδ

)

+

∞
∑

k=2

bk

k− 1

(

Hk−1
−Hk−1

δ

)

(26)

and

bk =

(

−1

Hm

)k s (s− 1) (s− 2) ...
(

s− k+ 1
)

k!
(27)

Substituting for the velocity profile in the cell-free layer, Equation
23, into Equation 21 gives.

HD =

1−δ̄
∫

0

r̄Hv̄zdr̄

1−2(1−δ̄)
2
+(1−δ̄)

4

16 +

1−δ̄
∫

0

v̄z r̄ dr̄

(28)

SOLUTION PROCEDURE

The correlation of Pries et al. [6] for the apparent blood viscosity
is given by the following expression

µ̄ =
µ

µp
= F (HD, D) = 1

+

(

220 e−1.3D
+ 3.2− 2.44 e−0.06D0.645

− 1
) (1−HD)C − 1

(1− 0.45)C − 1
;

C =
(

0.8+ e−0.075D
)

(

−1+
1

1+ 10−11 D12

)

+
1

1+ 10−11 D12
(29)

The above equation defines F as a function of HD and vessel
diameter D in µm.

The correlation of Pries et al. [6] is based on extensive
data for the apparent viscosity of blood, expressed in terms of
the discharge hematocrit HD and the tube diameter D. The
correlation was used for calibration either directly or indirectly
in a number of studies. Calibration of the CFL relative thickness
in Sharan and Popel [11] was performed using the correlation
of Pries et al. [6] for the apparent viscosity of blood. The
same correlation was also used by Chebbi [16]. A depleted cell
region with lower (but nonzero) hematocrit level was modeled
in Mansour et al. [15] (Figure 3) using published results for the
relative size of the CFL in Sharan and Popel [11] (also using Pries
et al. correlation as mentioned above) and in Bagchi [28] (based
on mesoscale simulation).

The flow rate Q affects the pressure drop 1P according to
Hagen-Poiseuille equation [5] defining the apparent viscosity

1P =
8µappLQ

πR4
(30)

For given values of the discharge hematocrit, and capillary radius
and length, higher flow rate increases the pressure drop.

The parameter n is taken equal to 1.82 as in Phillips et al.
[17]. However, the values of ζ and Hm are taken as 8 and
0.85, respectively.

Combining Equations 13 and 28 yields as in [16]

F (HD, D) =
1

16
1
∫

0

v̄z r̄ dr̄

(31)

To integrate Equations 16 and 18, the two unknowns δ̄ and Hδ,
required for integration, are calculated iteratively to satisfy both
Equations 27 and 29.

RESULTS AND CONCLUSIONS

Themodel results are compared with published experimental and
numerical results. In addition, the analytical solutions for the
velocity and hematocrit level profiles are validated.

As seen from Figure 1, the present results are in very good
agreement with the experimental data for the cell-free layer
thickness reported in Reinke et al. [30], Pries et al. [31], and
Suzuki et al. [32] as reported in Sriram et al. [12] for the case HD

= 0.45. For a given discharge hematocrit level, the relative CFL
thickness decreases at higher capillary radius.

The velocity profile obtained is in very good agreement with
the numerical results in Sriram et al. [12] and the reported
experimental data of Long et al. [29] for the case HD = 0.335
and R = 27.1µm as noticed from Figure 2. The values of δ̄ and
Hδ were found to be 0.096 and 0.3335, respectively. An excellent
matching was found between the analytical solutions (Equations
22 and 25) and the numerical solutions both obtained using the
proposed model for the velocity and hematocrit level profiles.
The results are shown in Figures 2, 3. Although the matching is
excellent between the present velocity profile results and those
in Sriram et al. [12], there are deviations in the CFL thickness
results (Figure 1). This can be understood based on the fact that
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FIGURE 1 | Comparison of the present model with the numerical results in

Sriram et al. [12] and the cell-free layer thickness experimental data in Long

et al. [29] reported in Sriram et al. [12] for HD =0.45.

FIGURE 2 | Comparison of the present model with the numerical results in

Sriram et al. [12] and the experimental data in Reinke et al. [30], Pries et al.

[31], and Suzuki et al. [32] reported in Sriram et al. [12] for the normalized

velocity profile for HD =0.335 and R = 27.1µm.

the twomodels are different as discussed in the introduction. The
differences include different rheological models, and diffusion
effects included in the present model versus a uniform hematocrit
level assumed in the core region in the model of Sriram et al.
[12]. A peak can be seen at the origin (Figure 3), even when
increasing the capillary radius from 27.1µm to 76.0µm. The
hematocrit profiles obtained with constant parameters for the
hematocrit diffusion fluxes in Mansour et al. [15] also show
peaks at the origin, attributed by the authors to deformation of
RBCs (not accounted for in the model [15] when using constant
parameters). The concentration flux parameter Kc was selected
as a function of both HD and the dimensionless radial coordinate

FIGURE 3 | Present model results for the hematocrit level in the core region

for HD =0.335 and two values of R = 27.1 and 76.0µm.

FIGURE 4 | Comparison of the present model with the hematocrit ratio

numerical results in Sriram et al. [12] and the experimental data in Pries et al.

[31], Hochmuth et al. [33], Jendrucko and Lee [34], and Fedosov et al. [35]

reported in Sriram et al. [12] for HD =0.405.

to eliminate the peak at the origin, while using calibration as
indicated in the introduction [15].

At higher radius, 76.0µm, compared to 27.1µm (Figure 3),
the hematocrit level is lower with a lower value of the CFL
relative thickness. Reducing Hm from 0.85 to 0.80 provides
very close and lower values for H near the centerline with
slightly higher values elsewhere for the same capillary radius
R= 27.1 µm.

The present hematocrit ratio numerical results are in
good agreement with the experimental data [31, 33–
35] reported in [12] for the case HD = 0.405 as seen
from Figure 4.

The selection of ζ = 8–12 and Hm = 0.85 is based on
a comparison of the results with the experimental data in

Frontiers in Physics | www.frontiersin.org 5 December 2019 | Volume 7 | Article 206

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Chebbi A Two-Zone Shear-Induced Model

Figures 1, 2, 4. Some of the results obtained are presented in
those figures. Changing ζ from 8 to 4, while keeping Hm =

0.85 yields very close results for the velocity profile (Figure 2),
whereas the results for the relative CFL thickness are close but
less consistent with experimental data (Figure 1). Changing Hm

from 0.85 to 0.8 while keeping ζ = 8 shows close values but less
agreement with the experimental data for the hematocrit ratio
(Figure 4). Changing ζ from 8 to 12 and 50, makes the peak
region in the hematocrit profile less pronounced (Figure 3). The
change of ζ from 8 to 12 has very little effect on the results for
the relative cell-free layer (Figure 1) and those for the hematocrit
ratio (Figure 4). The results for the velocity profile for ζ = 8 and
12 nearly coincide and only the ones for ζ = 12 are shown in
Figure 2 to limit the number of curves for the sake of clarity. At
high values of ζ like 20, no solution could be obtained at the lower
end of the radii values (Figure 1).

The previous model of the same author [16] provides a better
agreement for the hematocrit ratio with experimental data than
the present one, while the present model provides excellent and
better matching with experimental velocity profile data along
with an overall excellent matching with experimental data for
the dimensionless CFL thickness (not included in the previous
model [16]).

The present model is not compute-intensive like many other
models such as those using finite element methods. The two-
zone model proposed in the present investigation incorporates
a cell-free layer in accordance with experimental observations.
In addition, concentration gradients of the RBCs in the core
region are accounted for using a shear-induced model [17] along
with the Krieger-Dougherty viscosity model [27]. The model
results are in very good agreement with published experimental
data for the cell-free layer thickness, the velocity profile, and
the hematocrit ratio. Furthermore, the present analytical and
numerical results for the hematocrit level and velocity were found
to exactly match. The model is computationally inexpensive
and could be considered for solving blood flow dynamics in
microvascular networks.
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