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We use the point-particle effective field theory (PPEFT) framework to describe

particle-conversionmediated by a flavor-changing coupling to a point-particle. We do this

for a toymodel of two non-relativistic scalars coupled to the same point-particle, on which

there is a flavor-violating coupling. It is found that the point-particle couplings all must be

renormalized with respect to a radial cut-off near the origin, and it is an invariant of the flow

of the flavor-changing coupling that is directly related to particle-changing cross-sections.

At the same time, we find an interesting dependence of those cross-sections on the ratio

kout/kin of the outgoing and incoming momenta, which can lead to a 1/kin enhancement

in certain regimes. We further connect this model to the case of a single-particle

non-self-adjoint (absorptive) PPEFT, as well as to a PPEFT of a single particle coupled to

a two-state nucleus. These results could be relevant for future calculations of any more

complicated reactions, such as nucleus-induced electron-muon conversions, monopole

catalysis of baryon number violation, as well as nuclear transfer reactions.

Keywords: flavor violation, effective field theories, catalysis, high energy physics - theory, nuclear theory

1. INTRODUCTION

It is often the case that physically interesting situations involve a hierarchy of characteristic scales.
For instance, solar system dynamics involve a variety of length scales, such as the sizes of the
stars and planets involved, as well as the sizes of the orbits. Exploiting such a hierarchy by means
of judicious Taylor expansions can greatly simplify otherwise very difficult problems, frequently
even providing a handle on seemingly intractable problems. In the realm of quantum field theory,
this insight has led to the development of the highly successful effective field theories, which can
reduce the complexity of quantum field theories by restricting to parameter subspaces in which an
appropriate Taylor expansion can be used to put the theory into a simpler form.

Usually, effective field theories exploit the hierarchy between interaction energies and the
masses of some heavy particles to remove those heavy particles from the theory altogether (the
quintessential example being Fermi’s theory of the Weak interaction, which removes the heavy W
and Z bosons) [1–4]. However, it is often the case that one’s interest lies in a sector of the theory that
still contains one or two of the heavy particles. For instance, in an atom, a heavy nucleus is present,
but for most purposes there is no need to go about computing loops of nucleus-anti-nucleus pairs.
Instead, higher energy nuclear dynamics are seen as finite nuclear-size effects. For this reason, an
EFT has recently been explored that describes the remnant heavy particles in position-space to
exploit the hierarchy of energy scales in a more intuitive expansion in kR, where k is the (small)
momentum of the light particle and R is the length-scale of the nuclear structure [5–7]. This is
accomplished in a simple way; the usual effective action is supplemented by a “point-particle”
action that involves all possible couplings of the light particle to the worldline of the remnant heavy
(point-like) particle (consistent with the symmetries of the low-energy theory). This type of “point-
particle” EFT (PPEFT) is conceptually the next best thing to a Fermi type of EFT.While the nuclear
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dynamics cannot be removed altogether, they are
significantly simplified.

The practicality of a PPEFT is two-fold: first it easily permits
parameterizing physical quantities in terms of small nuclear
properties, since the PPEFT expansion is directly in powers
of kR. Second, that parameterization is completely general,
and inherently includes all possible interactions, including any
potential new physics. Some obvious examples that have been
explored are cross-sections and bound-state energies of electrons
in terms of nuclear charge radii [7, 8]. In this work, we ask the
question: how do the small nuclear properties enter into physical
quantities when there are multiple channels of interaction with
the point-particle? (We ask this with mind toward eventually
describing nuclear transfer reactions, and possibly baryon-
monopole reactions which are known to suffer from questions of
self-adjointedness of the Hamiltonian similar to those we address
in this article [9, 10]).

To answer this question, we consider a simple toy model
of two bulk Schrödinger (complex) fields coupled to the same
point particle. The most general couplings to the point-particle’s
worldline yµ(τ ) are easily generalized from the single particle
species (SP) examples explored in Burgess et al. [5] to the multi-
particle (MP) case.

S
(SP)
b
= −

∫
dτ

√
−ẏ2 [M + h9∗9 + . . . ] −→

S
(MP)
b
= −

∫
dτ

√
−ẏ2 [M +9∗i hij9j + . . . ], (1.1)

where9 , 9i are bulk (complex) scalars, and the flavor index runs
over 1 and 2. hij is a matrix of coupling constants that generalizes
the single-particle coupling h, and the integral is over the proper

time τ of the point-particle (ẏµ : = dyµ

dτ
is the point-particle’s

4-velocity). Away from the point-particle, the action is just the
usual Schrödinger action for (now) two scalars,

S
(MP)
B =

2∑

i=1

∫
d4x

{
i

2

(
9∗i ∂t9i −9i∂t9

∗
i

)

− 1

2mi
|∇9i|2 − V(r)|9i|2

}
. (1.2)

[V(r) is some bulk potential that may be sourced by the point-
particle. In the main text we take it to be an inverse-square
potential, since such a potential is highly singular and known
to drive interesting behavior in a PPEFT [5]. For the moment it
suffices to drop the potential]. If the bulk action (1.2) diagonalizes
themomentum it need not diagonalize the brane action (1.1), and
it is possible the off-diagonal elements of h (the matrix of hij) can
source flavor-violating interactions.

In the center-of-mass reference frame (in the limit of infinite
point-particle mass1), the action (1.1) acts as a boundary
condition at the origin for the modes of the 9i fields. However,
in general those diverge, and so the action has to be regulated at

1We neglect here recoil effects, though those can be included by tracking the

dynamics of yµ(τ ).

some finite radius ǫ. The couplings hmust then be renormalized
to keep physical quantities independent of the regulator, and it
turns out that the (low-energy s-wave) cross-section for flavor
violation is directly related to an invariant (ǫ3) of the RG-flow
of the off-diagonal h12:

σ (1→2)
s = 4π

k2

k1
ǫ23 , (1.3)

where k1 and k2 are the incoming and outgoing momenta,
respectively. For Schrödinger particles, the factor k2/k1 =√
m2/m1 is a constant. However, the same formula holds

for spinless relativistic particles, and the ratio k2/k1 =√
(k21 +m2

1 −m2
2)/k

2
1 leads to different qualitative behaviors of

the low-energy cross-section depending on how k1 relates to the
mass gapm2

1−m2
2. If the mass gap is positive, and k21≪m2

1−m2
2,

then the cross-section exhibits a 1/k1 enhancement. Both the
dependence on ǫ3 and on k1 may prove to be useful in a more
complicated calculation, such as in mesic transfer reactions π0 +
p→ π++ n (where the neutron and proton are in a nucleus), or
possible flavor changing reactions involving new physics, such as
µ− + N → e− + N [11, 12].

The channels of interaction with the point-particle do not
have to be different bulk species, however. If, for example, the
nucleus carried two accessible energy states, say E↑ = M +1/2
and E↓ = M − 1/2 (where 1 ≪ M is some small excitation
energy), then two channels of interaction could be a single bulk
particle interacting with each of the nuclear energy eigenstates.
In this case the “flavor-violating” cross section is again (1.3),
where now k1 and k2 are the incoming and outgoing single-

particle momenta, and k2/k1 = kout/kin =
√
(k2in ± 2m1)/k2in

with the ± corresponding to the bulk particle impinging on a
nucleus in the ground state (−) or the excited state (+), and
where m is the mass of the single bulk species (recall we work in
the non-recoil limit). On its own, this description is enough for
any simple reaction ψ + N → ψ + N∗, where an incident non-
relativistic particle just knocks a nucleus into a long-lived slightly
energized state. Together, the two-species and two-nuclear state
models form the building blocks for exploring more complicated
processes, such as nuclear transfer reaction, where an incident
particle exchanges some constituent particles with a nucleus, and
the final state both violates flavor of the bulk species and changes
the state of the source nucleus.

Finally, we can also look toward simpler models instead. One
may imagine for instance only being interested in tracking one
of the bulk-species, say particle 1 (perhaps an apparatus can only
detect particles of flavor 1). In that case, the flavor-violating cross-
section appears as an absorptive interaction when restricting to
the particle 1 subspace of the theory. In this way, our toy model
can be seen as a particular unitary completion of a model with
a single particle subject to a non-self-adjoint Hamiltonian, as
studied in Plestid et al. [13] and frequently used in the form of
nuclear optical models [14, 15].

The rest of this paper is organized as follows. First, we
briefly recall the salient details of a simple PPEFT for a single
bulk species. Then in section 3, we establish the action and
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classical solutions to a point-particle EFT involving two bulk
species, followed by section 4 in which we solve the boundary
conditions of the system, and determine how all of the point-
particle couplings run. All of this comes together in section 5
where we compute how the point-particle properties relate to
physical cross-sections, including the cross-section for flavor-
violation. In section 6 we connect the multi-bulk species story
to a single particle coupled to a two-state nucleus. Finally, we
wrap up in section 7 by restricting to a single-particle subsector
of the multi-species model, and realizing the equivalence to the
absorptive model of Plestid et al. [13].

2. POINT-PARTICLE EFT FOR A SINGLE
BULK SPECIES

We review the point-particle effective field theory for a
single Schrödinger particle in an inverse-square potential, first
described in Burgess et al. [5].

In the point-particle effective field theory approach, we
exploit the hierarchy of length-scales between the characteristic
wavelength of some low-energy particle of mass m (for
concreteness, call this some scalar electron) and the scale of some
small, almost point-like particle of massM≫m it interacts with
(similarly, we will call this a nucleus). For example, in atomic
systems, this would be the ratio R/a0 between the size R of a
nucleus and the Bohr radius a0 of the atom. For scattering, the
small parameter is more directly kR, with k the wavenumber
of the incident particle. The way we exploit this hierarchy is to
recall that the low energy dynamics of the heavy particle are well
approximated by ordinary quantum mechanics, so we imagine
only first-quantizing the nucleus. In that case the fully second-
quantized electron only couples to the 1-dimensional world-line
of the heavy particle. This amounts to writing the action for the
electron S = SB + Sb in terms of the usual bulk dynamics2

SB =
∫

d4x

{
i

2

(
9∗∂t9 −9∂t9∗

)
− 1

2m
|∇9|2 − V(r)|9|2

}

(2.1)
as well as a boundary term consisting of interactions between the
electron and the nuclear worldline,

Sb = −
∫

dτ

√
−ẏ2

(
M + h |9(y)|2 + . . .

)
. (2.2)

In (2.1), V(r) may be some potential sourced by the point-
particle, and the dots represent terms of higher powers in kR.
In what follows, we choose V(r) = g

r2
. On its own, the

excessive singularity of the inverse-square potential leads to
ambiguities regarding the boundary condition at the origin [16].
Considerations of the self-adjointness of the Hamiltonian are
often used to help resolve this difficulty, in particular by means
of self-adjoint extensions [17–23]. A PPEFT however provides
a natural solution to this problem by tying the near-source
boundary condition unambiguously to the high-energy physics
of the point particle, which may or may not lead to a self-adjoint

2We use a mostly plus metric, and work in units such that h̄ = c = 1.

Hamiltonian for the light degrees of freedom (for an example
where probability for the bulk field is lost see [13], and the
discussion in chapter 7, below). For a single bulk species this
was considered in detail in Burgess et al. [5], and in particular it
was shown that the inverse-square potential leads to a non-trivial
renormalization of the point-particle coupling h. We briefly recall
the results of that calculation below, and in the next section we
will ask whether or not similar behavior is seen in the flavor-
changing coupling.

Now through (2.2), there are couplings on the world-line
yµ(τ ) of the nucleus (parameterized by its proper time τ , so

that ẏµ : = dyµ

dτ
is the 4-velocity of the nucleus). The first term√

−ẏ2M can be recognized as the usual action for a point-particle
[24], while the second term is the lowest-order (in powers of
length) coupling between the electron and the nucleus, with
the dots representing interactions of higher order in kR. For a
spherically symmetric nucleus, the coupling h is a constant.

For simplicity, and to emphasize the value of the point-particle
interactions, we work in the limit of infinite nuclear mass, where
yµ = (t, 0, 0, 0) is the center-of-mass frame, and τ = t. This
amounts to neglecting nuclear recoil, but that can be included by
explicitly tracking the dynamics of yµ(τ ). Requiring the action to
remain stationary with respect to variations of9∗ that vanish on
the boundary yields the usual Schrödinger equation in the bulk

(
i∂t +

∇2

2m
− g

r2

)
9 = 0, (2.3)

while including variations on the boundary leads to the
boundary condition

lim
ǫ→0

4πǫ2∂ǫ9ℓ = lim
ǫ→0

2mh9ℓ(ǫ), (2.4)

which defines ∂ǫ : = ∂r|ǫ , 9ℓ as the ℓth eigenfunction of angular
momentum. However, it is typically the case that one cannot
carry out the limit in (2.4)—indeed, in our effective theory, ǫ → 0
is the UV regime we do not claim to understand anyway. The
solution to this problem is to replace the point-particle action
(2.2) with a boundary action defined on the surface of a ball Bǫ
of radius ǫ centered at the world-line of the point-particle (see
Appendix A of [5]). In the center of mass frame of reference, this
has the form:

SB = −
1

4π

∫

∂Bǫ

d2�

(
M +

∑

ℓ

hℓ|9ℓ(ǫ)|2
)

(2.5)

and yields the revised boundary condition

4πǫ2∂ǫ9ℓ = 2mhℓ9ℓ(ǫ). (2.6)

Here, h has been replaced by a different coupling hℓ to each
angular momentum mode of the bulk particle (for more on
why this is the case, see [13]). With the limit now gone, the
fictitious scale ǫ appears explicitly in the boundary condition
for the bulk field, and so runs the risk of appearing in physical
quantities. The way around this is to observe that hℓ is not itself a
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physical quantity, and so must be renormalized with ǫ such that
all physical quantities in the boundary condition (2.6) remain
ǫ-independent. We explicitly compute this running next.

The bulk equations (2.3) (now defined only outside Bǫ) are
solved by

9 = e−iEt (C+ψ+ + C−ψ−)Yℓ,m, (2.7)

where E is the electron energy, Yℓ,m are the usual spherical
harmonics, and the mode functions are

ψ±(ρ) : = ρ
1
2 (−1±ζ )e−ρ/2M

[
1

2
(1± ζ ) , 1± ζ ; ρ

]
(2.8)

which defines k2 : = 2mE, ρ : = 2ikr, and ζ : =√
(2ℓ+ 1)2 − 8mg. For simplicity, in this paper we will restrict

to the case mg ≤ 1/8 so that ζ is always real. Taking the
small kǫ limit of (2.8), the boundary condition determines the
renormalization-group flow of the coupling hℓ through

λ̂ =
1− C−

C+ (2ikǫ)
−ζ

1+ C−
C+ (2ikǫ)

−ζ =
1+ (ǫ/ǫ⋆)

−ζ

1− (ǫ/ǫ⋆)−ζ
, (2.9)

where λ̂ : = 1
ζ
(mh/πǫ + 1) (we drop the subscript ℓ for

convenience), y : = sgn(|λ̂| − 1) defines a renormalization-
group trajectory, and ǫ⋆ is an RG-invariant length scale, both
determined by the physical quantity

C−
C+
= −y(2ikǫ⋆)ζ . (2.10)

Physical quantities like scattering cross-sections and bound-
state energies are directly related to the ratio C−/C+, and so
through (2.10) directly to the quantity ǫ⋆, which is fundamentally
a property of the source. The usefulness of the inverse-square
potential lies in how it can force non-trivial RG behavior upon
the point-particle coupling. For example, the running (2.9) has an
“infrared” fixed point of+1 when ǫ/ǫ⋆ →∞, which corresponds
to ǫ⋆ → 0. For the s-wave in the absence of an inverse-square
potential, ζ (ℓ = 0) = 1 and this would be equivalent to vanishing
point-particle coupling, but if the strength of the inverse-square
potential g 6= 0, then the fixed point is driven away from a
vanishing point-particle coupling.

In the next section, we generalize all of this to a bulk
system composed of multiple species of particles (though for
concreteness, we specialize to two species). We see how most
of the above follows through identically, but the presence of
boundary terms that mix flavors adds a new degree of complexity
to the problem, introducing a new point-particle coupling which
runs differently from (2.9) and opening the door to flavor-
changing reactions.

3. MULTI-SPECIES ACTION AND BULK
FIELD EQUATIONS

The simplest extension of the basic point-particle action (2.2) to
multiple particles is a non-diagonal quadratic one:

S
(MP)
b
= −

∫
dτ

√
−ẏ2 [M +9∗i hij9j + . . . ] (3.1)

where now there are N complex scalar Schroödinger fields 9i,
and summation over the species index is implied. The bulk action
is taken to diagonalize the momentum operator, so flavor mixing
only happens at the point particle, and the bulk action is simply
N copies of (2.1):

S
(MP)
B =

N∑

i=1

∫
d4x

{
i

2

(
9∗i ∂t9i −9i∂t9

∗
i

)

− 1

2mi
|∇9i|2 − V(r)|9i|2

}
. (3.2)

For concreteness, we will work with only N = 2 species of
particles. Our interest is in single particle states, so we restrict
to the single-particle sector, for which the Hilbert space is H =
C ⊕ H1 ⊕ H2 (where Hi is the Hilbert space for particle i). On

this space, the Schrödinger operator i∂t + ∇
2

2mi
− g

r2
is diagonal.

Writing the total wavefunction 9 =
(
91

92

)
, the equations of

motion read

[
i∂t + ∇

2

2m1
− g

r2
0

0 i∂t + ∇
2

2m2
− g

r2

][
91

92

]
= 0. (3.3)

The time-dependence is easily solved using separation-of-

variables:9 = e−iEt
(
ψ1

ψ2

)
. Then we find

[
k21 + ∇2 − g

r2
0

0 k22 + ∇2 − g

r2

] [
ψ1

ψ2

]
= 0, (3.4)

which defines the wavenumbers ki : =
√
2miE (real for

continuum states and imaginary for bound states).
Away from the origin, (3.4) is solved exactly as in the single-

species problem, and a natural choice of basis for the solutions is

B =
{(

ψ1

0

)
,

(
0
ψ2

)}
, (3.5)

where

ψi =
(
Ci+ψ+(ℓi; 2ikir)+ Ci−ψ−(ℓi; 2kir)

)
Yℓimi . (3.6)

and

ψ±(ℓ; ρ) : = ρ
1
2 (−1±ζi)e−ρ/2M

[
1

2
(1± ζi) , 1± ζi; ρ

]
(3.7)
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with ρ : = 2ikr, and ζi : =
√
(2ℓ+ 1)2 − 8mig, and Yℓi ,mi the

usual spherical harmonics, as in the single-particle example.
The constants Ci± are solved by considering the boundary

conditions in the problem, typically finiteness at large- and
small-r, but for scattering problems the large-r BC is specific
to the setup (since it depends on the presence or otherwise
of incident particles). In a PPEFT, the small-r boundary
condition is derived from the boundary action, which we
describe next.

4. BOUNDARY CONDITIONS

In analogy with the single-particle system, we determine the
small-r boundary condition by varying the point-particle action
(3.1) directly [including the boundary terms in the variation of
the bulk action (3.2)]. The resulting small-r boundary conditions
are a simple generalization of (2.6):

4πǫ2∂ǫ9 = 2mh9(ǫ), (4.1)

again using 9 = e−iEt
(
ψ1

ψ2

)
and as in section 2, we define

∂ǫ : = ∂r|ǫ (and we drop the angular momentum label on h as
above). Here m and h are the mass and point-particle coupling
matrices (respectively), so that in components,

4πǫ2∂ǫψ1 − 2m1h11ψ1(ǫ)− 2m1h12ψ2(ǫ) = 0 and (4.2a)

4πǫ2∂ǫψ2 − 2m2h22ψ2(ǫ)− 2m2h21ψ1(ǫ) = 0. (4.2b)

Notice that the explicit ǫ-dependence of (4.2) again indicates
that the point-particle couplings hij must be renormalized with
ǫ whenever 9 or ∂ǫ9 diverge for small argument, in order for
the boundary condition to be compatible with the bulk equations
of motion.

The boundary condition then serves two distinct purposes:
(i) solving for the integration constants in 9 tells us how
they (and correspondingly physical quantities) depend on the
point-source physics, and (ii) isolating for the couplings hij
then tells us how exactly each coupling flows with ǫ to ensure
the physical integration constants do not. Clearly though, with
four possible degrees of freedom in h and four integration
constants in 9 , the two equations in (4.2) are insufficient by
themselves. In the next sections we invoke physical arguments
to resolve this predicament, and separately tackle both problems
(i) and (ii).

4.1. Solving for Integration Constants
The most obvious place to look for additional constraints is
at another boundary. In spherical coordinates, this amounts to
looking at the asymptotic behavior of9 as r→∞. However, the
asymptotic behavior of the system is not unique, and is a very
situation-dependent property. Since our interest in this paper
is in catalysis of flavor violation, it is most pertinent to study
scattering states.

First, focus on scattering 91 → 9j. In this case,
asymptotically we need (see Appendix A.2 for a review of

multi-species scattering) ψ1(r → ∞) → eik1z + f11(θ ,ψ)
eik1r

k1r

as usual, and now also ψ2(r →∞)→ f12(θ ,ψ)
eik2r

k2r
. Notice that

both boundary conditions and the equations of motion are linear
in 9 , so we may divide through by one integration constant. For
incident particle 1, we will choose to divide through by C1+, and
we will define

C11 : =
C1−
C1+

, and C12 : =
C2−
C1+

(1→ X scattering),

(4.3)
and eliminating the infalling wave in ψ2 fixes C2+ = RC2− with

R : = −Ŵ (1− ζ/2)
Ŵ (1+ ζ/2)2

−2ζ e−iπζ (4.4)

As we will see in the section 5, C11 and C12 are directly
related to the physical cross-sections for 91 → 91 and
91 → 92 scattering.

Using the definitions (4.3) and (4.4) in the small-r boundary
condition (4.2) yields

4πǫ2∂ǫ (ψ1+ + C11ψ1−)− h11 (ψ1+ + C11ψ1−)

−h12C12 (Rψ2+ + ψ2−) = 0 and
(4.5a)

4πǫ2C12∂ǫ (Rψ2+ + ψ2−)− h22C12 (Rψ2+ + ψ2−)

−h21 (ψ1+ + C11ψ1−) = 0,
(4.5b)

Finally, in terms of integration constants the boundary condition
(4.5) is now a system of two equations for two unknowns, so using
the small-r forms of the bulk modes (3.7),

ψ±(ℓ; ǫ) ≈ (2ikǫ)
1
2 (−1±ζ ) H⇒

∂

∂r

∣∣∣∣
ǫ

ψ±(ℓ; ρ) ≈ ik(−1± ζ )(2ikǫ) 12 (−3±ζ ), (4.6)

it is found (see Appendix B for details of the calculation) that
the integration constants for this system are related to the source
physics through

C11 = −(2ik1ǫ)ζ1
N̂1

D̂
and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√
m2k2ζ1

m1k1ζ2

λ̂21

D̂
,

where

N̂1 : = 4̂λ12̂λ21 −
[
λ̂11 − 1

] [
λ̂22 + 1

]
, and

D̂ : = 4̂λ12̂λ21 −
[
λ̂11 + 1

] [
λ̂22 + 1

]
, (4.7)

and the following convenient re-definitions have been made:

λ̂11 : =
1

ζ1

(
m1h11

πǫ
+ 1

)
, λ̂22 : =

1

ζ2

(
m2h22

πǫ
+ 1

)
, and,

(4.8)
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λ̂12 : =
h12
√
m1m2

2πǫ
√
ζ1ζ2

, λ̂21 : =
h21
√
m1m2

2πǫ
√
ζ1ζ2

. (4.9)

Of course, the choice to make particle 1 the incident particle was
not forced upon us, and with foresight to the next sections, we
also compute the quantities involved in scattering 92 → 9i.
Fortunately, this is exactly the 1 ↔ 2 inversion of the 1 → X
scattering above, so we can immediately write:

4πǫ2C12∂ǫ (Rψ2+ + ψ2−)− h22C12 (Rψ2+ + ψ2−)

− h21 (ψ1+ + C11ψ1−) = 0 and
(4.10a)

4πǫ2∂ǫ (ψ1+ + C11ψ1−)− h11 (ψ1+ + C11ψ1−)

− h12C12 (Rψ2+ + ψ2−) = 0,
(4.10b)

where as above we have defined

C22 : =
C2−
C2+

, and C21 : =
C1−
C2+

(2→ X scattering),

(4.11)
now with C1+ = RC1−. Solving for the integration constants
similarly yields

C22 = −(2ik2ǫ)ζ2
N̂2

D̂
and

C21 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√
m1k1ζ2

m2k2ζ1

λ̂12

D̂
, (4.12)

where now

N̂2 : = 4̂λ12̂λ21 −
[̂
λ11 + 1

] [̂
λ22 − 1

]
. (4.13)

It is important to note that the Cij integration constants
are fundamentally different, as they are determined by
different asymptotic boundary conditions and correspond
to different physics. In section 5 we will see exactly how
they relate to the physical cross-sections, but having
defined them all separately is already important at the level
of renormalizing the point-particle couplings, which we
do next.

4.2. Renormalization-Group Flows and
Invariants
Next we move on to teasing out of the boundary condition (4.2)
exactly how the couplings hij must be renormalized with ǫ to
keep physical quantities independent of the regulator. One way to
do so would be to differentiate (4.7) and (4.12) with respect to ǫ
while holding the (physical) integration constants fixed, and solve
the resulting differential equations. This approach turns out to
be very difficult however, since the equations are highly coupled
and tough to disentangle. Notice however that it is important to
have knowledge of both 1 → X and 2 → X scattering to solve
for all the elements of h. This is not a coincidence. A unitary
system requires a real action, which is enforced by the condition
that h is Hermitian. At the same time, a unitary S-matrix for an
N-species system has N2 real degrees of freedom, which is the
same dimension as an N × N Hermitian matrix. Consequently,
connecting the point-particle couplings to physical quantities
requires knowledge of the entire S-matrix, and so in our case
must involve both 1 → X scattering and 2 → X scattering.
Lastly, one final simplification can be made by observing that the
phase of h12 can be removed by a field redefinition, so for the
special case of a two-species system we only have to deal with a
real matrix of point-particle couplings.

The easiest approach to solving for the flows of the
couplings hij is to go back to the boundary conditions
(4.5) and (4.10) for both 1 → X and 2 → X
systems and solve directly for the individual elements of h.
This inversion is done in detail in Appendix C, and using
the small-r form (4.6), the point-particle couplings must
take the following forms as functions of the regulator ǫ.

λ̂11 =
(1− C11(2ik1ǫ)

−ζ1 )(1+ C22(2ik2ǫ)
−ζ2 )+ C21C12(2ik1ǫ)

−ζ1 (2ik2ǫ)−ζ2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14a)

λ̂12 =
√
m2ζ1

m1ζ2

C21

(
k1
k2

)−1/2
(2ik1ǫ)

−ζ1/2(2ik2ǫ)−ζ2/2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14b)

λ̂21 =
√
m1ζ2

m2ζ1

C12

(
k2
k1

)−1/2
(2ik1ǫ)

−ζ1/2(2ik2ǫ)−ζ2/2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14c)

λ̂22 =
(1+ C11(2ik1ǫ)

−ζ1 )(1− C22(2ik2ǫ)
−ζ2 )+ C21C12(2ik1ǫ)

−ζ1 (2ik2ǫ)−ζ2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14d)

using the definitions (4.9).
Equations (4.14) (together with (4.7), (4.12), (2.10), and

past work [8]) suggests the integration constants can each
be characterized by a unique RG-invariant length-scale. To
see how this works, define the scales ǫ1, ǫ2, and ǫ3 by the
following relations:

C11 = −y1(2ik1ǫ1)ζ1 , C22 = −y2(2ik2ǫ2)ζ2 ,

and C12 =
m2k2ζ1

m1k1ζ2
C21 = y3

√
m2k2ζ1

m1k1ζ2
(2ik1ǫ3)

ζ1/2(2ik2ǫ3)
ζ2/2,

(4.15)
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FIGURE 1 | Plot of λ̂11 vs ζ ln(ǫ/ǫ1) for ζ1 = ζ2, y1 = y2 = +1, and
(ǫ2/ǫ1)

ζ = 2 and (ǫ3/ǫ1)
ζ = 0.02. The fascinating second pole arises in certain

limits of the ratio of ǫ1 to ǫ2 and ǫ3. In the limit ǫ3 → 0, this reduces to the

classic single-particle RG.

where yi = ±1 defines a particular class of flow. In terms of these
scales, the running equations are significantly simpler:

λ̂11 =
(
1+ y1 (ǫ/ǫ1)

−ζ1) (1− y2 (ǫ/ǫ2)
−ζ2)+ (ǫ/ǫ3)−(ζ1+ζ2)(

1− y1 (ǫ/ǫ1)
−ζ1) (1− y2 (ǫ/ǫ2)

−ζ2)− (ǫ/ǫ3)−(ζ1+ζ2)
,

(4.16a)

λ̂12 = λ̂21

= y3 (ǫ/ǫ3)
−(ζ1+ζ2)/2

(
1− y1 (ǫ/ǫ1)

−ζ1) (1− y2 (ǫ/ǫ2)
−ζ2)− (ǫ/ǫ3)−(ζ1+ζ2)

,

(4.16b)

λ̂22 =
(
1− y1 (ǫ/ǫ1)

−ζ1) (1+ y2 (ǫ/ǫ2)
−ζ1)+ (ǫ/ǫ3)−(ζ1+ζ2)(

1− y1 (ǫ/ǫ1)
−ζ1) (1− y2 (ǫ/ǫ2)

−ζ2)− (ǫ/ǫ3)−(ζ1+ζ2)
,

(4.16c)

An example of λ̂11 and λ̂22 is plotted in Figure 1, and an example
of λ̂12 is plotted in Figure 2. All the couplings flow to fixed points
in the ultraviolet (ǫ/ǫi → 0) and the infrared (ǫ/ǫi → ∞). The
diagonal couplings λ̂11 and λ̂22 both flow to −1 in the UV and
+1 in the IR, exactly as the single-particle flow does, while the
off-diagonal λ̂12 flows to vanishing coupling in both the cases.
This says something reasonable: the system is perfectly content to
live in a world where there is no species mixing, regardless of the
existence of the inverse-square potential. However, if the species
do mix, then the strength of that mixing depends on the scale it
is measured at, with the flow given by (4.16b).

Interestingly, all three flows share a common denominator,
which can always be factorized. When ζ1 = ζ2 = : ζ , the zeroes
of the denominator lie at

ǫζa =
1

2

(
y2ǫ

ζ
2 + y1ǫ

ζ
1 ±

√(
y1ǫ

ζ
1 − y2ǫ

ζ
2

)2
+ 4ǫ

2ζ
3

)
, (4.17)

FIGURE 2 | Plot of λ̂12 vs ζ ln(ǫ/ǫ1) for ζ1 = ζ2, y1 = y2 = y3 = +1, and
(ǫ2/ǫ1)

ζ = 2 and (ǫ3/ǫ1)
ζ = 0.02.

so there is at least one asymptote in all the flows as long as y2ǫ
ζ
2 +

y1ǫ
ζ
1 > 0. Indeed, the only regime where there is no asymptote is

where−(y2ǫζ2 + y1ǫ
ζ
1 ) >

√(
y1ǫ

ζ
1 − y2ǫ

ζ
2

)2
+ 4ǫ

2ζ
3 > 0.

The practicality of this framework lies in how the point-
particle couplings [and in particular their RG-invariants (4.15)]
inform physical quantities, like scattering cross-sections, and we
investigate this next.

5. SCATTERING AND CATALYSIS OF
FLAVOR VIOLATION

To see how the nuclear properties enter into macroscopic
quantities, and in particular how the point-particle can induce
a violation of bulk flavor-conservation, we proceed to compute
the elements of the scattering matrix. In particular, it will be
shown that the low-energy s-wave “elastic” (9i → 9i) scattering
is as usual independent of incoming momentum, and ǫi plays
the role of the scattering length. Meanwhile, the flavor-violating
“inelastic” cross-section is uniquely characterized by ǫ3, which
can be thought of as an effective scattering length for flavor
violation. Moreover, the inelastic cross-section goes as kout/kin.
This ratio is a constant for Schrödinger particles, but for Klein-
Gordon fields (such as is appropriate for, say, incident pions)
the ratio has a dependence on the incoming momentum, and
that dependence takes on a variety of qualitatively different
forms determined by the size of k2in/|m2

1 −m2
2|. Of particular

interest is the case where the incoming particle’s mass is greater
than the outgoing particle’s mass, and the incoming particle’s
momentum is small compared to the mass gap, in which case
the flavor-violating cross-section is catalyzed, and goes as 1/kin
(although such a setup would certainly be hard to realize
in practice).

Following the Appendix A.2, we need to identify the

scattering matrix elements S
(ℓ)
ij in terms of Cij.
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5.1. Elastic Scattering (ψi → ψi)
First consider elastic scattering of ψ1. This is the case where the
measured particle is the same as the incoming particle, so the
asymptotic form of ψ1 contains an incoming plane wave and an
outgoing spherical wave:

ψAns
1 (r→∞)→ C

(
eik1z + f11(θ ,ψ)

eik1r

r

)
. (5.1)

Starting from the general form (3.6) for particle 1,

ψ1 = (C1+ψ1+ + C1−ψ1−)Yℓ1 ,m1 , (5.2)

the large-r limit is (taking the asymptotic limit of the confluent
hypergeometric function)

ψ1(r→∞)→ Aℓ
ei(k1r−ℓπ/2)

2ik1r
+ Bℓ

e−i(k1r−ℓπ/2)

2ik1r
, (5.3)

where

Aℓ =
[
Ŵ

(
1+ 1

2
ζ1

)
2ζ1C1+ + Ŵ

(
1− 1

2
ζ1

)
2−ζ1C1−

]
eiπℓ/2√
π

, and

Bℓ =
[
Ŵ

(
1+ 1

2
ζ1

)
2ζ1C1+ + Ŵ

(
1− 1

2
ζ1

)
2−ζ1 e−iπζ1C1−

]
ei(1+ζ1−ℓ)π/2√

π
.

(5.4)

Matching to the asymptotic form (5.1), allows us to identify
(see 12.1) the overall normalization

C = (−1)ℓ+1
2π
√
(2ℓ+ 1)

[
Ŵ

(
1+ 1

2
ζ1

)
2ζ1C1+

+Ŵ
(
1− 1

2
ζ1

)
2−ζ1e−iπζ1C1−

]
ei(1+ζ1)π/2, (5.5)

and the scattering matrix element

S
(ℓ)
11 = −

Aℓ

Bℓ

=
[
Ŵ (1+ ζ1/2)+ Ŵ (1− ζ1/2) 2−2ζ1C11

]
[
Ŵ (1+ ζ1/2)+ Ŵ (1− ζ1/2) 2−2ζ1 e−iπζ1C11

] ei(2ℓ+1−ζ1)π/2.

(5.6)

Our interest is in the regime where kiǫ is small, so the s-wave
is the dominant contribution to the cross-section. In the s-wave,
ζ1 = ζ1s : =

√
1− 8m1g, and the cross-section is (A.9), exactly

as in Burgess et al. [6]:

σ (1→1)
s = π

k21
|S(0)11 |2 =

π

k21

∣∣∣∣
1−Aeiπζ1s/2

1−Ae−iπζ1s/2

∣∣∣∣
2

(5.7)

where

A : = e−iπζ1/22−2ζ1C11
Ŵ[1− 1

2ζ1]

Ŵ[1+ 1
2ζ1]
= y1

(
k1ǫ1

2

)ζ1 Ŵ[1− 1
2ζ1]

Ŵ[1+ 1
2ζ1]

.

(5.8)

[The second equality uses (4.15) to exchange the integration
constants for the RG-invariant ǫ1]. Of particular note is when
there is no inverse-square potential, in which case ζ1s = 1 and
the cross-section reduces to

σ (1→1)
s = 4πǫ21 (g = 0), (5.9)

which can be identified as the cross-section for scattering from
a 3D δ-function potential (see for example [25] where our ǫ1
corresponds to their g/

√
π). Elastic scattering for the second

species ψ2 → ψ2 follows exactly the same procedure and is
trivially the 1↔ 2 inversion of (5.7) and (5.8).

σ (2→2)
s = 4πǫ22 (g = 0). (5.10)

5.2. Flavor-Violating Scattering (ψi → ψj,
i 6= j)
So much for the ordinary scattering. Finally we compute the
flavor-violating ψ1 → ψ2 cross-section, and see the point-
particle catalysis in action. This time, there is no incoming flux
of the particle to be measured, so the large-r ansatz is simply:

ψAns
2 (r→∞)→ Cf2(θ ,ψ)

eik2r

r
. (5.11)

where we have scaled out the same normalization factor C, for
convenience. The asymptotic form of the general solution for
ψ2 is exactly (5.3) subject to 1 ↔ 2, so we can immediately
observe the following. First, as was used in deriving the boundary
conditions in section 4, Bℓ = 0 so that C2+ = RC2−, where
as above

R : = −Ŵ(1− ζ/2)
Ŵ(1+ ζ/2)2

−2ζ e−iπζ . (5.12)

Following Appendix A.2, this time we identify the inelastic

scattering element S
(ℓ)
12 using (A.15)

S
(ℓ)
12 =

e−iπℓ/2√
4π(2ℓ+ 1)

Aℓ

C
= Ŵ

(
1− 1

2 ζ2
)

2π
√
(2ℓ+ 1)

C2−
C

2−ζ2 (1− e−iπζ2 ),

= (−1)−ℓ+1
2ζ1+ζ2−1

sin(πζ2/2)e
iπ(ℓ−ζ1−ζ2−1)/2 Ŵ

(
1− 1

2 ζ2
)

Ŵ
(
1+ 1

2 ζ1
) C12

1−Ae−iπζ1/2
.

(5.13)

whereA is defined in (5.8).
Again, our interest is in the small kiǫ regime for which the s-

wave dominates. We similarly define ζ2s : =
√
1− 8m2g. Then

the low-energy cross-section is (A.16),

σ (1→2)
s = π

k1k2

m1

m2

∣∣∣∣S
(0)
12

∣∣∣∣
2

,

= 4π

2ζ1+ζ2
k
ζ1
1 k

ζ2
2

k21

ζ1

ζ2
sin2(πζ2/2)

ǫ
ζ1+ζ2
3

|1−Ae−iπζ1/2|2

(
Ŵ
(
1− 1

2 ζ2
)

Ŵ
(
1+ 1

2 ζ1
)
)2

.

(5.14)

As in the elastic case, the reverse scattering ψ2 → ψ1 is a
simple matter of exchanging 1 ↔ 2 in (5.14). In the absence
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of an inverse-square potential (ζis = 1), the cross-section (5.14)
simplifies significantly.

σ 1→2
s = 4π

k2

k1
ǫ23 (g = 0). (5.15)

On its own, this is an interesting enough result. The flavor-
violating cross-section is non-zero only when the point-particle
has non-trivial flavor-violating properties, as are encoded in ǫ3.
This is also the statement that flavor-violation only occurs if
h12 6= 0, since it is always true—regardless of the presence of
an inverse-square potential—that h12 = 0 only when ǫ3 = 03.

A particularly interesting aspect of (5.15) is the factor of
k2/k1. For Schrödinger particles, this is just a constant (ki =√
2miE H⇒ k2/k1 =

√
m2/m2). In section 6, we treat

a Schrödinger particle interacting with a multi-state nucleus,
in which case the final and initial momenta do differ non-
trivially, but even at the level of two bulk species, more interesting
dynamics can be seen just by treating the particles as relativistic
Klein-Gordon fields. For relativistic fields, the cross-section
takes the same general form as (5.15), except the momenta are

relativistic: ki =
√
ω2 −m2

i , where ω is the energy of the system.

Then ω2 = k2i +m2
i , so that

k2

k1
=

√
k21 + (m2

1 −m2
2)

k1
. (5.16)

The cross-section therefore exhibits different qualitative behavior
depending on how the incoming momentum k1 relates to the
(squared) mass gap m2

1 − m2
2. This can be broadly classified by

4 different regimes depending on the sign of m2
1 − m2

2 and the
size of the ratio r : = k21/|m2

1 −m2
2|.

First, if the mass gap is positive, the only question is to the size

of the ratio r. If r ≪ 1, then σ
(1→2)
s ∼ k−11 . This is the regime

where the cross-section sees a low-energy enhancement similar
to the well-known enhancement of absorptive cross-sections [26]
(more on that in section 6). However, if r ≫ 1, then the cross-
section is roughly independent of the incoming momentum
altogether. The cross-over between these regimes is plotted in
Figure 3. These are indeed reasonable behaviors. If m1 > m2,
and the incoming momentum is small compared to the mass
difference, then the transition is to a lighter particle traveling
faster, which is intuitively a more favorable process—the heavier
incident particle has access to a larger phase-space than the
lighter incident particle. If the mass difference is small compared
to the incoming momentum, then the benefit of transitioning to
a particle with a smaller mass is minimal, so the process is no
more favorable than no transition. If instead the mass gap is
negative, then there is a new regime. If k21 < m2

2 − m2
1 (so if

r < 1) there is in fact no scattering. This is certainly reasonable—
if the incident particle did not have enough energy to create the
rest mass of the second particle, then it cannot scatter into that

3As noted in section 4.2, this is in contrast to the behavior of h11 and h22, whose

flows indicate that ǫ1, ǫ2 → 0 is only consistent with h11, h22 → 0 when there is

no inverse-square potential.

FIGURE 3 | Plot of the cross-over behavior in the k dependence of the

inelastic cross-section for a Klein-Gordon particle conversion in units of 1/k1,

where 1 =
√
m2

1 −m2
2 and m1 > m2. The full function

√
1+12/k21 is plotted

in blue, and the simple inelastic behavior 1/k1 is plotted in orange. Notice the

overlap for small 1/k1, and the strong enhancement for large momenta.

FIGURE 4 | Plot of the cross-over behavior in the k dependence of the

inelastic cross-section for a Klein-Gordon particle conversion in units of 1/k1,

where 1 =
√
m2

1 −m2
2 and m2 > m1. The full function

√
1−12/k21 is plotted

in blue, and the simple inelastic behavior
√
1/k1 − 1 is plotted in orange.

Notice the threshold cutoff at 1/k1 = 1, as well as the approximate overlap for

small 1/k1, and the strong suppression for large momenta.

particle (this is the threshold behavior described by [27, section
144]). If r & 1, the incident momentum is just enough to create
the second particle k21 = m2

2−m2
1+δ, then the cross-section goes

as
√
δ/(m2

2 −m2
1). Since k

2
2 = k21 + m2

1 − m2
2 = δ ≪ m2

2, this

is also the statement that the cross-section goes as v2, the (non-
relativistic) speed of the final state particle. Finally, if r≫ 1, the
incident momentum greatly exceeds the mass gap and we again
see the cross-section behave independently from k1, as before.
These momentum-dependences are plotted in Figure 4.
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6. TRANSFER REACTIONS AND NUCLEAR
STRUCTURE

In many cases, a reaction with a nucleus can change not only
the incident particle, but also the nucleus. This can be the
case even when scattering energies are low compared to the
mass of the nucleus. For instance, the excitation energy of
most real nuclei is on the order of MeV compared to their
masses of order GeV [28]. A particularly interesting class of
reactions that falls into this category is transfer reactions, where
a composite particle (say a neutron) scatters off of a nucleus
and exchanges a constituent particle (say a quark) with one of
the valence nucleons, so that the outgoing particle is different
(perhaps a proton) and so is the nucleus. While this work is
not enough to describe a complete transfer reaction, we can
make progress toward a complete description, and can at least
describe the simpler process ψ + N → ψ + N∗, where N
is some nucleus and N∗ is a long-lived excited state of that
nucleus. The key observation to make is that there is essentially
no difference between a system spanned by {91 ⊗ |N〉 ,92 ⊗
|N〉} with |N〉 some nuclear state, and {9 ⊗ |N1〉 ,9 ⊗ |N2〉}
where |Ni〉 are distinct nuclear states. The only complexity lies
in describing the different nuclear states in a point-particle
EFT language.

Here we will sketch out the simplest point-particle action
that includes a two-state nucleus coupled to a single bulk
field, but a more detailed treatment of a PPEFT for a point-
particle with internal degrees of freedom will be available
in Zalavái et al. (in preparation). In addition to the single-
species action (2.2), introduce an auxiliary grassmann-valued
field Ti that satisfies the commutation relations of the generators
of su(2).

S2Nb = −
∫

dτ

√
−ẏ2

(
M + iTiṪ

i − iǫijk1iTjTk + h′|9(y(τ ))|2

−ǫijkg′iTjTk|9(y(τ ))|2
)
. (6.1)

Here,1i and g
′
i are 3-vector-valued parameters. For convenience,

we work in the basis such that 1i = 1δi3. Furthermore,
we collect the point-particle couplings involving 9 as
W =W†

: = h′ − i
2 g
′
iTi.

Upon quantization, the Ti can be identified with i
2σi,

the generators of su(2), and since they only live on the
point-particle’s world-line, it is easy to see that they are
associated with a two-level nuclear state. Varying the action
with respect to y(τ ) (and neglecting the subdominant

TABLE 1 | The dictionary that maps quantities in a two-bulk-species theory to

quantities in a theory of a single bulk-species coupled to a point-particle with two

accessible internal degrees of freedom.

Two-state nucleus Two-species bulk

ψ↑, ψ↓ ←→ ψ1, ψ2

k↑, k↓ ←→ k1, k2

W ←→ h

contribution from the W interactions), the nuclear
dispersion relation

〈N|p̂2N −M2 +1σz|N〉 = 0, (6.2)

(p̂N is the nuclear 4-momentum operator) leads to
distinct nuclear states |↑〉 with rest-frame energy
E↑ = M + 1/2 and |↓〉 with rest-frame energy
E↓ = M −1/2.

The bulk action for the system is exactly the single-particle
Schrödinger action (2.1), and so the solutions for 9 are precisely
(2.7) and (2.8). However, the boundary condition (2.6) becomes:

〈↑↓|4πǫ2∂ǫ9|4〉 = 〈↑↓|W9(ǫ)|4〉 , (6.3)

where |4〉 is an appropriate Fock state, |↑↓〉 are the Fock
states consisting of just the nucleus in the state with rest-frame
energy E↑↓, and 9 is interpreted as an operator-valued field.
Since energy can now be exchanged between the electron and
the nucleus, the individual energies of the electron and the
nucleus are no longer good quantum numbers, and a general
single-electron Fock state must be a linear combination |4〉 =∣∣9↑

〉 |↑〉 +
∣∣9↓

〉 |↓〉, where
∣∣9↑↓

〉
has energy ω↑↓ satisfying

ω↑ + 1/2 = ω↓ − 1/2. Then in terms of the mode-functions
9↑↓(x) = e−iω↑↓ψ↑↓ (satisfying 9

∣∣9↑↓
〉
= 9↑↓(x)

∣∣9↑↓
〉
), the

boundary condition (6.3) is in components,

4πǫ2∂ǫψ↑ −W↑↑ψ↑(ǫ)−W↑↓ψ↓(ǫ) = 0 and

4πǫ2∂ǫψ↓ −W↓↓ψ↓(ǫ)−W↓↑ψ↑(ǫ) = 0,
(6.4)

where we identified the Ti with
1
2σi so that W = h′I2×2 +

1
4g
′
iσi. The boundary condition (6.4) is now exactly the boundary

condition (4.2) withW ↔ h and ψ↑↓ ↔ φ1,2.
Finally, defining E : = ω↑ + 1/2 = ω↓ − 1/2, we observe

k2↑ = 2mω↑ = 2m(E −1/2) and k2↓ = 2mω↓ = 2m(E +1/2).
Choosingψ↑ ↔ ψ1 andψ↓ ↔ ψ2, wemay then identify k1 = k↑
and k2 = k↓. At this point, a complete analogy with the two-
species system is established, and the results are tabulated into
a dictionary relating the two in Table 1. A true transfer reaction
is one for which the final state involves both a different species
of bulk particle and an altered state of the nucleus, so evidently
would be equivalent to a model of 4 bulk species coupled to a
single-state point-particle. As it stands however, this system is
sufficient to describe, say, the low-energy behavior of a neutron
that knocks a nucleus into its first excited state.

TABLE 2 | The dictionary that maps quantities in a unitary two-species theory to

quantities in a non-unitary single-species theory.

Absorptive single-species Unitary two-species

ǫ⋆ ←→ ǫ1

α⋆ ←→ nπ − (2k2ǫ3)
ζ1

(
ǫ3
ǫ1

)ζ2 |R
y1

sin(πζ2/2)|
λ̂c ←→ λ̂11 − 4 |̂λ12 |

2

[̂λ22+1]
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7. SINGLE-PARTICLE SUBSECTOR

In many cases it is overkill to track all of the possible final state
products of a particular interaction. This is especially the case
in nuclear physics, where a summation over many unobserved
final states is the basis of the highly successful optical model
[14, 15]. The price one pays for the convenience of ignoring
certain states is the loss of unitarity, and such a non-unitary
point-particle EFT was the subject of Plestid et al. [13]. Here
we can provide a very simple explicit example of how this non-
unitarity can emerge in a subsector of a larger unitary theory.
We achieve this correspondence by matching physical quantities,
in a procedure that is significantly simpler than e.g., tracing the
partition function over the states involving92 [29, 30].

From Plestid et al. [13], the key to a point-particle inducing
a violation of unitarity is allowing the point-particle coupling to
be complex (h from section 2). In that case, the running of the
coupling is the same as (2.9), except now the constant−y→ eiα⋆

is complex. That is:

λ̂c =
1− eiα⋆ (ǫ/ǫ⋆)

−ζ

1+ eiα⋆ (ǫ/ǫ⋆)−ζ
, (7.1)

where λ̂c is the now complex coupling. Similarly, the integration
constant is analogous to (2.10),

C−
C+
= (2ikǫ)ζ

1− λ̂c
1+ λ̂c

= (2ikǫ⋆)
ζ eiα⋆ . (7.2)

At this point, we essentially have everything we need. The ratio

of integration constants C−
C+ is directly related to the physical

quantities in the single-particle problem, so choosing to track
either91 or92 tells us to equate (7.2) toC11 orC22 (respectively),
and from that determine how the RG-invariants and couplings
are related. The only obstruction at this point is that (4.15) would
at face value suggest that α⋆ = nπ and there is no absorptive
scattering. The error here is that inelastic scattering is a sub-
leading effect4, and to see it at the level of C11, we would need
to have computed that ratio of integration constants to sub-
leading order in kiǫ. This is not in itself a particularly challenging
endeavor, and is done in the Appendix B. The result is that
to sub-leading order, one finds (B.22) (choosing to track 91,
tracking92 follows trivially)

C11 = −(2ik1ǫ)ζ1
N̂1

D̂

(
1− 4R

λ̂12λ̂21

N̂1D̂
(2ik2ǫ)

ζ2

)

= −y1(2ik1ǫ1)ζ1 (1+ iδα1). (7.3)

From the last equality, we use that δα1 ≪ 1 to define eiα1 ≈
−y1(1 + iδα1) such that α1 : = nπ + δα1, with n an integer that

4The way to see this is through the catalysis cross-section (5.15). Absorptive

scattering generically scales as a/k for some absorptive scattering length a. The

derived cross-section (5.15) identifies a ∼ (k2ǫ3)ǫ3 and so is generically a

subdominant effect in the point-particle EFT regime.

satisfies y1 : = −einπ . Since (7.3) is a perturbative expression, we
may use the leading order (in kiǫ) expressions for the couplings
in δα1, and simply evaluate them at ǫ = ǫ1. An alternative but
more tedious approach would be to substitute the second equality
in (7.3) into λ̂11 [taking the whole function to sub-leading order
in kiǫ as in (C.12)] and solve for δα1 by demanding λ̂11 remain
real at sub-leading order, as it must. No matter the approach, the
result is

δα1 = −(2k2ǫ3)ζ1
(
ǫ3

ǫ1

)ζ2 |R|
y1

sin(πζ2/2). (7.4)

In this way, we have solved for the RG-invariant quantities (and
so too the physical quantities) in the single-particle absorptive
model in terms of the RG-invariants in the unitary two-species
model simply by equating C11 to C−/C+. In fact, we can do even
better than that. We can determine how the coupling λ̂c relates to
the various λ̂ij couplings. To do so, we simply arrange for N̂A/D̂

to take the form of (λ̂c − 1)/(λ̂c + 1).

N̂1

D̂
=

4

∣∣∣∣̂λ12
∣∣∣∣
2

−
[
λ̂11 − 1

] [
λ̂22 + 1

]

4

∣∣∣∣̂λ12
∣∣∣∣
2

−
[
λ̂11 + 1

] [
λ̂22 + 1

] =

λ̂11[ λ̂22+1]−4
∣∣∣∣̂λ12
∣∣∣∣
2

[ λ̂22+1] − 1

λ̂11[ λ̂22+1]−4
∣∣∣∣̂λ12
∣∣∣∣
2

[ λ̂22+1] + 1

.

(7.5)
Evidently λ̂c = λ̂11 − 4|̂λ12|2/[̂λ22 + 1]. A check on this
is to directly compute the combination λ̂11 − 4|̂λ12|2/[̂λ22 +
1], in which case one finds it is exactly (7.1) with ǫ⋆ and α⋆
defined as above. This dictionary between these models is laid
out in Table 2.
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APPENDIX

A. MULTI-PARTICLE PARTIAL-WAVE
SCATTERING

Here we review the general framework of partial-wave scattering,
including discussion of inelastic and multi-channel scattering.

A.1. Single Particle Elastic Scattering
We consider a spinless particle scattering off of a spinless,
infinitely massive object at rest at the origin, through a spherically
symmetric interaction V(r). As usual, we employ the ansatz
that at large distances from the target, the wavefunction of the
incident particle is the sum of a plane wave incident along the
z-axis and a scattered spherical wave:

ψAns
∞ (r)→ C

(
eikz + f (θ ,φ)

eikr

r

)
. (A1)

The differential cross-section is the ratio of the flux of the
scattered particles Fsc to the flux of the incoming particles Fin.
With an incident beam of N particles, the incoming flux is N jin ·
ez = N |C|2 k/m, and the scattered flux is N|C|2

∣∣f (θ ,φ)
∣∣2k/mr2,

so that and is given by

dσ

d�
: = Fsc

Fin
= 1

Fin
jsc · er r2 = | f (θ)|2. (A2)

And for a spherically symmetric scatterer, f (θ ,φ) = f (θ).
At the same time, we consider solutions to the full Schrodinger

equation

1

r2
∂r
(
r2∂rψ(r)

)
−
[
ℓ(ℓ+ 1)

r2
+ 2mV(r)− k2

]
ψ(r) = 0, (A3)

with k2 : = 2mE, and the full wavefunction expanded in a
series of spherical harmonics 9(Ex, t) = e−iEtψ(r)Yℓ0 (where we
set m = 0 due to conservation of angular momentum). The
asymptotic form of these radial functions is:

ψSch
∞ (r)→ Aℓ

ei(kr−ℓπ/2)

2ikr
+ Bℓ

e−i(kr−ℓπ/2)

2ikr
, (A4)

Finding f (θ) now amounts to matching (A1) and (A4). This
can be accomplished by writing the plane-wave eikz in terms
of Legendre polynomials. The standard expansion is given as
Landau and Lifshitz [31]

eikz =
∞∑

ℓ=0
(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos(θ))

→
∞∑

ℓ=0
(2ℓ+ 1)iℓ

ei(kr−ℓπ/2) − e−i(kr−ℓπ/2)

2ikr
Pℓ(cos(θ)).

(A5)

Choosing the Condon-Shortly phase convention, the spherical
harmonics can be written
Y0
ℓ =

√
(2ℓ+ 1)/4πPℓ(cos(θ)), so by computing the difference:

ψSch
∞ (r)− Ceikz = Cf (θ)

eikr

r
, (A6)

one finds first:

Bℓ = −
√
4π(2ℓ+ 1)iℓC, (A7)

set by the fact that there can be no incoming wave in the scattered
wavefunction. Finally, one finds

f (θ) = 1

2ik

∞∑

ℓ=0
(2ℓ+ 1)[Sℓ − 1]Pℓ(θ), (A8)

Where Sℓ = −Aℓ/Bℓ is the scattering matrix element. When the
scattering is elastic as we’ve just described (kout = kin), the matrix
element Sℓ = e2iδℓ is a pure phase. Otherwise, when the scattering
is inelastic and probability is lost, Sℓ is just a complex number, but

it is still common [14] to parameterize it as S
(in)
ℓ = e2iγℓ , where γℓ

is now a complex number.
Finally, the total cross-section is computed as the integral over

the differential cross-section, which is (using the orthogonality of
the Legendre polynomials)

σ =
∫

d�
dσ

d�
= π

k2

∑

ℓ

(2ℓ+ 1)|Sℓ − 1|2. (A9)

A.2. Multi-Channel Scattering
It is a simple matter to generalize the above to multi-channel
scattering. We treat the case of two species of particles, but as
detailed in section 6 the results are more general. Without loss of
generality, we will only look at 1→ X scattering.

Following Landau and Lifshitz [27], we begin by assuming the
asymptotic forms for each species:

ψAns
1 (r→∞)→ C

(
eik1z + f1(θ ,φ)

eik1r

r

)
. (A10)

and

ψAns
2 (r→∞)→ Cf2(θ ,φ)

eik2r

r
. (A11)

The differential cross-sections are defined in exactly the same way
as the above. This means the 1→ 1 scattering is exactly given by
(A9), while for 1→ 2 scattering we have

dσ 1→2

d�
= k2

k1

m1

m2
|f2(θ)|2. (A12)

Particle 2 satisfies the same Schrödinger equation (A3), and so has
the same asymptotic form (A4). Matching to the ansatz is then as
simple as

ψSch
2,∞ = Cf2(θ)

eik2r

r
, (A13)
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which produces

B2ℓ = 0, (A14)

and

f2(θ) =
1

2ik2C

∑

ℓ

e−iπℓ/2A2ℓY
0
ℓ (θ)

= 1

2ik2

∑

ℓ

(2ℓ+ 1)S
(ℓ)
12 Pℓ(cos θ), (A15)

which defines the scattering matrix element S
(ℓ)
12 =

e−iπℓ/2[4π(2ℓ+ 1)]−1/2A2ℓ/C. Finally, the total cross-section is

σ 1→2 = π

k1k2

m1

m2

∑

ℓ

(2ℓ+ 1)|S(ℓ)12 |
2
. (A16)

One important observation: as long as S
(ℓ)
12 6= 0 for any ℓ, then

S
(ℓ)
11 = e2iγ

(ℓ)
11 must satisfy that the phase γ

(ℓ)
11 is complex, since

some of the probability flux of the incident particle 1 must have
transferred to particle 2.

B. SOLVING FOR 2-PARTICLE
INTEGRATION CONSTANT RATIOS

Here we outline the details of the main calculation in section 4.1.
We do this for 1→ X scattering, but the results are easily applied
to 2→ X scattering by inverting 1↔ 2.

We begin with the boundary condition (4.2), and the general
forms

ψi = Ci+ψi+ + Ci−ψi−, (A17)

where i = 1, 2. For 1→ X scattering, we use C2+ = RC2− with
R defined in (4.4), and the boundary conditions are:

ψ̂ ′1+ + C11ψ̂
′
1− = h11(ψ1+ + C11ψ1−)+ h12C12

(ψ2+R+ ψ2−), and (A18a)

C12(ψ̂
′
2+R+ ψ̂ ′2−) = h22C12(ψ2+R2 + ψ2−)+ h21

(ψ1+ + C11ψ1−). (A18b)

where we define ψ̂ ′i± : = 2πǫ2

mi
∂ǫψi±, and as in (4.3), we define

C11 : = C1−/C1+ and C12 : = C2−/C1+.
Rearranging (A18a) for C12, one finds

C12 =
[
ψ̂ ′1+ − h11ψ1+

]
+ C11

[
ψ̂ ′1− − h11ψ1−

]

h12[ψ2+R+ ψ2−]
. (A19)

Substituting in (A18b),

{
[ψ̂ ′1+ − h11ψ1+]+ C11[ψ̂

′
1− − h11ψ1−]

}

Z =
∣∣h12

∣∣2[ψ1+ + C11ψ1−], (A20)

where

Z : = ψ̂ ′2+R+ ψ̂ ′2−
ψ2+R+ ψ2−

− h22. (A21)

Finally rearranging, we have

C11 = −
ψ1+
ψ1−

[∣∣h12
∣∣2 −

[
ψ̂ ′1+
ψ1+ − h11

]
Z

]

[∣∣h12
∣∣2 −

[
ψ̂ ′1−
ψ1− − h11

]
Z

] (A22)

Plugging this back into (A19), we have

C12 =
ψ1+
ψ2−

[
ψ̂ ′1+
ψ1+ − h11

][∣∣h12
∣∣2 −

[
ψ̂ ′1−
ψ1− − h11

]
Z

]
− [+ ↔ −]

h12

[
Rψ2+
ψ2− + 1

][∣∣h12
∣∣2 −

[
ψ̂ ′1−
ψ1− − h11

]
Z

] ,

= ψ1+
ψ2−

[
ψ̂ ′1+
ψ1+ −

ψ̂ ′1−
ψ1−

]
h21

[
Rψ2+
ψ2− + 1

][∣∣h12
∣∣2 −

[
ψ̂ ′1−
ψ1− − h11

]
Z

] . (A23)

The integration constants in the 2 → X system are solved for in
the same way. Solutions forC22 = C2−/C2+ andC21 = C1−/C2+
in the 2 → X are obtained directly from (A22) and (A23)
(respectively) by simply inverting 1↔ 2.

In order to make use of these formulae, we now have to take
the small-r limit of the mode functions to the appropriate order.

B.1. Leading-Order in kiǫ
First, we make the usual leading-order approximation. For ψ1,
this is exactly as in (4.6):

ψ1(ǫ) ≈ x
−1/2
1

[
C1+x

ζ1/2
1 + C1−x

−ζ1/2
1

]
, and

∂rψ1(ǫ) ≈ ik1x
−3/2
1

[
(ζ1 − 1)C1+x

ζ1/2
1 − (ζ1 + 1)C1−x

−ζ1/2
1

]
,

(A24)

where for convenience here we define xi : = (2ikiǫ), for i = 1, 2.
Here we keep both the divergent (−) and the (often) finite (+)
term because the ratio C1−/C1+ arises from the point-particle
dynamics, and so is of the order kiǫ ≪ 1, which allows the two
terms in (A24) to compete. For particle 2 however, this is not the
case. C2+ = RC2− with R ∼ O(1) so that there is no balancing of
the modes, and the divergent mode is simply dominant. That is:

ψ2(ǫ) ≈ C2−x
−1/2−ζ2/2
2 , and

∂rψ2(ǫ) ≈ −(ζ2 + 1)ik2C2−x
−3/2−ζ2/2
2 . (A25)

With these approximations, we compute:

ψ̂ ′i±
ψi±
≈ −πǫ

mi
(1∓ ζi),

ψ1+
ψ1−
≈ (2ik1ǫ)

ζ1 ,

ψ2+
ψ2−
≈ 0, and

Z ≈ ψ̂ ′2−
ψ2−
− h22 ≈ −

[
(1+ ζ2)

πǫ

m2
+ h22

]
. (A26)
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Then to leading order in kiǫ, it is found that:

C11 ≈− (2ik1ǫ)
ζ1

[∣∣h12
∣∣2 −

[
πǫ
m1

(1− ζ1)+ h11

] [
(1+ ζ2) πǫm2

+ h22

]]

[∣∣h12
∣∣2 −

[
πǫ
m1

(1+ ζ1)+ h11

] [
(1+ ζ2) πǫm2

+ h22

]] ,

(A27)

and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√
k2

k1

2πǫζ1h21

m1

[∣∣h12
∣∣2 −

[
πǫ
m1

(1+ ζ1)+ h11

] [
(1+ ζ2) πǫm2

+ h22

]]

(A28)

It will become apparent that a redefinition of parameters can
significantly clean up our equations. Drawing from the next
appendix, we define

λ̂11 : =
1

ζ1

(
m1h11

πǫ
+ 1

)
λ̂12 : =

h12
√
m1m2

2πǫ
√
ζ1ζ2

,

λ̂22 : =
1

ζ2

(
m2h22

πǫ
+ 1

)
λ̂21 : =

h21
√
m1m2

2πǫ
√
ζ1ζ2

.

(A29)

In terms of these new variables, the integration constants read:

C11 = −(2ik1ǫ)ζ1
[
4λ̂12λ̂21 −

[
λ̂11 − 1

] [
λ̂22 + 1

]]

[
4λ̂12λ̂21 −

[
λ̂11 + 1

] [
λ̂22 + 1

]] , (A30)

and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√
m2k2ζ1

m1k1ζ2

4λ̂21[
4λ̂12λ̂21 −

[
λ̂11 + 1

] [
λ̂22 + 1

]] . (A31)

B.2. Sub-Leading-Order in kiǫ
To leading order, C11 ∼ (2ikǫ)ζ1 , so that to leading order S

(ℓ)
11 is a

pure phase. In order to see the emergence of an absorptive single-
particle model in the particle 1 subsector of the theory (as covered
in section 7), it is necessary to compute C11 to the next order in
kiǫ. To that end, recall:

ψ± = (2ikǫ)
1
2 (−1±ζ )e−ikǫM

[
1

2
(1± ζ ), 1± ζ , 2ikǫ

]
, (A32)

so that

ψ± ≈ (2ikǫ)
1
2 (−1±ζ )

[
1− ikǫ +O

(
(kǫ)2

)][
1+ ikǫ +O

(
(kǫ)2

)]
,

≈ (2ikǫ)
1
2 (−1±ζ )

[
1+O

(
(kǫ)2

)]
(A33)

so at least for ζ < 2, the leading correction is only inψ2, and is to
include the (+) mode, since it is only a factor of (k2ǫ)

ζ2 compared
to the two powers from all other higher-order corrections. In fact
this is a property only of systems without a 1/r potential, as in
that case the leading correction from the hypergeometric factor
does not cancel that from the exponential.

Pushing through then, we repeat the calculation from the
previous section, now using

ψ2(ǫ) ≈ C2−x
−1/2
2

[
x
−ζ2/2
2 + R x

ζ2/2
2

]
, and

∂rψ2(ǫ) ≈ ik2C2−x
−3/2
2

[
−(ζ2 + 1)x

−ζ2/2
2 + (ζ2 − 1)R x

ζ2/2
2

]
.

(A34)

With these approximations, we compute:

ψ̂ ′i±
ψi±
≈ −πǫ

mi
(1∓ ζi),

ψi+
ψi−
≈ (2ikiǫ)

ζi , and

Z ≈ ψ̂ ′2− + R ψ̂ ′2+
ψ2− + Rψ2+

− h22 =
ψ̂ ′2−
ψ2−

1+ R ψ̂ ′2+/ψ̂
′
2−

1+ Rψ2+/ψ2−
− h22

≈ −
[
(1+ ζ2)

πǫ

m2

]{
1+ R

(
ψ̂ ′2+
ψ̂ ′2−
− ψ2+
ψ2−

)}
− h22,

= −
[
(1+ ζ2)

πǫ

m2

]{
1− 2ζ2R

ζ2 + 1
(2ik2ǫ)

ζ2

}
− h22. (A35)

Substituting in (A22), one finds

C1− ≈ −(2ik1ǫ)ζ1





∣∣h12
∣∣2 −

[
πǫ
m1

(1− ζ1)+ h11

]
[
(1+ ζ2) πǫm2

(
1− 2ζ2R

ζ2+1 (2ik2ǫ)
ζ2

)
+ h22

]








∣∣h12
∣∣2 −

[
πǫ
m1

(1+ ζ1)+ h11

]
[
(1+ ζ2) πǫm2

(
1− 2ζ2R

ζ2+1 (2ik2ǫ)
ζ2

)
+ h22

]




,

= −(2ik1ǫ)ζ1
N1 +

[
πǫ
m1

(1− ζ1)+ h11

]
2πǫζ2R

m2
(2ik2ǫ)

ζ2

D +
[
πǫ
m1

(1+ ζ1)+ h11

]
2πǫζ2R

m2
(2ik2ǫ)ζ2

,

≈ −(2ik1ǫ)ζ1
N1

D





1+
[ [

πǫ
m1

(1−ζ1)+h11
]

N1

−
[
πǫ
m1

(1+ζ1)+h11
]

D

] 2πǫζ2R

m2
(2ik2ǫ)

ζ2




,

(A36)

where

N1 : =
∣∣h12

∣∣2 −
[
πǫ

m1
(1− ζ1)+ h11

] [
(1+ ζ2)

πǫ

m2
+ h22

]
, and

D : =
∣∣h12

∣∣2 −
[
πǫ

m1
(1+ ζ1)+ h11

] [
(1+ ζ2)

πǫ

m2
+ h22

]
.

(A37)

Then (A36) simplifies to:

C11 = −(2ik1ǫ)ζ1
N̂1

D̂

{
1− 4R

λ̂12λ̂21

N̂1D̂
(2ik2ǫ)

ζ2

}
. (A38)
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C. SOLVING FOR POINT-PARTICLE
COUPLINGS

To find the running of the point-particle couplings, we need to
isolate for them in the boundary conditions. To do so, we follow
the same prescription as B. Write:

ψi = Ci+ψi+ + Ci−ψi−, (A39)

where i = 1, 2. We again use (5.8) to define C11 : = C1−/C1+
and C12 : = C2−/C1+ in the 1 → X system, and analogously
C22 : = C2−/C2+ and C21 : = C1−/C2+ in the 2→ X system.

For convenience, define the following:

ψ11 : = ψ1+ + C11ψ1− and ψ12 : = C12 [Rψ2+ + ψ2−]
(A40)

for the 1→ X system, and

ψ22 : = ψ2+ + C22ψ2− and ψ21 : = C21 [Rψ1+ + ψ1−]
(A41)

for the 2→ X system. The small-r boundary conditions (4.5) and
(4.10) can be written

ψ̂ ′11 = h11ψ11 + h12ψ12, and (A42)

ψ̂ ′12 = h22ψ12 + h21ψ11, (A43)

and

ψ̂ ′21 = h11ψ21 + h12ψ22, and (A44)

ψ̂ ′22 = h22ψ22 + h21ψ21, (A45)

As in Appendix B, we define ψ̂ ′ : = 4πǫ2∂ǫψ . Using (A42) and
(A44), we can isolate for h11 and h12:

h11 =
ψ̂ ′11ψ22 − ψ̂ ′21ψ12

ψ11ψ22 − ψ21ψ12
and h12 =

ψ̂ ′11ψ21 − ψ̂ ′21ψ11

ψ12ψ21 − ψ22ψ11
.

(A46)
Similarly, using (A43) and (A45), we can isolate for h22 and h21:

h22 =
ψ̂ ′12ψ21 − ψ̂ ′22ψ11

ψ12ψ21 − ψ22ψ11
and h21 =

ψ̂ ′12ψ22 − ψ̂ ′22ψ12

ψ11ψ22 − ψ21ψ12
.

(A47)
To make use of these formulae, we approximate ψij using the
small-r forms as used in Appendix B:

ψ11(22)(ǫ) ≈ x
−1/2
1(2)

[
x
ζ1(2)/2

1(2)
+ C11(22)x

−ζ1(2)/2
1(2)

]
, and

4πǫ2∂r|ǫψ11(22)(ǫ) ≈ 2πǫ x
−1/2
1(2)

[
(ζ1(2) − 1)x

ζ1(2)/2

1(2)

−(ζ1(2) + 1)C11(22)x
−ζ1(2)/2
1(2)

]
,

(A48)

and

ψ21(12)(ǫ) ≈ C21(12)x
−1/2−ζ1(2)/2
1(2)

, and

4πǫ2∂r|ǫψ21(12)(ǫ) ≈ −(ζ1(2) + 1)2πǫ C21(12)x
−1/2−ζ1(2)/2
1(2)

.

(A49)

where again, xi : = (2ikiǫ), with i = 1, 2. Substituting (A48)
and (A49) into (A46) and (A47), we have the following. For h11
we find

λ̂11 =

(x
ζ1/2
1 − C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

+C21C12x
−ζ1/2
1 x

−ζ2/2
2

(x
ζ1/2
1 + C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

−C21C12x
−ζ1/2
1 x

−ζ2/2
2

,

= (1− C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )+ C21C12x

−ζ1
1 x

−ζ2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

, (A50)

which defines λ̂11 : = 1
ζ1

(
m1h11
πǫ
+ 1

)
. Notice the limit C21 =

C12 → 0 reduces λ̂11 to the single-species running (2.9), as it
should (the limit in which there is no mixing between particle
species). For h12, we have

λ̂12 =
√
m2ζ1

m1ζ2

C21

(
x1
x2

)−1/2

(x
ζ1/2
1 + C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

−C21C12x
−ζ1/2
1 x

−ζ2/2
2

,

=
√
m2ζ1

m1ζ2

C21

(
x1
x2

)−1/2
x
−ζ1/2
1 x

−ζ2/2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

,

(A51)

with now λ̂12 : = h12
√
m1m2

2πǫ
√
ζ1ζ2

. Notice again the clean limit h12 → 0

when C21→ 0. The rest follow easily:

λ̂21 =
√
m1ζ2

m2ζ1

C12

(
x2
x1

)−1/2
x
−ζ1/2
1 x

−ζ2/2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

,

(A52)

similarly with λ̂21 : = h21
√
m1m2

2πǫ
√
ζ1ζ2

. Lastly,

λ̂22 =
(1+ C11x

−ζ1
1 )(1− C22x

−ζ2
2 )+ C21C12x

−ζ1
1 x

−ζ2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

, (A53)

with λ̂22 : = 1
ζ2

(
m2h22
2πǫ + 1

)
.
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