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Two organic-inorganic halide CH3NH3PbI3 perovskite solar cells prepared in the same

experimental batch but having different power conversion efficiencies −18.46% and

17.15%—were investigated based on the absolute electroluminescence (EL) efficiency

measurements and traditional I-V measurements. The possible factors that affect the

power conversion efficiency were also investigated. Comparing the experimental I-V

curves of the two solar cells, it was found that the short-circuit currents (Jsc) were nearly

the same; however, the open-circuit voltages (Voc) were markedly different. Moreover, the

deduced I-V curves from the absolute EL efficiencies of the two solar cells, which were

mainly affected by the material quality, were almost the same, proving that the device

processing technology has a vital effect on Voc.

Keywords: CH3NH3PbI3, perovskite, thin-film solar cell, absolute electroluminescence (EL) efficiency

measurements, energy losses

INTRODUCTION

In the last few years, the power conversion efficiency (PCE) of hybrid organic-inorganic halide
perovskite solar cells (PSCs) has improved dramatically, with their power conversion efficiency
increasing from 3.9% [1] to a record high of more than 20% [2–5], thereby outperforming
commerciallymature thin-film solar cells [such as Cu(In,Ga)Se2 andCdTe solar cells] [6]. Although
PSCs have caused widespread concern in the scientific community, the actual PCE is still far below
the theoretical efficiency limit of about 31% [7, 8]. Characterizing energy losses and designing
an approach for achieving higher efficiency are of great importance. However, some specific
physical properties of PSCs, which are important for cell design and fabrication, are difficult to
obtain via the widely used traditional solar-simulator-based current-voltage measurement [9–12].
Moreover, there are many factors, such as thickness and film quality of every layer, which may
affect device performance and result in a low reproducibility. Therefore, it is of importance to
study these variations and to try to find out the origins to improve yield and reliability for
achieving high and stable efficiency for solar cell. Electroluminescence (EL)measurement is another
promising diagnosis technique for solar cells, having the advantages of being non-destructive
and relatively simple [13–20]. An absolute EL-efficiency measurement method based on the
basic reciprocity relationship between the light-emitting diode operation and solar cell [13]
has been demonstrated as a powerful method for diagnosing solar cells [21, 22]. This can
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evaluate not only the internal current-voltage properties but also
detailed photovoltaic parameters of the PSCs, including junction
loss, non-radiative loss, radiative emission loss, thermalization
loss, and transmission loss in the solar cell, providing useful
feedback information for device design and fabrication.

In this study, PSCs were prepared with the solution process
method at the same time and same condition; however, the
conversion efficiencies were different, 18.46 and 17.15%. To
determine the reason for different efficiencies, these PSCs were
measured with both the traditional I–V measurements and the
absolute EL efficiency measurements. The measured EL quantum
efficiency of the solar cell directly reflect the penalty inVoc arising
from the NR recombination. The photovoltaic parameters and
energy losses of the solar cells were analyzed with the absolute
EL efficiency measurements. Through the comparison of the
predicted I–V properties with the experimental I–V of the solar
cells, possible factors that affect the power conversion efficiency
of the solar cells were discussed.

EXPERIMENTAL

The PSCs were prepared using a well-documented process by
Oku et al. [23] with slight adjustment. The specific fabrication
process of solar cells is described as follows. Fluorine-doped tin
oxide (FTO) was first etched by Zn powder and HCl. The etched
FTO was then cleaned ultrasonically with detergent, deionized
water, acetone, isopropanol, and ethanol successively, and then
dried with nitrogen gas. A titanium dioxide (TiO2) precursor
solution was spin-coated on the FTO glass substrate at 2,000 rpm
for 30 s, followed by muffle furnace sintering at 500◦C for 1 h to
form a compact TiO2 layer. After cooling to room temperature, a
perovskite film was formed using the spin-coating method with
a CH3NH3PbI3 precursor solution on the TiO2 layer at 2,000
rpm for 30 s. The 37 wt% CH3NH3PbI3 precursor solution was
prepared by dissolvingMAI and Pb(Ac)2 in anhydrousDMFwith
a 3:1 molar ratio. Upon annealing at 100◦C for 10min, the film
darkened in color, indicating the formation of a CH3NH3PbI3
perovskite film, which was confirmed by X-ray diffraction (XRD)
spectroscopy. Subsequently, the hole transporting material, a
Spiro-OMeTAD solution, was deposited on top of the perovskite
film by spin coating at 3,000 rpm for 30 s. The Spiro-OMeTAD
solution was prepared by dissolving 72.3mg of Spiro-OMeTAD,
28.5 µL of 4-tert-butylpyridine, and 17.5 µL of lithium salt-
acetonitrile solutions in 1mL of chlorobenzene. After that, a
gold metal contact of 80 nm thickness was evaporated using a
mechanical mask onto the sample as top electrodes to form the
complete device. The size of the cell unit studied was circular with
a diameter of 0.3 cm.

The experimental setup for the absolute EL measurements
of the PSC consists of a current-voltage source and a photon
detection approach following the setup reported by Chen et al.
[22] and Yoshita et al. [24]. The spectrometer consists of two
parts, one is a monochromator and the other is an electrically
cooled silicon charge-coupled device. The solar-cell External
Quantum efficiency (EQE) was measured with Crowntech Qtest
Station 1000 AD. The experimental I-V characteristics of the

PSCs were performed under illustration at 100mW/cm2 using an
AM1.5G solar simulator at room temperature. The experimental
I–V measurement was performed at forward scan direction with
scanning rate of 0.3 V/s. XRD patterns were obtained using Cu
Kα radiation.

RESULTS AND DISCUSSION

Figures 1A,B present the photograph and the schematic
structure of the PSCs used in this study, respectively. Figure 1C
shows the cross-section sectional scanning electron microscopy
(SEM) image of the CH3NH3PbI3 film deposited on the TiO2

layer, visualizing a thick perovskite layer of around 1µm.
Figure 1D shows the XRD pattern of the CH3NH3PbI3 film.
The diffraction peaks located at degrees of 14.16, 28.45, and
43.35 can be indexed to the (110), (220), and (330) planes,

FIGURE 1 | (A) Photograph, (B) schematic structure, (C) cross-section SEM

image, and (D) XRD pattern of the CH3NH3PbI3 PSCs.

FIGURE 2 | I–V characteristics of CH3NH3PbI3 PSCs.
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FIGURE 3 | EL images of cell 1 with different forward Jinj . The size of the cell unit was circular with a diameter of 3mm.

FIGURE 4 | (A) EQE and normalized EL spectra of the cell 1. (B) yLEDext of the cell 1 as a function of the forward Jinj . (C) I–V curves of the cell 1 under the AM1.5 1-sun

condition with solar simulator (blue open circle), deduced from EL measurements without (black line), and with (red dash dot line) a series resistance Rswith a value of

0.044 � cm2.

respectively, confirming an orthorhombic crystal structure of the
CH3NH3PbI3 film with high crystallinity, which is consistent
with the previous report [25].

Figure 2 shows the corresponding I–V characteristics of the
PSCs (cells 1–4) used in this study. We can observe that although
the solar cells are fabricated with the same process at the same
time, their efficiencies are slightly different. Therefore, we chose
two solar cells (cell 1 and cell 4) with different efficiencies to
analyze their photovoltaic parameters and energy losses with
absolute EL efficiency measurements.

Figure 3 shows the absolute EL intensity images of cell 1 with
different applied forward injection current densities. Along with
the increase of injection current density, higher EL emission
intensity can be observed. It can be seen that the solar cells

have some spatial inhomogeneity, on account of the internal
resistance of the sample, which has been proved by Mochizuki
et al. [26]. It can also be seen that some bright points with weak
current injections disappeared with increasing current density,
indicating that the current distributions in the solar cells are
different with different current injection densities. Further, the
forward injection current may have some effects on the structural
andmaterial properties of the solar cells, whichwas also discussed
previously by Okano et al. [27].

Figure 4A shows the measured EQE spectrum and the
normalized EL intensity of solar cell 1. Figure 4B shows the
measured EL quantum efficiency yLEDext (defined as the ratio
between the emitted photon number and the total injected carrier
number) of solar cell 1 on a semi-log scale as a function of the
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TABLE 1 | Major parameters of the cell 1 derived from the I–V curves from the

absolute-EL-measurements with and without considering Rs, from experimental

I–V measurement under the condition of AM1.5 1sun.

VOC (V) Vmax (V) Jmax(mA/cm2) FF (%) η (%)

EL meas. 1.10 0.957 21.18 83.28 20.27

Solar

simulator

1.08 0.897 20.58 77.25 18.46

EL meas.

with Rs

1.10 0.873 21.16 75.90 18.48

Dev. (EL and

Solar

simulator)

0.02 0.060 0.60 6.03 1.81

Dev. (EL with

Rs and Solar

simulator)

0.02 0.024 0.58 1.35 0.02

injected current density. In the early stage, yLEDext of the solar
cell increases gradually with increasing injection current density,
which indicates an increased radiative recombination rate with
increased carrier density [28]. Nevertheless, when applying high
current densities, yLEDext gradually decreased. Similar behaviors
were observed previously in PSCs [27, 29–31], and two possible
origins with high carrier density are suggested: (1) Generation
of non-radiative recombination centers [29] and (2) migration
of ions induced generation of trap-type vacancy defects in the
perovskite layer [30], which may be responsible for the observed
degradation of the EL efficiency.

According to the reciprocity relationship between EL and EQE
of a solar cell [13], the emitted photon density Rem from the top
surface of the solar cell can be given as

Rem =

∫
EQE(E)φb(E) exp(

qV

kT
)dE

Here, φb(E) =
2πE2

h3c2 exp(E/kT)
is the spectral photon density of a

black body for the photon energy E; V is the internal junction
voltage; q is the electron charge; k is the Boltzmann constant;
T is the Kelvin temperature of the cell; and h and c are the
Planck constant and the velocity of light in vacuum, respectively.
Moreover, Rem is expressed as a function of yext and JAM1.5.
Hence, we can derive the internal I-V characteristics of solar cell 1
as shown in Figure 4C. The detailed description of the derivation
can be found in previous studies [21, 22].

Figure 4C plots the I–V curves of solar cell 1 under 1-
sun AM1.5. The blue open circle represents the experimental
I–V measurements under a 1-sun AM1.5 condition using a
solar simulator. The black solid line represents the I–V curve
extrapolated from the absolute EL measurements without series
resistance contribution. The red dash-dot solid line represents
the estimated I-V curve from the absolute EL measurements
considering the effect of series resistance Rs, where the value
of Rs is estimated as 0.044 � cm2. The I–V curve measured
by the EL method after considering the series resistance Rs
comes much closer to the I–V curve measured with a solar
simulator. Table 1 lists the fundamental photovoltaic parameters

TABLE 2 | Major parameters of the cell 1 derived from the I–V curves based on

absolute EL-efficiency measurements under AM1.5 1-sun radiation under the

working condition of maximum output power.

Input Loss Power output

AM1.5-1Sun TH TR EM NR JN

1 0.144 0.501 1.73E-8 0.016 0.135 0.204

of solar cell 1 extrapolated from the I–V curves with the
solar simulator by the EL method with Rs and without
Rs, respectively.

As we can see, the open-circuit voltage Voc of 1.10V derived
through the absolute EL efficiency and EQE measurements is in
good agreement with the measured Voc of 1.08V with the solar
simulator. The derived efficiency of 20.27% from the EL efficiency
is higher than the measured efficiency of 18.46%, because the
effects of the resistances from the solar cell or sometimes partly
from the probes of the I–Vmeasurement system are not included
in the EL method. If we introduce Rs into the I–V from the
absolute EL measurement, the efficiency (18.48%) gets much
closer to the measured data with a very small deviation of 0.02%.
Furthermore, the detailed energy losses of the solar cell can
also be obtained from the absolute EL efficiency measurements.
We evaluated all the loss/output rates in solar cell 1 working
at the maximum-output-power condition under AM1.5 1-sun
irradiation [22], as shown in Table 2. All the values are given in
proportion; the input solar energy is normalized to 100%.

As a result, 50.1% solar energy transmits (TR) through the
device without being absorbed; 49.9% solar energy is absorbed,
but only 20.4% solar energy is used for generating electric energy.
The rest is all energy loss, including 14.4% of thermalization
(TH) loss, 1.6% of non-radiative (NR) loss, and 13.5% of junction
(JN) loss. The radiative emission (EM) loss is small enough to
be neglected in the maximum-output-power condition. From
Table 2, we know that most of the energy loss in the PSC is caused
by the TR loss, i.e., photons with energies lower than the bandgap
energy of the solar cell material cannot be utilized. The TH loss
is due to the relaxation of “hot” charge carriers that were created
upon absorption of high-energy photons in solar irradiation [32].
The TR and TH losses mainly depend on material, and once
the material is fixed, these losses cannot be reduced. Reducing
JN and NR loss is a feasible approach to obtaining higher
conversion efficiency. Numerous defects in the polycrystalline
perovskite film will give rise to serious NR loss. High-quality
perovskite films with low-density defects are necessary. To
obtain high-quality perovskite films with low-density defects,
many methods have been proposed: (1) the dual-functional
polymethyl methacrylate fullerene complex is incorporated
into the perovskite layer to accomplish the improvement
in intrinsic stability and charge transport properties of the
film [33]; (2) antisolvent assisted crystallization method to
obtained superior film [34, 35]; (3) incorporation of chlorine
in perovskite film enlarges grains increases crystallinity and
carrier mobility, reduces electronic disorder and suppresses
trap-assisted recombination [36], leading to improved efficiency
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FIGURE 5 | (A) yextof the cell 4 measured under LED operation as a function of the forward Jinj . (B) I–V curves of the cell 4 under AM1.5 1-sun condition with solar

simulator (blue open circle) and deduced from EL measurement without (black solid line) and with (red dash dot line) Rscontribution. (C) I–V curves measured with

solar simulator and (D) the I–V curves from EL measurement of cell 1 (red open circle) and cell 4 (blue open triangle), respectively.

TABLE 3 | Major parameters of the solar-simulator-based and

EL-measurement-based I–V curves with a condition of AM1.5 1-sun of cell 1 and

cell 4.

Voc (V) Jsc (mA/cm2) η (%)

Solar simulator

#1 1.08 22.13 18.46

#4 1.02 22.20 17.15

Dev 0.06 0.07 1.31

EL meas.

#1 1.10 22.13 20.27

#4 1.08 22.20 19.81

Dev 0.02 0.07 0.46

of devices. Furthermore, interfacial recombination at the
perovskite/transport-layer interface dominates the junction
energy loss and results in a significant reduction of the potential
Voc of the solar cell. Consequently, Stoterfoht et al. have reported
that inserting an ultrathin LiF interfacial layer between the
perovskite and transport layers, which decreases the interface
recombination and increases quasi-Fermi-level splitting, results
in significant improvement of the device performance [37].
We will further improve the quality of perovskite films and
optimize the interface between the perovskite and transport
layers to obtain high-efficiency solar cells for EL measurement
in our future work. These results provide valuable diagnosis for
optimizing the PSC structure.

To further explore the possible factors that affect the power
conversion efficiency of the solar cells, solar cell 4 was also

TABLE 4 | Energy balance sheet of two CH3NH3PbI3 cell samples (cell 1 and cell

4) with different efficiencies derived from the I–V curves based on absolute

EL-efficiency measurements under AM1.5 1-sun radiation under the working

condition of maximum output power.

Cell Input Loss Power

output
AM1.5-1Sun TH TR EM NR JN

#1 0.144 0.501 1.73E-8 0.016 0.135 0.204

#4 1 0.150 0.495 1.65E-8 0.025 0.132 0.198

measured with absolute EL measurements. Figure 5A shows the
measured absolute EL efficiency as a function of the injection
current density of solar cell 4. Figure 5B plots the I–V curves
of solar cell 4 under 1-sun AM1.5 with different measurements.
The open-circuit voltage Voc evaluated from the absolute EL
measurements and from the I–V measurements with solar
simulator were 1.08 and 1.02V, respectively. The I–V curve
measured with a solar simulator was clearly different from the
I–V curve obtained from the absolute EL measurement, even
considering the series resistance Rs. Moreover, Figures 5C,D
show the I–V curves measured with the solar simulator and I–
V curves deduced from the EL measurements of both the solar
cells, and the corresponding extracted key device parameters
are summarized in Table 3. From Figure 5C, it can be seen
that the short-circuit currents (Jsc, 22.13 mA/cm2 for solar cell
1 and 22.20 mA/cm2 for cell 4) of the two cells are almost
the same; however, the open-circuit voltages (Voc, 1.08V for
cell 1 and 1.02V for cell 4) are clearly different. In addition,
from Figure 5D it can also be seen that the difference between
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the predicted I–V relations from the EL measurements of
cell 1 and cell 4 is minor. This indicates that the fabrication
processes have a significant impact on the Voc of the solar
cells, such as the electrode effect [38], perovskite/hole transport
layer (HTL), and perovskite/ electron transport layer (ETL)
interface effects [39]. It is possible that the ohmic contact
between the HTL and the Au electrode is not good in solar
cell 4; thus, substantial surface recombination may occur at
the interfaces, which in turn will decrease Voc. Moreover,
the perovskite-HTL and perovskite-ETL interfaces are critical
in charge transportation, recombination, and separation, thus
affecting Voc [39]. The decrease in Voc of cell 4 might be
attributed to the imperfect interfaces and will thereby influence
charge extractions.

Furthermore, the detailed energy loss of the two cell
samples (cell 1 and cell 4) derived from the I–V curves
based on absolute- EL-efficiency measurements under AM1.5
1-sun radiation under the working condition of maximum-
output-power including the TH loss, TR loss, EM loss, NR
loss, and JN loss, as shown in Table 4. It can be seen that
for the two cells, the distributions of energy losses were
almost identical. From Table 4, it could be inferred that the
higher Voc for the high efficiencies might be partly due to
the smaller NR loss. The lower efficiency for cell 4 was
possibly due to its poorer interface (perovskite/Spiro-OMeTAD
or perovskite/TiO2) inducing more non-radiative loss, resulting
in a significant reduction of the Voc, which is consistent with
previously reported results [37].

CONCLUSION

In summary, a batch of PSCs were prepared with a solution
process method at the same time and under the same conditions;
however, the conversion efficiency differed. To understand
the reason for the different efficiencies, two solar cells with
different power conversion efficiencies were investigated by
employing absolute EL efficiency measurements and traditional
I–V measurements. The photovoltaic parameters and energy
losses of the solar cells were also analyzed with the absolute

EL efficiency measurements. It was found that the short-
circuit currents (Jsc) were nearly the same; however, the open-
circuit voltages (Voc) differed markedly, while the deduced
I-V curves from the absolute EL efficiencies of the two
solar cells were almost same. This indicates that the device
processing technologies may have a significant effect on
Voc. The quantification of the energy losses and internal
parameters of PSCs is expected to provide valuable insight
and guidance for the future design and development of high-
efficiency CH3NH3PbI3 solar cells. In addition, PSCs are
sensitive to environmental conditions—it is better to measure
the PSCs placed within a glove box that is free of oxygen
and moisture.
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