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Spatiotemporal regulation of molecular activities dictates cellular function and fate.

Investigation of dynamic molecular activities in live cells often requires the visualization

and quantitation of fluorescent ratio image sequences with subcellular resolution

and in high throughput. Hence, there is a great need for convenient software tools

specifically designed with these capabilities. Here we describe a well-characterized

open-source software package, Fluocell, customized to visualize pixelwise ratiometric

images and calculate ratio time courses with subcellular resolution and in high

throughput. Fluocell also provides group statistics and kinetic analysis functions for

the quantified time courses, as well as 3D structure and function visualization for

ratio images. The application of Fluocell is demonstrated by the ratiometric analysis

of intensity images for several single-chain Förster (or fluorescence) resonance energy

transfer (FRET)-based biosensors, allowing efficient quantification of dynamic molecular

activities in a heterogeneous population of single live cells. Our analysis revealed distinct

activation kinetics of Fyn kinase in the cytosolic and membrane compartments, and

visualized a 4D spatiotemporal distribution of epigenetic signals in mitotic cells. Therefore,

Fluocell provides an integrated environment for ratiometric live-cell image visualization

and analysis, which generates high-quality single-cell dynamic data and allows the

quantitative machine-learning of biophysical and biochemical computational models for

molecular regulations in cells and tissues.

Keywords: ratiometric, high-throughput, live-cell image, visualization, quantitation, image analysis

INTRODUCTION

The localization and activity of intracellular molecules have been successfully monitored with
chimeric fluorescence proteins at single-cell levels to reveal how they dictate cellular function
and fate [1–3]. However, intensity-based measurements can be artificially affected by different
reporter expression levels in individual cells and subcellular variation of protein distribution due
to cellular compartments and membrane folding [2, 3]. Therefore, ratiometric visualization and
analysis are often necessary to normalize the fluorescence signals by a reference in the same cell,
and to render the results independent of artifacts [3, 4]. Furthermore, intrinsically ratiometric
single-chain FRET biosensors have been widely applied to monitor subcellular dynamic molecular
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activities with high spatiotemporal resolution [5, 6], which
also require ratiometric analysis. The single-chain FRET
biosensors ensure 1:1 donor-acceptor ratio and allow the
quantification of FRET signal without cross-talk. Currently,
intensity-based software packages have been developed with
enriched functionalities with graphic user interfaces [7–10], while
some general open-source ratiometric image analysis tools can
be used for time-course quantifications with programming and
customization [11, 12]. However, existing ratiometric analysis
tools lack desired flexibility in preprocessing and quantification
options and have not been widely used [13, 14].

At this front, we developed the Fluocell software package to
visualize and quantify dynamic sequences of ratiometric image
data with subcellular resolutions and in high throughput. Fluocell
has been developed over many years with its designed functions
extensively tested and refined. It is also accompanied with a
detailed documentation. Fluocell is built with a graphic user
interface (GUI) in the Java programming language and functions
in MATLAB to visualize and quantify pixelwise intensity
ratio images. The extension module, Quanty, is developed
on top of Fluocell to allow automatic and high-throughput
ratiometric processing. Fluocell and Quanty are cross-platform
compatible, object-oriented, and modularized. The source code,
documentation and example data are freely available at our
group website and GitHub. The ratiometric image analysis
functionalities of Fluocell have been extensively tested by us
and other groups [15–21]. In addition, Fluocell also contains a
previously published Diffusion module for image-based FRAP
analysis, as well as intensity-based polarity analysis functions
which have been used to quantify the spatial distribution of PI3K
and Rac1 in polarized cells seeded on micropatterns [22–24].

The application of Fluocell and Quanty is demonstrated
by the pixelwise ratiometric analysis of intensity images of
several FRET-based biosensors. Single-chain protein tyrosine
kinase biosensors have been widely applied to visualize the
spatiotemporal distribution of kinase activity in live cells [3, 6, 23,
25, 26]. These biosensors contain an enhanced cyan fluorescent
protein (ECFP as the FRET donor), a Src SH2 domain, a
flexible linker, a specific tyrosine-containing substrate peptide,
and a yellow fluorescent protein (YPet as the FRET acceptor,
Figure S1) [23, 26, 27]. Active kinases can promote tyrosine
phosphorylation on the substrate peptide of the corresponding
biosensors, leading to a subsequent conformational change, and
a decrease of FRET efficiency between the donor and the acceptor,
while phosphatase works reversely to dephosphorylate the
peptide and cause increase of FRET (Figure S1). Therefore, the
donor/acceptor emission ratio of the biosensor signals represent
local biosensor phosphorylation mediated by the specific kinase
in live cells. These biosensors can also be genetically engineered
to localize at different subcellular compartments, including the
plasma membrane micro-domains, and to provide versatile
measurement of local molecular activities [6, 28]. As such, the
ratiometric and high-throughput visualization and quantification

Abbreviations: FRET, Förster or fluorescence, resonance energy transfer; GUI,
graphic user interface; ECFP, enhanced cyan fluorescent protein; YPet, yellow
fluorescent protein; IMD, intensity modulated display; ROIs, regions of interest;
SEM, standard error of mean; PDGF, platelet-derived growth factor.

of signals from these FRET biosensors can provide important
information of spatiotemporal enzymatic activity at the single-
cell level in a heterogeneous cell population.

With the functionalities of Fluocell and Quanty, gigabytes
of dynamic image data can be viewed and quantified in an
automated workflow, within a matter of minutes. The software
packages enable the efficient investigation of molecular activation
kinetics in a large population of single cells. In our study, the
quantified results from Fluocell and Quanty revealed different
activation kinetics of Fyn kinase in the cytosolic and membrane
compartments, and visualized a 4D distribution of epigenetic
histone methylation signal in mitotic cells. Although FRET
ratiometric imaging were used as an example, the functionality
of Fluocell and Quanty is general and can be applied to
any pixelwise ratiometric analysis. Overall, Fluocell/Quanty
provides an integrative environment for live-cell ratiometric
image visualization and analysis, which will ultimately generate
large amount of high-quality molecular data and allow the
machine-learning of a comprehensive molecular regulation map
for all cell types. In this paper, we describe the systematic
design, functional characterization, and application with specific
biological problems.

RESULTS

The Ratiometric Image Analysis Workflow
of Fluocell and Quanty
Ratiometric image analysis is widely used since the self-
normalization process permits analysis of molecular
concentration or activity independent of variable protein
expression levels among different cells or different subcellular
regions. The Fluocell image analysis software package is
specifically designed for the ratiometric quantification of live-
cell imaging data such as those recorded with two different
fluorescent protein-tagged molecules or a FRET-based biosensor.
As shown in Figure 1A, the Fluocell graphic user interface
(GUI) recognizes the string patterns of file names recorded in
two intensity channels and in a time sequence. The “FRET” or
“Ratio” protocol allows the convenient visualization of intensity
ratio images (Figure 1A).

The Fluocell workflow put an emphasis on processing
ratiometric and dynamic image sequences (Figure 1B). The
workflow has five steps (Figure 1B): (1) preprocess the images by
background subtraction and filtering; (2) visualize the pixelwise
ratio images with intensity modulated display (IMD) in 2D and
3D; (3) automatically detect or manually select features/regions
of interest (ROIs); (4) track the ROIs and quantify the average
ratio signals in time; (5) collect the quantified time courses and
perform statistical analysis.

At step (2), a matrix of ratio values was computed in the
function compute_ratio, where the pixelwise ratio between the
images loaded into the first and second channels was calculated
with some robust measure. Specifically, for each pixel (i, j) in
the image,

ratio(i, j) =
First Channel Image(i, j)+ δ

Second Channel Image
(

i, j
)

+ δ
,
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FIGURE 1 | Fluocell overview and features. (A) A screenshot of the main Fluocell interface; (B) Schematic of a typical ratio image visualization and analysis pipeline of

Fluocell; (C) The multiple-position quantification feature in the Quanty module: (i) The video image data of multiple cells are obtained by a microscope with an

automated stage. (ii) The image files for each cell are sorted into a folder by the batch_sort_file_multiple_position function; the g2p_quantify function automatically

scans the list of folders and quantifies the time courses of intensity ratio for all cells. (iii) The time courses are collected and plotted by the group_plot function to allow

further analysis.

where δ is a small number of the value 1.0e-4. This framework
allows the flexibility of choosing any numerator and denominator
in ratio calculation, with the goal that the ratio value
changes monotonically with and hence represents the targeted
molecular activity. Meanwhile, it also allows that FRET efficiency
be calculated using other external functions or algorithms
and used to replace the current ratiometric calculation in
compute_ratio (see Supplementary Information for details). The
IMD images were calculated in the function get_imd_image,
by mapping the ratio values to color hue, and the pixelwise

average of two intensity images to the brightness, of the HSV
color space.

Step (3) provides the option to either simply manually
select or automatically detect the ROIs [29]. At step (4), the
quantified results can be exported to Excel files for further
analysis and interpretation (Figure 1B and the Fluocell User’s
Guide in Supplementary Materials). Intermediate results in the
workflow can be saved and exported from Fluocell. For example,
the IMD of ratio images can be saved and used to make reports
and movies (Figure 1B).
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Molecular activities in single cells within a population
are heterogeneous and dynamic [30]. To efficiently quantify
these dynamic activities for many single cells at subcellular
levels, we extended the functionality of Fluocell to a multiple-
position visualization and analysis module, Quanty, which can
process multiple dynamic image sequences in a single run
(Figure 1C). Briefly, multiple-position imaging data can be
collected on a microscope equipped with an automated stage.
With the Quanty module, the image data can be divided into
different subfolders, and then automatically processed to obtain
quantified time courses via the Fluocell workflow in a single run
(Figure 1C). Fluocell is implemented in Java and MATLAB, with
its accuracy and computational efficiency carefully characterized
(Supplementary Materials, Figures S2, S3).

Multiple-Sequence/Position Quantification
and Visualization of FRET Ratio
Modern microscopes with automated stages allow the collection
of live image sequences at multiple spatial positions on the
same glass slide (Figure 1C). To visualize and quantify these
image sequences at high throughput, we developed the Quanty
extension package to interface the input data structure with
the automatic workflow of Fluocell (Figure 2A). Briefly, the
Quanty functions can be used to calculate multiple time
courses from multiple positions, by repeatedly and automatically
running Fluocell functions on each image sequence (Figure 1C).
The functionality of Quanty is demonstrated by processing
images reported by a new Fyn FRET biosensor, with the
ECFP/FRET intensity ratio representing the in-situ biosensor
phosphorylation mediated by active Fyn kinase [20]. The
subcellular biosensor signals are visualized by the IMD display
of pixelwise ECFP/FRET ratio, and quantified by the average
ECFP/FRET ratio values within the ROIs (Figure 2).

After loading the images into Fluocell GUI, all the necessary
information was transferred to Quanty via the initialization
function g2p_init_data (Figure 2A). As a result, intensity ratio
images of different cells from multiple positions at chosen time
points can be visualized by the group_image_view function in
Quanty (Figure 2B and Figure S4). Meanwhile, the average ratio
time course of each image sequence can be calculated and plotted
by the g2p_quantify function (Figure 2C). The average ratio at
each time point was evaluated by averaging the pixelwise ratio
values within the detected ROIs. At this step, if a quantified
time course is under question, it can be backtracked to the
corresponding image data, so that the user can screen and control
quality of analysis.

Afterward, the quantified time courses of all cells from
multiple image sequences can be plotted together using the
group_plot function, as well as the average time course with
original data points (Figures S5, S6). For normalization, single-
cell ratio time courses were divided by its average value
before stimulation (basal value) to bring the basal level to 1
across different cells (Figures 3A,B). This technique is often
used to allow the comparison of molecular activation kinetics
across groups of cells with heterogeneous basal activities. The
Quanty functions are computationally efficient—increasing the

quantification speed by ∼8.6-folds, and that of group statistics
by 650-folds when compared with semi-automatic quantification
by three experienced scientists using the commercial software
packageMetaFluor (Figure 2D). These results show that Fluocell
and Quanty can automatically process FRET ratio images with
objectivity, flexibility, and high efficiency.

The quantified time courses were saved in an Excel file named
“result.csv” (on Mac, and “result.xlsx” on MS Windows) in the
image data folder. Subsequently the group_compare function can
be used to compare the statistics of these time courses, such
as normalized ratio values averaged among cells in different
experimental group, ratio values averaged during a chosen time
interval, maximal ratio, and the time to reach the maximal
ratio (Figure 3).

Fyn FRET Ratio Imaging and Statistical
Inference
The Src family kinase Fyn plays important roles in cell-
matrix interaction, cell migration, and anchorage dependent
growth [31, 32]. Our group recently developed a Fyn FRET
biosensor to monitor this specific kinase activity in live cells [20].
Mouse embryonic fibroblast (MEF) cells expressing cytosolic or
membrane targeted Fyn biosensors were stimulated by platelet-
derived growth factor (PDGF) to activate Fyn kinase. Briefly, the
cells expressing biosensors were imaged for a few minutes to
establish a basal ECFP/FRET ratio value (Figure 3). Microscopic
imaging was then paused to allow the addition of PDGF
(10µg/ml) into the imaging dish. After resuming imaging, the
cells were monitored for about 60min to observe the change
of ECFP/FRET ratio images over time, as well as the quantified
values within subcellular regions of interest. The FRET ratio
images visualized by Fluocell/Quanty, with their color changing
from blue at 1min after PDGF stimulation to red at 25min,
clearly show the activation of Fyn kinase (Figure S4). The image
frames between which a stimulation is applied to the cells can be
input through the Fluocell GUI or via MATLAB, and the time
course will be translated such that the time of stimulation is set to
0 (See the Quanty User’s Guide for details).

Quanty provides some visualization and statistical measures
to compare the ratio kinetics between different experimental
groups by output in MATLAB command window and
visualizing the data distributions via violin plots. Briefly,
the group_compare function provides statistical visualization
with box_plot functions, which shows the sample median, 25
and 75 percentiles, and extreme values, and the violin_plot
function which shows the distribution of data (Figure 3).
The function my_function.statistic_test function implements
MATLAB functions ttest for samples of normal distributions,
kstest for samples of non-normal distributions, and ranksum tests
for samples of small sizes. In addition, the multiple_comparison
function provides an interface to the MATLAB multcompare
with Bonferroni correction.

As shown in Figure 3 and Video S1, quantitative comparison
of the biosensor ratio signals indicates that Fyn kinase was
activated significantly stronger and faster in the cytosol than
the plasma membrane, with a higher average ECFP/FRET ratio
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FIGURE 2 | Display of the group view of single-cell ratio images and quantified time courses. (A) The schematics showing the interface between Fluocell and Quanty,

as well as the Quanty workflow. The quantification and visualization workflow is show in green and back colors, respectively. (B) Shows the IMD ECFP/FRET emission

intensity ratio images of the cells visualized by the group_image_view function. The images are from different positions recorded during the same imaging

experiments; (C) Shows the emission ratio time courses quantified by the g2p_quantify function for the first six cells in the group. (D) Compares the required image

analysis time between manual analysis by three experienced researchers in MetaFluor and automatic analysis by Fluocell/Quanty (30 cells, 24 frames/cell). Left: time

used to quantify the ECFP/FRET ratio time course manually or automatically by g2p_quantify; Right: time used to plot the time ECFP/FRET ratio time courses based

on results from the left panel, manually or automatically by group_plot.

in the cytosol during 10–20min after PDGF stimulation, a
higher maximal ECFP/FRET ratio value, and shorter time to
reach the maximum. The strong cytosolic Fyn kinase signal
is probably due to accessibility of the biosensor to active
Fyn localized in cytosolic compartments, such as those in
centrosomal andmitotic structures near the nucleus [33, 34]. The
observed membrane activation can be attributed to the portion
of membrane-bound Fyn kinase via myristoylated signals, which
can be further affected by the interference of the membrane-
targeting motif of the biosensor [33, 35–37]. These results

indicate that Fluocell and Quanty can be applied to efficiently
evaluate the dynamic molecular activities in live cells.

Movie and 3D Visualization
Visualizing live-cell image sequences in movies, z-slices, and
the three-dimension space are important for the demonstration
and dissemination of experimental results. The make_movie and
group_make_movie functions have been implemented in Fluocell
and Quanty, respectively (Figure 4A and Video S1).
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FIGURE 3 | Multiple-cell quantification and statistical interpretation for the cytosolic and membrane-tagged Fyn biosensors in MEF cells. (A) The time courses of

normalized ECFP/FRET emission ratio of the Fyn biosensor in different cells under growth-factor stimulation. Left: the cytosolic Fyn biosensor; Right: the

membrane-tagged Lyn-Fyn biosensor. (B) Statistical comparison of the time courses between the cytosolic and membrane groups: (i) The average time courses of

the emission ratio in each group. Error bars: standard error of mean (SEM). Violin plots: (ii) The normalized ratio values averaged between 10 and 20min after PDGF

stimulation (10 ng/ µl); (iii) The maximal ratio values; (iv) Time to reach the maximal ratio. *Statistically significant difference, n1 = 29, n2 = 33, p < 0.02; ***p < 1.0e-3.

Furthermore, with the input of two sets of fluorescence
intensity images, the 2D ratio images can be navigated in z-
direction. The test_3d_view function provides an interface to the
MATLAB function isosurface, which can be used to generate
a 3D view of the ratio values at a selected intensity isosurface
(Figure 4B). The intensity images were pre-processed and de-
convoluted in external software packages such as MetaMorph
and MetaFluo (Figure S7). The 3D snapshot is colored by the
FRET/ECFP ratio values of a new histone-localized histone
3 lysine 9 tri-methylation (H3K9me3) FRET biosensor at the
intensity isosurface of the histone 3 [21]. The color represents
level of epigenetic H3K9 tri-methylation at the surface of
condensed histone in a dividing HeLa cell. The processed
intensity and ratio data can also be exported to allow external

3D visualization in other software packages. For example, to
interface with VisIt from the Lawrence Livermore National Lab
(Figure 4B), the intensity and ratio values in the images were
converted to unsigned integers and exported into the red and
green component of RGB image files. The 3D rotational views
were then generated in VisIt and saved to allow further video
processing (Figure 4B and Video S2).

The 3D visualization results show discrete hotspots in red
color at the surface of condensed histone, which may indicate
preserved loci with high H3K9me3 (Figure 4B and Video S2).
Since H3K9me3 has been reported to positively regulate closed
and protected histone structure, it is possible that the H3K9me3
hotspots can indicate local chromosome regions associated
with epigenetic memory containing cell lineage information.
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FIGURE 4 | Video and 4D ratio visualization. (A) The workflow of Quanty in video making. First, raw imaging results are used to generate FRET ratio image sequences

at each position. Second, the group_make_movie function was used to make a movie at a selected position by connecting the ratio images. The ratio image video of

a representative cell with the Fyn biosensor is shown in Video S1. (B) The pipeline of 3D ratio visualization. First, MetaMorph and MetaFluor were used for 2D

deconvolution of the intensity images (detailed in the Supplementary Materials). Then, Fluocell was used to generate Intensity ratio images and provide 3D ratio

visualization within MATLAB or through an external software package such as VisIt. The 4D ratio video of a representative cell with the H3K9me3 biosensor is shown

in Video S2.

Taken together, these results show that Fluocell can be used for
convenient visualization of ratiometric imaging data to explore
dynamic molecular activities in 4D at subcellular levels.

DISCUSSION

Molecular interactions and functions in live cells are largely
dependent on their subcellular location and environment [1,
38]. Molecular activities within a population of cells are
heterogeneous and dynamic, with cell-cell variations caused by
stochastic subcellular molecular wiring in structure and function

[39, 40]. Therefore, accurate and dynamic measurements of
molecular activities in live cells often require high-throughput
quantification of fluorescence intensity and ratio with subcellular
resolution [3, 41]. Furthermore, automated image analysis has
the advantage of handingmultiplex images frommultiple sensors
in the same live cells with ease [42].

The quantitative output from image analysis tools can also
provide convenient input for the construction of physics-based
computational models at subcellular levels [43–45]. It is possible
that the single-cell time courses can be used as part of
training data for model-informed machine learning algorithms
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to evaluate reaction kinetic parameters uniformly across all
cells, as well as to evaluate molecular concentrations parameters
which can adopt different values across cells. Thus, the single-
cell time-course data can be used to train a computational
model with a distribution of molecular concentration and
activity in the modeled network, providing a powerful tool to
simultaneously investigate molecular regulation networks and
single-cell characteristics. Meanwhile, the kinetic models can also
be integrated with biophysical transport models to investigate
single-cell molecular regulation with spatiotemporal fidelity to
precisely model and to predict cellular and tissue functions [46].
For this purpose, future challenges involve accurately estimating
biophysical and biochemical parameter values and distributions
based on single-cell spatiotemporal imaging and time-course
data, as well as a tight integration between data-driven and
model-driven analysis.

The Fluocell andQuanty software packages were developed for
the accurate, efficient, and ratiometric quantification of dynamic
image data. For the quantification of FRET dynamics, we
utilize simple ratiometric calculation tomaximize spatiotemporal
resolution of the FRET signal, while minimizing the number of
channels imaged to reduce photobleaching, as well as based the
three reasons listed below. First, complex algorithms developed
previously may provide better accuracy in quantifying FRET
efficiency in vitro or in a snapshot of cells, but they often require a
calibration step to image donor only or acceptor only probes [47,
48]. This calibration can be affected by cellular autofluorescence
signals that are intrinsic and variable among different cells
or in different subcellular regions. Therefore, it is difficult to
utilize these methods for the quantification of subcellular FRET
signals in single-live cells. Second, our method directly utilizes
images from fluorescence microscopes without the need of
switching to lifetime or polarized light microscopy [48, 49].
While the fluorescence lifetime microscopy (FLIM) or polarized
microscopy methods may show an advantage in detecting
inter-molecular interactions quantitatively, the intensity ratio
approach has been widely recognized as a crucial research tool for
detecting intra-molecular FRET live-cell studies [50, 51]. Third,
the quantified apparent FRET efficiency represents the integral
sum of FRET efficiency of biosensors at variable conformation
states within the imaged volume, which probably only provides a
non-linear measure of the targeting molecular activity and needs
further characterization.

Recognizing the variability of FRET signal caused by FP
maturation rate [52], expression level, microscope optics, we
recommend to use a normalization step to compare the signals
before and after signaling events in exactly the same cell and
often normalize the signal such that the normalized FRET ratio
time courses show a relative change from a basal level of 1
(Figure 3) [6, 23, 40, 53, 54]. The normalization step allows
comparing samples across different experiments performed on
the same or potentially different microscopes with distinct optical
settings. The normalized ratiometric readout, in turn, can allow
the experimental data acquisition and analysis to be performed
in parallel in many bioimaging and biotechnology laboratories.
During imaging, we also attenuate the strength of excitation
(with neutral density filters) and limit the exposure time and

frequency of fluorescence sample, such that significant effect of
photobleaching was not observed in the control time course
before signaling with our imaging protocol (Figure S3B and
Supplementary Materials) [20, 55].

Utilizing this imaging and analysis protocols, our group has
published an array of papers engineering FRET biosensors and
quantifying the time courses of dynamic molecular activities
for kinases, proteases, and membrane channels in live cells
[6, 23, 24, 26, 28, 40, 53, 54, 56]. Currently, we do not
correct for multi-channel cross-talks and bleed-through between
fluorophores or estimate pixelwise FRET efficiency by default
[57]. On the other hand, alternative quantification methods can
provide a preferred measurement of FRET signal or molecular
activity under certain conditions. Therefore, a user interface is
provided to allow any user supplied function to be used for
calculating FRET signal (see Supplementary Information on
compute_ratio), with the designation that our software package
can contribute to the imaging and analysis communities and help
further the goal of quantifying molecular activity dynamics in
single live cells.

Both Fluocell andQuanty have modularized design, to be used
alone or in combination with other image analysis tools. Fluocell
and Quanty are suitable for images with high spatiotemporal
resolution, which allow the detection of subcellular dynamic
events such as epigenetic modification at important DNA loci
and the assembly and dissolution of focal adhesions with
accuracy [58, 59]. Since the size of image data is usually big,
Fluocell and Quanty normally run on a computer with local
access to data. When the data size is relatively small, the data
can also be transferred via internet or accessed remotely by the
software packages. Our results indicate the software packages can
significantly improve the efficiency of biological workflow, and
hence provide valuable tools for single-cell analysis [8, 60, 61].

Ratiometric visualization and quantification of imaging data
for FRET biosensors indicate that Fyn kinase was activated faster
and stronger in the cytoplasm of MEF cells stimulated by PDGF.
It is possible that more activatable Fyn kinases are located at
the perinuclear regions of the cytoplasm. In addition, Fyn kinase
can promote phosphorylation of the transmembrane adaptor
molecule PAG, which recruits Csk, a known inhibitor of Fyn [62].
Therefore, at cell membrane, Fyn kinase activation can trigger a
negative feedback loop to modulate its own activity, which may
contribute to the relatively low membrane Fyn signal observed
by our biosensor. On the other hand, our H3K9 tri-methylation
results show 3D hotspots of high H3K9me3 levels at the surface
of condensed chromosomes, with important lineage preserving
implications. Thus, Fluocell provides an efficient and convenient
tool to quantitatively compare and visualize dynamic ratiometric
imaging results at the single-cell level to provide biologically
significant results.
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