
ORIGINAL RESEARCH
published: 03 September 2019
doi: 10.3389/fphy.2019.00119

Frontiers in Physics | www.frontiersin.org 1 September 2019 | Volume 7 | Article 119

Edited by:

Ralf Metzler,

University of Potsdam, Germany

Reviewed by:

Flavio Seno,

University of Padova, Italy

Marco G. Mazza,

Max-Planck-Institute for Dynamics

and Self-Organisation, Max Planck

Society (MPG), Germany

Denis Grebenkov,

Centre National de la

Recherche Scientifique (CNRS), France

*Correspondence:

Andrew J. Spakowitz

ajspakow@stanford.edu

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 30 May 2019

Accepted: 13 August 2019

Published: 03 September 2019

Citation:

Spakowitz AJ (2019) Transient

Anomalous Diffusion in a

Heterogeneous Environment.

Front. Phys. 7:119.

doi: 10.3389/fphy.2019.00119

Transient Anomalous Diffusion in a
Heterogeneous Environment

Andrew J. Spakowitz 1,2,3,4*

1Department of Chemical Engineering, Stanford University, Stanford, CA, United States, 2Department of Materials Science

and Engineering, Stanford University, Stanford, CA, United States, 3Department of Applied Physics, Stanford University,

Stanford, CA, United States, 4 Biophysics Program, Stanford University, Stanford, CA, United States

This work provides an analytical model for the diffusive motion of particles in a

heterogeneous environment where the diffusivity varies with position. The model for

diffusivity describes the environment as being homogeneous with randomly positioned

pockets of larger diffusivity. This general framework for heterogeneity is amenable to a

systematic expansion of the Green’s function, and we employ a diagrammatic approach

to identify common terms in this expansion. Upon collecting a common family of these

diagrams, we arrive at an analytical expression for the particle Green’s function that

captures the spatially varying diffusivity. The resulting Green’s function is used to analyze

anomalous diffusion and kurtosis for varying levels of heterogeneity, and we compare

these results with numerical simulations to confirm their validity. These results act as

a basis for analysis of a range of diffusive phenomena in heterogeneous materials and

living cells.
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INTRODUCTION

Brownian motion of microscopic objects [1–3] is a ubiquitous phenomenon that plays a significant
role in virtually all molecular processes. Predictive understanding of the statistical behavior of
objects undergoing Brownian motion is essential to our ability to determine and control the
outcome of processes that fundamentally rely on stochastic motion at the molecular level. Given
the general nature of Brownian motion, it is essential to establish a mathematical framework that is
transferable to a diverse range of materials with varying microscopic structural characteristics.

Foundational studies of Brownian motion [1, 2, 4] establish a mathematical approach
for predicting trajectory statistics in a homogeneous environment, thus capturing diffusive
random-walk processes described by Gaussian statistics. However, all materials exhibit microscopic
heterogeneity at length scales approaching that of individual chemical units (i.e., approaching
atomic scales), and a broad range of materials, including glasses, gels, and other amorphous solids,
exhibit heterogeneity across a broad range of length scales [5–11]. Furthermore, experimental
measurements of particle motion in living cells reveal anomalous diffusive transport [12–25] that is
tied to a range of physical effects, including heterogeneity and cell-to-cell variability [26] as well
as viscoelasticity [26–29], dynamic arrest due to glassy disorder [11, 19], and active biological
processes [9, 17, 25, 30]. Heterogeneity in soft materials and living cells results in non-Gaussian
statistics for the step distribution over a range of time scales [8, 9, 26, 31–33], which acts as a
signature for heterogeneous diffusion.

Theoretical modeling of heterogeneous diffusion provides fundamental insight into the impact
of spatially varying diffusivity. Homogenization [34–38] and effective medium theory [39–47]
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are powerful analytical approaches to modeling spatially varying
diffusivity. Such approaches leverage a systematic averaging of
the microscopic heterogeneity as an effective large-scale medium,
resulting in predictions for the effective diffusion at large length
scales. However, the initial diffusive transport is distinct from
the behavior in this effective medium. Thus, the behavior across
broad time scales exhibits both the initial sampling of the local
environment and the long-time sampling of the surrounding
effective medium.

To capture this temporal evolution of the effective diffusivity,
theoretical approaches employ frameworks that allow the
diffusivity to stochastically change with time, dubbed a “diffusing
diffusivity” [48–51]. This approach has been valuable in
interpreting particle dynamics in living cells across a broad range
of time scales, where the particles generally transition from
complex heavy-tailed statistics to effective Gaussian behavior [8,
9, 26, 31–33]. However, the microscopic interpretation of the
diffusing diffusivity picture is not straightforward. Thus, an
analytical treatment that directly relates the specific microscopic
structural heterogeneity to particle diffusion across all time scales
would be valuable in establishing a fundamental understanding
of heterogeneous transport. Such a development would impact
a broad range of soft-materials and biological phenomena with
varying microscopic structural characteristics.

Our work provides an analytical approach to determining the
Green’s function for diffusion in a spatially varying environment.
We present an exact solution for the Green’s function for
an arbitrary spatial diffusivity function. We then define a
heterogeneous diffusivity model with randomly positioned
pockets of large diffusivity in an otherwise homogeneous
background. Based on this model, we develop a systematic
approach to determining the diffusivity-averaged Green’s
function over a range of degrees of heterogeneity. This
approach applies a diagrammatic representation of the
terms in the exact solution. We exploit this diagrammatic
representation to collect like-powered terms in the strength
of heterogeneity, resulting in an analytical expression for the
Green’s function.

Our solution is then used to analyze the transient anomalous
diffusion of particles in a heterogeneous environment. We
also analyze the temporal evolution of the kurtosis as a
signature of the underlying non-Gaussian nature of the step
distribution. These results demonstrate the signature feature
of heterogeneous diffusion, where a particle transitions from
sampling its local environment before transitioning to exploring
the surrounding effective medium. These results provide a
new framework for interpreting the temporal evolution of
diffusive transport in complex heterogeneous materials and
living cells.

THEORY

We consider the diffusion of a particle in a heterogeneous
environment (in d dimensions) with a spatially varying diffusivity
D(Er). The transport of the particle is defined by the Green’s
function G(Er|Er0; t), which gives the probability that a particle that

begins at position Er0 and time t = 0 is located at Er at time t. The
Green’s function G is governed by the Smoluchowski equation

∂G(Er|Er0; t)
∂t

= E∇ ·
[

D(Er) E∇G(Er|Er0; t)
]

(1)

with the initial condition

G(Er|Er0; t = 0) = δ(Er − Er0). (2)

We perform a Laplace transform from time t to the Laplace
variable s and a Fourier transform from position Er to Fourier
variable Ek. We then arrive at the expression

ˆ̃G(Ek; s) = exp(iEk · Er0)
s

− 1

(2π)d
1

s

∫

dEk1(Ek · Ek1)D̃(Ek− Ek1) ˆ̃G(Ek1; s),
(3)

where the tilde indicates a Fourier-transformed function and the
hat indicates a Laplace-transformed function.

The current form of ˆ̃G is transcendental (i.e., ˆ̃G is a function

of ˆ̃G), and an explicit expression for ˆ̃G(Ek; s) requires recursive
insertion of Equation (3) into itself. This leads to a general form

ˆ̃G(Ek; s) = exp(iEk · Er0)
∞
∑

n=0

(−1)n

sn+1
Dn(Ek). (4)

The k-dependent terms Dn represent the contributions from
spatially varying diffusivity at various powers of D̃. The
expressions for Dn up to n = 3 are given by

D0 = 1, (5)

D1 = 1

(2π)d

∫

dEk1(Ek · Ek1)D̃(Ek− Ek1), (6)

D2 = 1

(2π)2d

∫

dEk1dEk2(Ek · Ek1)(Ek1 · Ek2)D̃(Ek− Ek1)D̃(Ek1 − Ek2) (7)

D3 = 1

(2π)3d

∫

dEk1dEk2dEk3(Ek · Ek1)(Ek1 · Ek2)(Ek2 · Ek3)D̃(Ek− Ek1)

D̃(Ek1 − Ek2)D̃(Ek2 − Ek3), (8)

and the general expression for Dn is given by

Dn = 1

(2π)nd

∫ n
∏

i=1

dEki(Ek · Ek1)(Ek1 · Ek2) . . . (Ekn−1 · Ekn)D̃(Ek− Ek1)

D̃(Ek1 − Ek2) . . . D̃(Ekn−1 − Ekn). (9)

Thus, the nth termDn contains n factors of D̃ and n integrals over

the Fourier variables Eki.
This result is valid for any spatially varying diffusivity D(Er).

We now specialize our discussion to a model for heterogeneity
where the diffusivity D(Er) has a homogeneous component with
M localized pockets of larger diffusivity. We focus our analysis
on the diffusivity

D(Er) = 1+
M
∑

i=1

δ exp

(

− 1

2σ 2
|Er − Eci|2

)

, (10)
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where the ith pocket is centered at Eci. Each pocket contributes
magnitude δ to the diffusivity, and the spread σ defines
the radial size of the pocket. In this model, we assume
each pocket has the same contribution δ and spread σ .
However, variability in these parameters are easily inserted

into the model. The Fourier-transformed diffusivity D̃(Ek) is
given by

D̃(Ek) = (2π)dδ(Ek)+ (2π)d/2δσ d
M
∑

i=1

exp

(

−1

2
σ 2k2 + iEk · Eci

)

,

(11)
and we define the rescaled magnitude δσ = (2π)d/2δσ d to

simplify our notation, and we define k =
∣

∣

∣

Ek
∣

∣

∣
. We note that our

definition of diffusivity is dimensionless, which implies that time
t and position Er are also dimensionless.

This framework provides a basis for determining the Green’s
function for a fixed system configuration, defined by Eci. We now
consider the case where we average the Green’s function over
an ensemble of system realizations, i.e., average over diffusivity
configurations Eci. In this work, we assume the configuration
is randomly distributed with no spatial correlations between
pockets. We define a diffusivity average of the quantity A to be

〈A〉D = 1

VM

∫ M
∏

i=1

dEciA(D), (12)

where V is the system volume, which is assumed to be very
large relative to the displacements that are considered. This
average is akin to determining the step distributions from
individual realizations of the heterogeneity and then averaging
these together. In this regard, the diffusivity average still captures
heterogeneity as experienced by individual trajectories. Thus,
the treatment does not assume the step distribution captures a
homogenized environment at all time scales.

The ensemble average Green’s function is written as

〈 ˆ̃G(Ek; s)〉D =
∞
∑

n=0

(−1)n

sn+1
〈Dn(Ek)〉D, (13)

where we set the initial position Er0 to the origin without loss
of generality (since the ensemble average exhibits translational

invariance).Within the nth term 〈Dn(Ek)〉D, we shift the Ek integrals
by defining Ek′i through the expression Eki = Ek +∑i

j=1
Ek′j, which

gives Eki − Eki−1 = Ek′i. Thus, we now reset the arguments of the

spatially varying diffusivity D̃(Eki−1 − Eki) to D̃(Ek′i).
The ensemble average of the nth term now requires us to

evaluate 〈D̃(Ek′1)D̃(Ek′2) . . . D̃(Ek′n)〉D. This average involves integrals
over Eci, leading to delta functions in the Ek′i. Each factor of D̃
contains a summation over the M pockets. For example, the

n = 2 term contains the factor

〈D̃(Ek′1)D̃(Ek′2)〉D = 1

VM

∫ M
∏

i=1

dci

[

(2π)dδ(Ek′1)

+δσ

M
∑

j=1

exp

(

−1

2
σ 2k′21 + iEk′1 · Ecj

)





×
[

(2π)dδ(Ek′2)+ δσ

M
∑

k=1

exp

(

−1

2
σ 2k′22 + iEk′2 · Eck

)]

= (1+ ρδσ )
2(2π)2dδ(Ek′1)δ(Ek′2)

+ρδ2σ (2π)
dδ(Ek′1 + Ek′2) exp

(

−σ 2k′21
)

, (14)

where k =
∣

∣

∣

Ek
∣

∣

∣
. In Equation (14), we define the pocket density

ρ = M/V as the number of pockets per unit volume. Details of
this derivation are found in theAppendix. This leads to selection
rules for the k-vectors in the integrals that simplify the evaluation
of 〈Dn〉D.

We visualize the selection rules by adopting a diagrammatic

representation. For 〈Dn〉D, the Ek′i are sequentially listed as dots on
a line, and an arc is drawn between each Ek′i that appear together
in a delta function. Figure 1A shows a selection diagram of the

two Ek′i that appear within 〈D2〉D, explicitly derived in Equation
(14). The first diagram shows two self loops that each contribute

a factor (1+ ρδσ )(2π)dδ(Ek′i). The second diagram shows a single

arc between Ek′1 and Ek′2 that contributes a factor of ρδ2σ (2π)
dδ(Ek′1+

Ek′2) exp
(

−σ 2k′21
)

.
Our diagrammatic representation provides a visual

framework for identifying all contributions that have common
factors. Figure 1B shows all of the selection diagrams that appear
in 〈D3〉D. These diagrams can be sorted according to powers of
(1+ ρδσ ), ρ, and δσ . The first diagram is order (1+ ρδσ )3, since
there are three self loops and no arcs. The second, third, and
fourth diagrams scale as (1 + ρδσ )ρδ2σ , and the fifth diagram
scales as ρδ3σ .

We identify the irreducible diagrams as those that cannot be
decomposed into a subset of other diagrams. Within Figure 1B,
the diagrams of order (1 + ρδσ )ρδ2σ can be categorized into
whether the diagram can be split into two distinct contributions.
The second and third diagrams are both composed of a separate
arc and self loop. When represented mathematically, both of
these diagrams result in a product of terms that are separate from
each other, i.e., they are reducible. However, the fourth diagram
results in a single term that cannot be reduced into a product.

We determine the sum of all of the irreducible diagrams that
up to order ρδ2σ , which is the lowest order contribution beyond
order (1 + ρδσ ). First, we identify the sum of all self loops g0 to
be given by

g0 =
∞
∑

n=0

(−1)n

sn+1
(1+ ρδσ )

nk2n = 1

s+ (1+ ρδσ )k2
= 1

s+ D0k2
,

(15)
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FIGURE 1 | Diagrammatic representation of the expansion terms 〈Dn(Ek)〉D within the Fourier-Laplace transformed Green’s function 〈 ˆ̃G(Ek; s)〉D (Equation 13). The

diagrams in (A) represent the selection rules for 〈D2〉D, and the diagrams in (B) identify the selection rules for 〈D3〉D. The infinite sum of diagrams found in

(C) represent the set of irreducible diagrams 1g1 (Equation 16) that form the basis for the lowest-order correction due to heterogeneity.

where we have identifiedD0 = 1+ρδσ as the zero-time diffusivity

(explained further below), and k =
∣

∣

∣

Ek
∣

∣

∣
. Figure 1C shows the

sum of all diagrams at the order ρδ2σ that are irreducible.
The summation of these diagrams results in the mathematical
expression for the correction term

1g1 =
∞
∑

n=2

(−1)n

sn+1
Dn−2
0 ρδ2σ

1

(2π)d

∫

dEk′1[Ek · (Ek+ Ek′1)]2
∣

∣

∣

Ek+ Ek′1
∣

∣

∣

2(n−2)
exp

(

−σ 2k′21
)

= ρδ2σ

s2
1

(2π)d

∫

dEk′1
[Ek · (Ek+ Ek′1)]2

s+ D0

∣

∣

∣

Ek+ Ek′1
∣

∣

∣

2 exp
(

−σ 2k′21
)

.(16)

The two irreducible sets of diagrams g0 and 1g1 form the basis
for the lowest-order correction to the Green’s function due to
heterogeneity. The combination of all possible diagrams that
include both self loops and single arcs results in the approximate
expression for the Green’s function

〈 ˆ̃G〉D ≈
∞
∑

n=0

g0
(

s2g01g1
)n = 1

s+ D0k2 − s21g1

= 1

s+ D0k2 − ρδ2σ
(2π)d

∫

dEk′1
[Ek·(Ek+Ek′1)]2
s+D0(Ek+Ek′1)2

exp
(

−σ 2k′21
)

. (17)

This result forms the basis for our subsequent analyses. For this
discussion, we focus our attention on 3-dimensional diffusion.
Though, our results are amenable to analysis in arbitrary
dimensions.

The Green’s function 〈 ˆ̃G〉D adopts a form that reflects
a mathematical structure that is notably non-Gaussian. The
expansion of the Green’s function in Equation (13) is reminiscent
of a straight-forward moment-based expansion, particularly if
the expansion terms scale as 〈Dn〉D ∼ k2n. This is precisely
the outcome if only the self-loop diagrams are included (i.e.,

1g1 = 0). The resulting expression for 〈 ˆ̃G〉D is the Fourier-
Laplace transform of the Gaussian distribution. Inclusion of
the correction 1g1 results in non-Gaussian contributions to the
Green’s function that reveal the underlying role of heterogeneity
in the diffusive transport.

The Green’s function 〈 ˆ̃G〉D can be used to determine various
statistical averages of the diffusivity-averaged motion of the
particles. In other words, the statistical behavior of the particle
motion after averaging over an ensemble of heterogeneous
diffusivities. Here, we consider the 2n-th moment of the
distribution projected onto the z-axis in our 3-dimensional space,
given by

〈〈z2n〉〉D = (−1)nL−1
s→t

[

lim
k→0

∂2n〈 ˆ̃G〉D
∂k2n

]

, (18)
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where the two sets of angle brackets (〈〈z2n〉〉D) indicates a
statistical average over both an ensemble of trajectories and an
ensemble of diffusivities D. In Equation (18), the operator L−1

s→t

indicates a Laplace inversion from the Laplace variable s to time
t. From our results in Equation (17), we find the expressions for
the second and fourth moments to be

〈〈z2〉〉D = 2D0t −
1

6π3/2

ρδ2σ

σD2
0

(

τ − 1+ 1√
2τ + 1

)

, (19)

〈〈z4〉〉D = 12D2
0t
2 − 4

π3/2

σρδ2σ

D2
0

[

τ 2 − 12

5
τ − 11

5
+ 2

√
2τ + 1

+1

2

1√
2τ + 1

− 3

10

1

(2τ + 1)3/2

]

+ 1

12π3

(

ρδ2σ

σD2
0

)2
[

τ 2 − 4τ − 2+ 2
√
2τ + 1

− 2√
2τ + 1

+ 2

(2τ + 1)3/2
+ 2τ (4τ 2 + 6τ + 3)

(τ + 1)(2τ + 1)3/2

]

. (20)

We define the diffusive time τ = t/tσ , where tσ = 2σ 2/D0

gives the time scale for diffusion to a distance of order σ (i.e., the
scale of heterogeneity). Notably, corrections to normal diffusion
due to heterogeneity naturally depend on the time scale for
diffusion to a distance comparable to the length scale of the
heterogeneity. These results form the basis of our subsequent
analyses of diffusive transport in a heterogeneous environment.

RESULTS AND DISCUSSION

In this work, we explore the statistical behavior of particle motion
in a heterogeneous environment, as defined by our random
diffusivity model (Equation 10). We first consider the mean-
square displacement (MSD) of particle diffusion 〈〈r2〉〉D =
3〈〈z2〉〉D. Figure 2 shows the mean-square displacement for
diffusion in a heterogeneous environment with δ = 5, D0 = 2
(i.e., ρ = 1/δσ ), and σ = 1/2. For this set of parameters, the
heterogeneity time scale tσ = 2σ 2/D0 = 1/4 results in the
relationship τ = 4t.

To validate our analytical theory, we perform numerical
simulations of particle diffusion in a heterogeneous environment
based on our model for microscopic heterogeneity.We define the
position-dependent diffusivity D(Er) in a square box of length 1

by randomly selecting the positions Eci (for i = 1, . . . ,M) for a
given pocket density ρ = M/13, and the position-dependent
diffusivity D(Er) is defined by Equation (10). The simulations
are performed with periodic boundary conditions to capture
an effectively infinite medium, and we set 1 = 10 for our
simulations, which is determined to be adequate to capture the
long-time dynamics (i.e., all results shown are insensitive to
this choice of 1). We perform Brownian dynamics simulations
using the discrete-time algorithm for particle displacement with
time-step 1t, given by

FIGURE 2 | The mean-square displacement (MSD) for particle diffusion in a

heterogeneous environment. The top plot shows the ratio MSD/t 〈〈r2〉〉D (solid

curve) vs. time for heterogeneous diffusivity with δ = 5, D0 = 2 (i.e., ρ = 1/δσ ),

and σ = 1/2. The dotted curved indicates the short-time MSD 〈〈r2〉〉(0)
D
, and

the dashed curve shows the long-time MSD 〈〈r2〉〉(∞)
D

. Results from numerical

simulations are shown as dots. The inset plot shows the MSD before dividing

by time. The bottom plot shows the MSD difference 〈〈r2〉〉(0)
D

− 〈〈r2〉〉D. The
inset image shows a realization of the diffusivity with color scaling from blue

(D = 1) to yellow (D = 5).

Er(t + 1t) = Er(t)+
[

√

2D(Er(t))1t
]

Eu+
[

1

2
Eu · E∇D(Er(t))1t

]

Eu,
(21)

where Eu is a 3-dimensional vector with components selected from
a Gaussian distribution with unit variance.

The top plot of Figure 2 shows 〈〈r2〉〉D with an inset
that shows a realization of the heterogeneous diffusivity (blue
indicating D = 1 to yellow indicating D = 5). The solid curve
shows our analytical result, given by Equation (19). Figure 2
also contains results from numerical simulations (dots). The
short-time MSD 〈〈r2〉〉(0)D = 6D0t is indicated by the dotted line,

where D0 = 1 + ρδσ . The long-time MSD 〈〈r2〉〉(∞)
D = 6D∞t is
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FIGURE 3 | The long-time diffusivity D∞ and the diffusivity difference D0 − D∞ over a range of the strength of heterogeneity δ (with fixed D0 = 2 and σ = 1/2). The

solid curves show our analytical theory, and the dots give results from numerical simulations. The right images show realizations of the heterogeneous diffusivity over

the range of δ in the plots (same color scaling as Figure 2).

shown as a dashed line, where D∞ = D0 − ρδ2σ /(24π3/2σ 3D0).
The influence of heterogeneity on the mean-square displacement
is relatively modest over the broad range of timescales in

Figure 2. The bottom plot shows the MSD difference 〈〈r2〉〉(0)D −
〈〈r2〉〉D to clearly show the comparison between our analytical
theory and the numerical simulations over the entire range
of times.

The short-time diffusivity D0 is governed by the motion of
the particle within a local environment. Thus, the particle is
not yet able to sample the surrounding heterogeneity. In this
regard, the diffusivity difference D0 − D∞ is a measure of
the impact of heterogeneity on the particle motion. Figure 3
shows a plot of the long-time diffusivity D∞ (top plot) and the
diffusivity difference D0 − D∞ (bottom plot) over of range of
the strength of heterogeneity δ. The right images in Figure 3

show realizations of the diffusivity over the range of values of δ

within the plots. The results in Figure 3 have a fixed short-time
diffusivity D0 = 1 + ρδσ = 2. Thus, the density ρ decreases
with increasing δ to maintain an equivalent D0. In Figure 3,
the length scale of heterogeneity is σ = 1/2, and the dots
indicate results from our numerical simulations as a check of our
analytical theory.

Our results thus far suggest that our analytical results are
valid within the range of the heterogeneity parameters explored
in Figures 2, 3. However, the impact of heterogeneity on the
mean-square displacement is somewhat modest (see Figure 2).
Experimental measurements of MSD may exhibit considerable
noise due to measurement precision and insufficient sampling
over both an ensemble of trajectories and an ensemble of
diffusivity samples. In this regard, MSD may be insufficient to
characterize the heterogeneity. Furthermore, many physical or
biological processes are dependent on statistical metrics that are
not weighted heavily in the MSD. In this regard, a statistical
quantity that represents higher moments of the distribution
would better represent the impact of heterogeneity.

We turn to the kurtosis as a metric that reveals the impact
of heterogeneity on diffusive transport. The kurtosis represents
the lowest-order metric that determines to what extent the step
distribution deviates from a Gaussian distribution, which is the
expectation for diffusion in a homogeneous environment. We
define the excess kurtosis κ as

κ = 〈〈z4〉〉D
〈〈z2〉〉2D

− 3, (22)
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FIGURE 4 | The excess kurtosis κ vs. time for δ = 10, D0 = 2, and σ = 2.

The dashed curve indicates the short-time behavior of the excess kurtosis

based on our model for heterogeneity. The dotted curve gives the long-time

relaxation of the excess kurtosis to zero.

where 〈〈z2〉〉D and 〈〈z4〉〉D are given by Equations (19) and
(20), respectively. The excess kurtosis is zero for a Gaussian
distribution. Positive values of κ indicate a heavy-tailed
distribution that implies trajectories that are significantly more
mobile than a random walk with an averaged diffusivity.

Figure 4 shows the excess kurtosis vs. time for δ = 10,D0 = 2,
and σ = 2 (note, tσ = 1/4). Our results demonstrate two
regimes. At short time, the excess kurtosis κ exhibits a short-
time plateau that represents the excess kurtosis that arises from
averaging over an ensemble of quenched diffusivities that are
selected from the statistical distribution of our model (discussed
further below). At long times, the excess kurtosis κ relaxes
to zero as κ ∼ τ−1. This asymptotic behavior suggests that
individual trajectories within a fixed diffusivity realization have
sufficiently sampled their surrounding microenvironments and
now experience an effective diffusivity D∞. As a result, the
individual trajectories are random walk at long time scales, and
the D-averaged step distribution tends to a Gaussian.

At short times, the particles are unable to sufficiently explore
their surrounding environment. Thus, the diffusivity of each
particle is dictated by the random-selected diffusivity of its initial
position. The statistical distribution for the diffusivity at a fixed
point (here given by the origin) is given by

PD(D) =
1

VM

∫ M
∏

i=1

dEciδ
[

D− 1− δ

M
∑

k=1

exp

(

− 1

2σ 2
c2k

)

]

,

(23)
which captures the contributions of the pockets as a
superposition of Dirac delta distributions. We perform a Laplace
transform from D to u, and upon taking the limit M,V → ∞
such that M/V = ρ, we arrive at the Laplace-transformed
D-distribution

P̂D = exp

[

−u+ (2π)3/2ρσ 3
∞
∑

n=1

(−1)n

n!n3/2
δnun

]

. (24)

From this distribution, we determine the first two moments of
the local diffusivity, given by

〈D〉D = − lim
u→0

(

dP̂D

du

)

= 1+ ρδσ = D0, (25)

〈D2〉D = lim
u→0

(

d2P̂D

du2

)

= (1+ ρδσ )
2 + π3/2ρδ2σ 3

= D2
0 +

ρδ2σ

2π3/2σ 3
. (26)

These statistical quantities capture the instantaneous
environment that a particle experiences prior to diffusion
into a surrounding microenvironment.

The short-time behavior of the excess kurtosis is given by

κ (0) = 12〈D2〉Dt2
(2〈D〉Dt)2

− 3 = 3

( 〈D2〉D
〈D〉2D

− 1

)

= 3ρδ2σ

2π3/2σ 3D2
0

. (27)

This short-time behavior coincides with the dashed curve in
Figure 4. For the parameters in Figure 4, the short-time excess
kurtosis is given by κ (0) = 2.652. For reference, the value of
the excess kurtosis for a Laplace distribution [52, 53] is κ =
9. The Laplace distribution is of particular interest for cellular
transport [26, 31, 32, 54], since the step distribution in both yeast
cells and bacterial cells trends from a Laplace distribution to a
Gaussian distribution with increasing time [26].

CONCLUSIONS

Our solutions for the Green’s function provide insight into the
impact of microscopic heterogeneity of diffusive transport across
a broad range of time scales. At short time scales, the particles
explore the local environment around their initial position. The
local diffusivity is randomly determined from the distribution
of diffusivities from the specific model of heterogeneity. With
increasing time, the stochastic trajectories of the particles lead to a
transition to the exploration of a spatially averaged environment.
The time scale of this transition is naturally linked to the time
scale of diffusion to a distance defined by the correlation length of
the heterogeneity. The excess kurtosis exhibits a short-time, non-
zero value that implies a heavy-tailed step distribution associated
with the distribution of initial diffusivities, and the excess kurtosis
decays to zero as the diffusive transport leads to exploration
of the surrounding effective medium, implying a Gaussian step
distribution at long times.

Further refinement of the model can be developed by
including higher order loop diagrams in the expansion. The
structure of our diagrammatic representation is akin to Feynman
diagrams commonly employed in quantum field theory and
condensed matter physics [55, 56]. Notably, one can extend
our approach to include higher-order diagrams, or alternatively,
one can employ renormalization group methods to determine
a renormalized one-loop contribution [55] based on the
structure of the solutions presented in this manuscript. These
developments would improve the level of accuracy of our
solutions, particular in the limit of large heterogeneity (δ ≫
1). However, the agreement between numerical simulations
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and our results presented in this manuscript suggest the
solutions are not limited to conditions where δ ≪ 1, and the
results presented here are not strictly limited to conditions of
weak heterogeneity.

Heterogeneity is prevalent in a range of soft materials,
particularly in living cells. We specifically note the observed
heterogeneity of the organization of chromosomal DNA
within eukaryotic nuclei [57–61]. Underlying the observed
heterogeneity is the physical segregation of chromosomes
into compartments due to epigenetic modifications to the
proteins that packaged the DNA, which is captured by
models that incorporate incompatibility between segments in a
chromosome polymer [62–68]. The connection between spatial
segregation of chromosomes and the dynamics and accessibility
of regulatory proteins [69–71] remains a challenging problem
that would shed light on the structure-function relationships in
chromosome biology. This work provides a valuable analytical
approach to analyzing heterogeneous transport in the complex
environment of the nucleus that may be valuable in establishing
these connections.
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