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One-dimensional Schrödinger operators with singular perturbed magnetic and electric

potentials are considered. We study the strong resolvent convergence of two families

of the operators with potentials shrinking to a point. Localized δ-like magnetic fields are

combined with δ′-like perturbations of the electric potentials as well as localized rank-two

perturbations. The limit results obtained heavily depend on zero-energy resonances of the

electric potentials. In particular, the approximation for a wide class of point interactions

in one dimension is obtained.
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1. INTRODUCTION

The present paper is concerned with the convergence of families of singularly perturbed
one-dimensional magnetic Schrödinger operators. Ourmotivation of the study on this convergence
comes from an application to the scattering of quantum particles by sharply localized potentials and
finite rank perturbations. The main purpose is to construct solvable models in terms of the point
interactions describing with admissible fidelity the real quantum interactions. The Schrödinger
operators with potentials that are distributions supported on discrete sets (such potentials are
usually termed point interactions) have attracted considerable attention since the 1980s. It is an
extensive subject with a large literature (see [1, 2], and the references given therein).

It is well-known that all nontrivial point interactions at a point x can be described by the
coupling conditions

(

ψ(x+ 0)
ψ ′(x+ 0)

)

= eiϕ
(

c11 c12
c21 c22

) (

ψ(x− 0)
ψ ′(x− 0)

)

, (1.1)

where ϕ ∈ [−π
2 ,

π
2 ], ckl ∈ R, and c11c22 − c12c21 = 1 (see, e.g., [3, 4]). The nontriviality of point

interactions means that the associated self-adjoint operator cannot be presented as a direct sum
of two operators acting in L2(−∞, 0) and L2(0,∞). For the quantum systems described by the
Schrödinger operators with regular potentials localized in a neighborhood of x one can often assign
the Schrödinger operators with the point interactions (1.1) so that the corresponding zero-range
models govern the quantum dynamics of the true interactions with adequate accuracy, especially
for the low-energy particles. In this context, the inverse problem is also of interest. The important
question is how to approximate a given point interaction by Schrödinger operators with localized
regular potentials or finite-rank perturbations.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00070
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00070&domain=pdf&date_stamp=2019-05-07
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuriy.golovaty@lnu.edu.ua
https://doi.org/10.3389/fphy.2019.00070
https://www.frontiersin.org/articles/10.3389/fphy.2019.00070/full
http://loop.frontiersin.org/people/621804/overview


Golovaty Some Remarks on 1D Schrödinger Operators

We study the families of the Schrödinger operators that can be
partially viewed as regularizations of the pseudo-Hamiltonians

(

i
d

dx
+ aδ(x)

)2

+ bδ′(x)+ cδ(x),

(

i
d

dx
+ aδ(x)

)2

+ b
(

〈δ′(x), · 〉 δ(x)+ 〈δ(x), · 〉 δ′(x)
)

+ cδ(x),

(1.2)

where δ is Dirac’s delta function. We note that δ′(x)y =

y(0)δ′(x) − y′(0)δ(x) for continuously differentiable functions y
at the origin. Thus we may formally regard the δ′ potential as
rank-two perturbation δ′(x)y = 〈δ(x), y〉 δ′(x) + 〈δ′(x), y〉 δ(x).
However, both the heuristic operators have generally no ma-
thematical meaning. So it is not surprising that different re-
gularizations of the distributions in (1.2) lead to different
self-adjoint operators in the limit. Therefore, the pseudo-
Hamiltonians (1.2) can be regarded as a symbolic notation only
for a wide variety of quantum systems with quite different
properties depending on the shape of the short-range potentials.

Recently a class of the Schrödinger operators with piece-
wise constant δ′-potentials were studied by Zolotaryuk [5–8];
the resonances in the transmission probability for the scattering
problem were established. As was shown in Golovaty et al.
[9], Golovaty and Hryniv [10, 11], and Man’ko [12] these
resonances deal with the existence of zero-energy resonances
and the half-bound states for singular localized potentials. The
zero-energy resonances have a profound effect on the limiting
behavior of the Schrödinger operators with δ′-potentials. Such
operators also arose in connection with the approximation of
smooth planar quantum waveguides by quantum graph [13–15];
a similar resonance phenomenon was obtained. The reader also
interested in the literature on other aspects of δ′-potentials and
δ′-interactions as well as approximations of point interactions by
local and non-local perturbations is referred to Albeverio and
Nizhnik [16], Albeverio et al. [17, 18], Exner and Manko [19],
Gadella et al. [20–22].

It is known that one dimensional Schrödinger operators

H(b) =

(

i
d

dx
+ b(x)

)2

+ V(x)

with continuous magnetic potentials are not especially
interesting, because any continuous field b is equivalent
under a smooth gauge transformation to 0. This means that
the operator H(b) with a continuous gauge field is unitarily

equivalent to the Schrödinger operator H(0) = − d2

dx2
+ V(x)

without a magnetic field. The authors of Coutinho et al. [23] have
even asserted that the phase parameter ϕ in conditions (1.1) is
redundant and it produces no interesting effect. They have stated
that if the time-reversal invariance is imposed, the number of
the parameters that specify the interactions (1.1) can be reduced
to three.

For the case of singular magnetic potentials, however, there
are certain nontrivial examples [24], pointing out that this
case is more subtle. Albeverio et al. [24] have shown that the
phase parameter is not redundant if non-stationary problems

are concerned. The phase parameter can be interpreted as the
amplitude of a singular gauge field. As stated in Kurasov [25]
a nonzero phase ϕ in the coupling conditions (1.1) may appear
if and only if the singular gauge field is present. However, it is
noteworthy that the factor eiϕ also appeared in the solvable model
for the Schrödinger operators without a magnetic field that is
perturbed by a rank-two operator [26]. We also want to note that
Theorem 2 in the present paper gives an example of an exactly
solvable model in which the magnetic field has an effect on all
coefficients ckl in (1.1), not only on factor eiϕ .

Another reason to study the 1-D Schrödinger operators with
magnetic fields comes from the quantum graph theory which is
a useful tool in modeling numerous physical phenomena. One
of the fundamental questions of this theory consists of justifying
the possibility of approximating dynamics of a quantum particle
confined to real-world mesoscopic waveguides of small width d
by its dynamics on the graph obtained in the limit as d vanishes.
In Exner et al. [27], the authors demonstrated that any self-
adjoint coupling in a quantum graph vertex can be approximated
by a family of magnetic Schrödinger operators on a tubular
network built over the graph.

The magnetic Schrödinger operators and the Dirac
Hamiltonians with Aharonov-Bohm fields have been discussed
from various aspects by many authors. We confine ourself to a
brief overview of the most relevant papers. For the mathematical
foundation of the magnetic Schrödinger operators we refer the
reader to the paper of Avron et al. [28]. In two dimension, the
norm resolvent convergence of the Schrödinger operators

Hε =
(

i∇ + ε−1A(x/ε)
)2

+ ε−2V(x/ε)

with singularly scaled magnetic and electric potentials was
studied by Tamura [29]. The magnetic potential had the δ-like
field ε−2b(x/ε) = ε−1∇ × A(x/ε), and b and V were smooth
vector functions in R

2 of compact support. The limit operator
strongly depends on the total flux of magnetic field and on the
resonance space at zero energy. The scattering by a magnetic
field with small support and the convergence to the scattering
amplitude by δ magnetic field were studied in Tamura [30].
In Tamura [31], the case of relativistic particles moving in the
Aharonov-Bohm magnetic field with a δ-like singularity was
considered. The author approximated the point–like field by
smooth ones and found the limit self-adjoint operators uniquely
specified by physically and mathematically reasonable boundary
conditions at the origin.

The present paper can be viewed as a natural continuation of
our previous works [26, 32–34], in which the case without of a
magnetic field was treated.

2. STATEMENT OF PROBLEM AND MAIN

RESULTS

Let us consider the Schrödinger operator

H0 = −
d2

dx2
+ V0
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in L2(R), where potential V0 is real-valued, measurable and
locally bounded. We also assume that V0 is bounded from below
in R. We turn now to our primary task of studying the limit
behavior of two families of operators in L2(R), which can be
treated as perturbations of H0.

2.1. Hamiltonians With Localized Potentials
First we consider the self-adjoint operators

Hεν =
(

i
d

dx
+
1

ε
A
(x

ε

))2
+V0(x)+

α

ε2
V

(x

ε

)

+
1

ν
U

( x

ν

)

, (2.1)

where ε and ν are small positive parameters, and α is a
real coupling constant. Let A, V , and U be real-valued,
measurable, and bounded functions of compact support. Suppose
furthermore that A ∈ AC(R). The domain ofHεν coincides with
domH0, because the perturbation has a compact support. Note
that we consciously equipped potential V only with a coupling
constant. As we will see later, the limit behavior of Hεν crucially
depends on α.

The potentials αε−2V(ε−1x) + ν−1U(ν−1x) converge, as ε
and ν go to zero, to a distribution having the form b1δ

′(x) +
b0δ(x), if V has a zero-mean value, and they diverge otherwise.
Hence parameter ε describes the rate of shrinking for the δ′-like
potential (as well as the magnetic potential), while ν is the rate
of shrinking for the δ-like potential. The sequence ε−1A(ε−1x)
converges to µδ(x) as ε → 0 in the sense of distributions, where

µ =

∫

R

A(x) dx. (2.2)

In the partial cases, operators Hεν can be regarded as a
regularization of the first pseudo-Hamiltonian in (1.2).
Let us introduce some characteristics of the potentials V and U.

Definition 1. We say that the Schrödinger operator − d2

dx2
+ αV

in L2(R) possesses a zero-energy resonance if there exists a non
trivial solution vα : R → R of the equation−v′′+αVv = 0 that is
bounded on the whole line. We call vα the half-bound state of αV.

We will simply say that the potential αV is resonant and it
possesses a half-bound state vα . Let us denote by R(V) the set of
all coupling constants α for which the potential αV is resonant,
and introduce the mapping θ : R(V) → R defined by

θ(α) =
v+α

v−α
, (2.3)

where v−α = lim
x→−∞

vα(x) and v+α = lim
x→+∞

vα(x). Let 3 =

[0,+∞] be the set containing the point+∞.
We also define the mapping γ : R(V)×3→ R as follows:

γ (α, 0) =
v2α(0)

v−α v+α

∫

R

U dt, (2.4)

γ (α, λ) =
1

v−α v+α

∫

R

U(t) v2α(λt) dt for λ ∈ (0,+∞), (2.5)

γ (α,+∞) = θ(α)

∫

R+

U dt + θ(α)−1

∫

R−

U dt. (2.6)

We follow the notation used in Golovaty [33]. This mapping
describes different kinds of the resonance interactions between
the potentials αV and U in the limit. Both the mappings θ and γ
are well defined as we will show below in Lemma 1.

Let us introduce the subspace V in L2(R) as follows. We
say that h belongs to V if there exist two functions h− and h+
belonging to domH0 such that h(x) = h−(x) for x < 0 and
h(x) = h+(x) for x > 0.

Theorem 1. Suppose that a sequence {νε}ε>0 of positive numbers
is such that νε → 0 and ratio νε/ε tends to λ ∈ 3 as ε → 0, i.e.,
this ratio has a finite or infinite limit. If α ∈ R(V), then family of
operators Hενε converges in the strong resolvent sense as ε → 0
to the operator H = H(α, λ) defined by Hφ = −φ′′ + V0φ on
functions φ in V subject to the conditions

(

φ(+0)
φ′(+0)

)

= eiµ
(

θ(α) 0
γ (α, λ) θ(α)−1

) (

φ(−0)
φ′(−0)

)

. (2.7)

By analogy with the results in Golovaty [33], if potential αV
is not resonant, the limit operator is the direct sum of two
Dirichlet operators acting in L2(−∞, 0) and L2(0,+∞); that is,
coupling conditions (2.7) must be substituted by the Dirichlet
condition φ(0) = 0.

It is worth noting that explicit relations (2.3)-(2.6) between
the matrix entries θ(α), γ (α, λ) and potentials V and U
make it possible to carry out a quantitative analysis of this
quantum system, e.g., to compute approximate values of the
scattering data.

2.2. Hamiltonians With Localized Rank-Two

Perturbations
We now turn our attention to another family of operators

Tε =
(

i
d

dx
+

1

ε
A
(x

ε

))2
+ V0(x)+

1

ε3
Fε +

1

ε
U

(x

ε

)

, (2.8)

where Fε = Fε(f1, f2) are rank-two operators having the form

(Fεφ)(x) = β̄ 〈f2(ε
−1 · ),φ〉 f1

(

x
ε

)

+ β 〈f1(ε
−1 · ),φ〉 f2

(

x
ε

)

=

∫

R

(

β̄f1
(

x
ε

)

f̄2
(

s
ε

)

+ β f̄1
(

s
ε

)

f2
(

x
ε

)

)

φ(s) ds. (2.9)

Here 〈·, ·〉 is the inner scalar product L2(R). From now on, the
norm in L2(R) will be denoted by ‖·‖. Operators Tε can be viewed
as a regularization of the second pseudo-Hamiltonian in (1.2).
Assume that f1, f2 and q are measurable and bounded functions
of compact support and β is a complex coupling constant. The
potential q is real-valued.

Let us also consider rank-two perturbation of the free the
Schrödinger operator

B = −
d2

dx2
+ β̄ 〈h2, · 〉 h1 + β 〈h1, · 〉 h2, domB = W2

2 (R),

where h1 and h2 are functions of compact support.
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Definition 2. We say that operator B possesses a zero-
energy resonance provided there exists a nontrivial solution of
the equation

− v′′ + β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2 = 0 (2.10)

that is bounded on the whole line. This solution is called a half-
bound state of B. We also say that B admits a double zero-
energy resonance, if there exist two linearly independent half-
bound states.

We will denote by R(h1, h2) the set of all coupling constants
β , for which operator B admits a double zero-energy resonance.

Let h(−1) and h(−2) be the first and second antiderivatives

h(−1)(x) =

∫ x

−∞

h(s) ds, h(−2)(x) =

∫ x

−∞

(x− s)h(s) ds

for functions of compact support. Note if h has zero mean, then
h(−1) is also a function of compact support. Also, we set

a(x) =

∫ x

−∞

A(t) dt. (2.11)

Let us introduce notation

gk = e−iafk, nk = ‖g
(−1)
k

‖, p = 〈g1
(−1), g2

(−1)〉, (2.12)

provided g1 and g2 are functions of zero mean values. Therefore

nk and p are well defined, since g
(−1)
k

are functions of compact
support. Let

ωβ = ei arg(β
−1+p)n2g

(−2)
1 − n1g

(−2)
2 .

Function ωβ is constant outside some compact set containing the
supports of fk. Of course ωβ (x) = 0 for negative x with the large
absolute value. Write

̹ = lim
x→+∞

ωβ (x).

In the case of the double zero-energy resonance function ωβ is
a half-bound state of B with hk = gk (see Lemma 2 below). We
also set

a0 =

∫

R

U dx, a1 =

∫

R

U ωβ dx, a2 =

∫

R

U |ωβ |
2 dx.

Theorem 2. Assume that f1 and f2 are linearly independent,
e−iaf1 and e−iaf2 have zero means, and β ∈ R(e−iaf1, e

−iaf2).
Suppose also that a2 6= ¯̹a1. Then operator family Tε converges
as ε → 0 in the strong resolvent sense to operator T defined by
T φ = −φ′′ + V0φ on functions φ in V subject to the conditions

(

φ(+0)
φ′(+0)

)

= ei
(

µ−arg(a2−̹a1)
)









a0|̹|
2 − 2Re(̹a1)+ a2

|a2 − ̹a1|

|̹|2

|a2 − ̹a1|
a0a2 − |a1|

2

|a2 − ̹a1|

a2

|a2 − ̹a1|









(

φ(−0)
φ′(−0)

)

. (2.13)

Note in these conditions that parameters a1, a2 and ̹ depend
nonlinearly on coupling constant β as well as functions f1, f2, a
via ωβ ; all elements of the matrix are real, since a0 and a2 are
real number. The limit operator T is self-adjoint, because the
determinant of matrix in (2.13) is equal to 1 [cf. (1.1)]. In fact,

|a2 − ̹a1|
−2 det

(

a0|̹|
2 − 2Re(̹a1)+ a2 |̹|2

a0a2 − |a1|
2 a2

)

= |a2−̹a1|
−2

(

a0a2|̹|
2−2a2Re(̹a1)+a22−a0a2|̹|

2+|̹|2|a1|
2
)

= |a2 − ̹a1|
−2

(

a22 − 2a2Re(̹a1)+ |̹|2|a1|
2
)

= |a2 − ̹a1|
−2 |a2 − ̹a1|

2 = 1.

Though conditions (2.13) contain the full matrix, we can not
assert that it is possible to approximate any point interaction (1.1)
by operators Tε . For instance, such approximation does not exist
for the point interactions (1.1) with matrices

(

c11 0

c21 c−1
11

)

,

where c11 is different from 1; if ̹ = 0, then the matrix in (2.13)
has the unit diagonal. Therefore, Theorems 1 and 2 are in some
sense mutually complementary.

Remark also that for any pair of linearly independent
functions f1, f2 satisfying the assumptions of the theorem there
exists a wide class of potentials U for which condition a2 6=

¯̹a1 holds.
In view of Theorems 1 and 2 in Golovaty [26] we can expect

that there exist at least six essentially different cases of the
limiting behavior for Tε as ε → 0. However, in this paper we
restrict ourselves to analyzing only the case that is described
in Theorem 2. Just this case covers the widest class of point
interactions in the limit.

3. ZERO-ENERGY RESONANCES AND

HALF-BOUND STATES

We show first that the set R(V) of all resonance coupling

constants for operator− d2

dx2
+ αV is not empty and furthermore

it is rich enough for any function V of compact support.

Lemma 1. (i) For each measurable function V of compact support,
the resonant setR(V) is a countable subset of the real line with one
or two accumulation points at infinity.

(ii) For each α ∈ R(V), the corresponding half-bound state vα
is unique up to a scalar factor. Moreover, both the limits

v−α = lim
x→−∞

vα(x), v+α = lim
x→+∞

vα(x) (3.1)

exist and are different from zero.

Proof: Without loss of generality we assume that suppV ⊂ I ,

where I = (−1, 1). Then operator − d2

dx2
+ αV possesses a

half-bound state if and only if the problem

− v′′ + αVv = 0, x ∈ I , v′(−1) = 0, v′(1) = 0 (3.2)
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has a non-trivial solution. In fact, a half-bound state vα is
constant outside I as a bounded solution of equation v′′ = 0
and hence v′α(−1) = v′α(1) = 0. From this we also deduce
that there exist the limits (3.1). Obviously we have v−α = vα(−1)
and v+α = vα(1). In addition, both the values vα(−1) and vα(1)
are different from zero in view of uniqueness for the Cauchy
problem, because vα is a non-trivial solution.

Problem (3.2) can be regarded as a spectral problem with
spectral parameter α. If V is a function of fixed sign, then (3.2) is
a standard Sturm-Liouville problem andR(V) coincides with the
spectrum of a self-adjoint operator in weighted Lebesgue spaces
L2(V , I). Otherwise, we can interpret (3.2) as the eigenvalue
problem with indefinite weight function V ; the problem can be
associated with a self-adjoint non-negative operator K in a Krein
space [9, 32]. In both the cases the spectra of such operators are
real and discrete with accumulation points at −∞ or +∞ only.
Moreover all nonzero eigenvalues are simple; for the case of the
Krein space, α = 0 is generally semi-simple. The reader can
also refers to Iohvidov et al. [35] for the details of the theory
of self-adjoint operators in Krein spaces. It follows from the
simplicity of spectra that half-bound state vα is unique up to a
scalar factor.

The set R(h1, h2) of coupling constants, for which the
operator B possesses the double zero-range resonance, is also

rich for any pair of h1 and h2. We set mk = ‖h
(−1)
k

‖ and τ =

〈h
(−1)
1 , h

(−1)
2 〉.

Lemma 2. Assume that h1, h2 are linearly independent functions
of zero mean. Then set R(h1, h2) of double zero-range resonance
for operator B is the circle

R(h1, h2) = {β ∈ C : |β − β0| = ρ}

in the complex plane, where

β0 =
τ̄

m2
1m

2
2 − |τ |2

, ρ =
m1m2

m2
1m

2
2 − |τ |2

.

In addition, if β ∈ R(h1, h2), then the constant function and
function

ωβ = ei arg(β
−1+τ )m2h

(−2)
1 −m1h

(−2)
2

are two linearly independent half-bound states of B.

Note that circle R(h1, h2) is well defined for linearly
independent h1 and h2, because then the first antiderivatives

h
(−1)
1 and h

(−1)
2 are also linearly independent, and |τ | < m1m2

in view of the Cauchy-Schwartz inequality. For instance, if

functions h
(−1)
1 and h

(−1)
2 are orthonormal, then R(h1, h2) is a

unit circle centered at the origin, since m1 = m2 = 1 and τ = 0.

If h
(−1)
1 and h

(−1)
2 are simply orthogonal, then R(h1, h2) = {β ∈

C : |β| = m−1
1 m−1

2 }. In the case when h2 = h1+εg and ε is small,
that is to say, the angle between h1 and h2 is small, the center β0
is far from the origin and the radius ρ is large, because then the
differencem1m2 − |τ | is of order ε.

Proof: We start with the observation that v = 1 is obviously a
solution of equation

−v′′ + β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2 = 0,

since hk are functions with zero-mean values. For the same

reason, the second anti-derivatives h
(−2)
k

are bounded on
the whole line. Then regarding this equation as the “non-
homogeneous” one

v′′ = β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2, (3.3)

we can look for another half-bound state in the form
ω = c1h

(−2)
1 +c2h

(−2)
2 . We do not take into account solution x of

the homogeneous equation, because it is unbounded as |x| → ∞.
Since h1 and h2 are linearly independent, substituting ω into

(3.3) yields

{

β 〈h1, h
(−2)
1 〉 c1 + (β 〈h1, h

(−2)
2 〉 − 1) c2 = 0,

(β̄ 〈h2, h
(−2)
1 〉 − 1) c1 + β̄ 〈h2, h

(−2)
2 〉 c2 = 0.

(3.4)

Because hj has compact support, the scalar product 〈hj, h
(−2)
k

〉

is finite, even though antiderivative h
(−2)
k

does not belong to

L2(R). In addition, the integrating by parts shows 〈hj, h
(−2)
k

〉 =

−〈h
(−1)
j , h

(−1)
k

〉. Then (3.4) becomes

{

βm2
1 c1 + (βτ + 1) c2 = 0,

(βτ + 1) c1 + β̄m2
2 c2 = 0.

(3.5)

This system has a non-trivial solution (c1, c2) if and only if
|β|m1m2 = |βτ + 1|. The condition can be written as
|β−1 + τ | = m1m2.

Given a ∈ C and r ∈ R, we consider the circle {z ∈ C : |z −
a| = r}. Suppose that |a| < r. Themapping z 7→ z−1 is a bijection
from this circle onto another one

{

z ∈ C :

∣

∣

∣

∣

z +
ā

r2 − |a|2

∣

∣

∣

∣

=
r

r2 − |a|2

}

,

as is easy to check. Therefore, the resonance region R(h1, h2)
arises as the image of the circle {z ∈ C : |z + τ | = m1m2}

under the transformation z 7→ z−1. Note that |τ | < m1m2 by
the Cauchy-Schwartz inequality.

If β ∈ R(h1, h2), then (3.5) admits a nontrivial solution having
the form

c1 = ei arg(β
−1+τ )m2, c2 = −m1.

In fact, substituting this solution into the first equation yields

βm2
1 c1 + (βτ + 1) c2 = βm2

1m2e
i arg(β−1+τ ) −m1(βτ + 1)

= βm1 |β
−1 + τ | ei arg(β

−1+τ ) −m1(βτ + 1)

= βm1(β
−1 + τ )−m1(βτ + 1) = 0,

since m1m2 = |β−1 + τ |. Hence, ωβ = ei arg(β
−1+τ )m2h

(−2)
1 −

m1h
(−2)
2 is a half-bound state of B, which is different from the

constant one.
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4. PROOF OF MAIN RESULTS

We start with some assertions, which will be used below.

Lemma 3. Let {Sε}ε>0 be a family of self-adjoint operators in a
Hilbert space L and {Wε}ε>0 be a family of unitary operators in
L. Assume that Sε → S as ε → 0 in the norm resolvent sense,
Wε → W in the strong operator topology as ε → 0 and W
is a unitary operator in L. Then the family of operators Qε =

WεSεW
−1
ε converges in the strong resolvent sense to the operator

Q = WSW−1 with the domain {φ ∈ L : W−1φ ∈ dom S}.

Proof: We first note that

(Qε − ζ )
−1 − (Q− ζ )−1 = Wε

(

(Sε − ζ )
−1 − (S− ζ )−1

)

W−1
ε

+Wε(S− ζ )
−1(W−1

ε −W−1)+ (Wε −W)(S− ζ )−1W−1,

provided ζ ∈ C \ R. The operator S is self-adjoint as a limit of
self-adjoint operators Sε in the norm resolvent topology. From
the last relation and the self-adjointness of S we have

‖(Qε − ζ )
−1f − (Q− ζ )−1f ‖ ≤ ‖(Sε − ζ )

−1 − (S− ζ )−1‖ ‖f ‖

+ | Im ζ |−1‖(W−1
ε −W−1)f ‖ + ‖(Wε −W)(S− ζ )−1W−1f ‖

(4.1)

for all f ∈ L. The first term in the right-hand side tends to zero
as ε → 0, since operators Sε converge to S in the norm resolvent
sense. The last two terms are infinitely small as ε → 0, in view of
the strong convergence ofWε .

We introduce two unitary operators

(Wεf )(x) = e
ia

(

x
ε

)

f (x), (Wf )(x) = eiµH(x)f (x), (4.2)

in L2(R), where a and µ given by (2.11) and (2.2), respectively,
and H is the Heaviside step function

H(x) =

{

0, for x < 0,

1, for x > 0.

Lemma 4. Let Wε and W be the unitary operators given by (4.2).
Then Wε converge to W as ε → 0 in the strong operator topology.

Proof: Without loss of generality we can assume that the support
of themagnetic potentialA lies in (−1, 1). Therefore, a(ε−1x) = 0
for x < −ε and a(ε−1x) = µ for x > ε. For each f ∈ L2(R)
we have

‖Wεf −Wf ‖2 ≤

∫

R

∣

∣

∣

∣

e
ia

(

x
ε

)

− eiµH(x)

∣

∣

∣

∣

2

|f (x)|2 dx

=

∫ ε

−ε

∣

∣

∣

∣

e
ia

(

x
ε

)

− eiµH(x)

∣

∣

∣

∣

2

|f (x)|2 dx ≤ 4

∫ ε

−ε

|f (x)|2 dx, (4.3)

since a(ε−1x) = µH(x) for |x| > ε. The right-hand side of
(4.3) tends to zero as ε → 0, by absolute continuity of the
Lebesgue integral.

4.1. Proof of Theorem 1
Let us consider the Schrödinger operators

Sε = −
d2

dx2
+ V0(x) +

α

ε2
V

(x

ε

)

+
1

νε
U

(

x

νε

)

,

dom Sε = W2
2 (R). (4.4)

It is of course that Sε is a version of operator Hεν given by (2.1)
when the magnetic potential is disabled. We also denote by S =

S(θ , γ ) the Schrödinger operator acting via Sψ = −ψ ′′ + V0ψ

on functions ψ in V obeying the interface conditions

(

ψ(+0)
ψ ′(+0)

)

=

(

θ 0
γ θ−1

) (

ψ(−0)
ψ ′(−0)

)

(4.5)

at the origin. For all real θ and γ , this operator is self-adjoint.
The proof of Theorem 1 is based on the results obtained in

Golovaty [32, 33]. Let {νε}ε>0 be a sequence such that νε → 0
as ε → 0 and the ratio νε/ε tends to λ ∈ 3. If the potential αV
is resonant, then the operator family Sε converges in the norm
resolvent sense as ε → 0 to operator S = S(θ(α), γ (α, λ)), where
θ , γ are given by (2.3)–(2.6). We see at once that operator Hενε

is unitarily equivalent to operator Sε , i.e., Hενε = WεSεW
−1
ε

with the unitary operator (the gauge transformation) Wε given
by (4.2) [28]. For instance, it is easy to check that

−e
ia

(

x
ε

)

d2

dx2

(

e
−ia

(

x
ε

)

φ(x)

)

=
(

i
d

dx
+

1

ε
A
(x

ε

))2
φ(x),

since a′ = A. Next, W−1(domH) ⊂ dom S, where W−1f =

e−iµH f . In fact, given φ ∈ domH, we set ψ = W−1φ = e−iµHφ.
Then we have ψ(+0) = e−iµφ(+0), ψ ′(+0) = e−iµφ′(+0),
ψ(−0) = φ(−0) and ψ ′(−0) = φ′(−0). Rewriting conditions
(2.7) for φ in the form

(

e−iµφ(+0)

e−iµφ′(+0)

)

=

(

θ(α) 0
γ (α, λ) θ(α)−1

) (

φ(−0)
φ′(−0)

)

,

we ascertain that ψ satisfies (4.5) and therefore ψ ∈

dom S. Obviously,

W−1
: domH → dom S

is a linear isomorphism. Therefore, the limit operator H in
Theorem 1 can be written asH = WSW−1.

In view of Lemma 4, the gauge transformations Wε converge
to W in the strong operator topology. Since the resolvents of
Sε converge to the resolvent of S uniformly, we deduce from
Lemma 3 that

Hενε = WεSεW
−1
ε → WSW−1 = H as ε → 0

in the strong resolvent sense.
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4.2. Proof of Theorem 2
We can now argue almost exactly as in the proof of Theorem 1.
First of all note that operators Tε given by (4.6) are unitarily
equivalent to operators

Tε = −
d2

dx2
+ V0(x)+

1

ε3
Gε +

1

ε
U

(x

ε

)

, (4.6)

namely Tε = WεTεW
−1
ε with the gauge transformationWε given

by (4.2). Operator Gε = Gε(g1, g2) is a rank-two operator of
the form

(Gεψ)(x) = β̄ 〈g2(ε
−1 · ),ψ〉 g1(ε

−1x)+β 〈g1(ε
−1 · ),ψ〉 g2(ε

−1x),

where g1 = e−iaf1 and g2 = e−iaf2 are the same functions as in
(2.12). In fact, a trivial verification shows that Fε = WεGεW

−1
ε .

In Theorem 2 we assumed g1, g2 were linearly independent
functions of zero mean. Moreover, a2 6= ¯̹a1. It has recently been
proved in Golovaty [26] that if additionally coupling constant
β belongs to the set R(g1, g2) of double zero-energy resonance

for B = − d2

dx2
+ β̄ 〈g2, · 〉 g1 + β 〈g1, · 〉 g2, then operators Tε

converge as ε → 0 in the norm resolvent sense to operator
Tψ = −ψ ′′ + V0ψ acting on functions ψ ∈ V obeying the
interface conditions

(

ψ(+0)
ψ ′(+0)

)

= ei arg(a2−̹ā1)









|̹|2a0 − 2Re(̹a1)+ a2

|a2 − ̹a1|

|̹|2

|a2 − ̹a1|
a0a2 − |a1|

2

|a2 − ̹a1|

a2

|a2 − ̹a1|









(

ψ(−0)
ψ ′(−0)

)

at the origin. Therefore, T = WTW−1, by reasoning similar to
that in the proof of Theorem 1. We can now repeatedly apply

Lemma 3 for operator families {Tε}ε>0 and {Wε}ε>0 to deduce
the strong resolvent convergence

Tε = WεTεW
−1
ε → WTW−1 = T

as ε → 0.

5. FINAL REMARKS

In Theorem 1 we obtained in the limit the coupling conditions

(

φ(+0)
φ′(+0)

)

= eiµ(A)
(

θ(V) 0
γ (V ,U) θ−1(V)

) (

φ(−0)
φ′(−0)

)

,

in which the magnetic potential A appeared only in the phase
factor eiµ(A). This situation is typical for potential perturbations
of Schrödinger operators.

Unlike the previous case, in which the potential perturbation
was invariant with respect to the gauge transformation Wε ,
the finite-rank perturbation Fε is not invariant. In fact, Fε =

WεGεW
−1
ε ; transformation Wε rotates the plane span{f1, f2}

when we change parameter ε. This is certainly the main reason
why the magnetic field A has an effect on all coefficients in the
coupling conditions

(

φ(+0)
φ′(+0)

)

= eiµ(A)
(

c11(A) c12(A)
c21(A) c22(A)

) (

φ(−0)
φ′(−0)

)

appearing as the solvable model in Theorem 2. Of course, the
coefficients ckj depend on potentials V ,U and functions f1, f2 too.
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