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We review a controlled numerical approach to quantum impurity problems in realistic

geometries, consisting of exactly mapping the complete lattice Hamiltonian onto an

equivalent one dimensional system through a unitary transformation. The resulting

dimensional and entanglement reduction allows one to study the quantum many-body

problem on arbitrary d-dimensional lattices using the density matrix renormalization

group (DMRG) method. The real-space resolution allows one to position the impurities at

the boundary or bulk of the sample and to study screening effects due to edge or surface

modes. We describe how to generalize this approach to multi-impurity problems, discuss

applications and possible extensions.
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1. INTRODUCTION

Research in engineering and fabrication of magnetic nano-structures has been, and continues to be,
a fast growing field [1–5]. Their usefulness can potentially be applied to data storage, spintronics,
sensors, magnetic imaging, quantum computing, and more [6]. Moreover, magnetic adatoms
have been regarded as the building blocks of quantum nanostructures that can be assembled
on crystal surfaces through single-atom manipulation with a scanning tunneling microscope
(STM). These can serve as quantum simulators for studying magnetism with excellent real-
space and energy resolution [7–9]. In the same spirit as cold-atom setups, this technique can
unveil magnetic order and excitations in different geometries [10–13]. The surface not only
supports the spin centers, but also plays a crucial role in stabilizing magnetic order [14–17].
Fundamental to all of these considerations is how individual spins interact with each other.
Exchange interactions between impurities may have different physical origins: they can either arise
from direct exchange for nearest-neighbor adsorption sites or indirect substrate-mediated coupling
that asymptotically decay as a power-law with increasing separation between the impurities
(Ruderman-Kittel-Kasuya-Yosida or RKKY interaction) [18–20].

The physics of a single magnetic impurity is well understood in terms of the Kondo problem:
the magnetic moment is either partially or totally screened by the spin of the conduction electrons
forming a collective many-body state with the Fermi sea [21]. In essence, the impurity ends up
acting as a scattering center. However, in reality it is an extended object with a complex internal
structure, usually referred-to as the hybridization cloud or “Kondo cloud,” which is centered at the
impurity and decays with a characteristic range RK [22–24].
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In order to understand how multiple impurities can realize
magnetic order, it is first necessary to determine the effective
interactions mediated by the conduction electrons in the
substrate. A good point to start is by considering two Kondo
impurities interacting locally with free fermions in the bulk via
an antiferromagnetic exchange coupling JK [25]:

H = Hband + JK
(ES1 · Esr1 + ES2 · Esr2

)

. (1)

where Hband is the lattice Hamiltonian for non-interacting
electrons, parameterized by a hopping t and Esri represents the
conduction electron’s spin at the impurity’s coordinate ri, for
impurities i = 1, 2. The same form of the Hamiltonian can be
generalized to multiple impurities.

Historically, the standard approach is to assume that the
impurities see each-other via an effective RKKY interaction, or
indirect-exchange. It was first introduced in 1954 by Rudderman
and Kittel to explain the coupling of nuclear magnetic moments
[19]. Kasuya realized the same method could be applied to
localized d or f electrons in a metallic host [20] and further work
was carried on by Yosida [18]. The problem can be thought of
as one impurity interacting with the conduction electrons which
then “carry” this interaction to the next impurity. The effective
Hamiltonian in second order perturbation theory is written as:

Heff = JRKKY (R)S1 · S2, (2)

where JRKKY (R) = J2Kχ(R), is a distance dependent function
and χ(R) is the Fourier transform of the non-interacting
static susceptibility, or Lindhard function, which varies with
distance, dimensionality and fermion density. The corresponding
expression which is often cited in the literature is derived from
assuming a uniform electron gas with a quadratic dispersion
E(k) ∼ k2 [26] and its asymptotic behavior at long distances
(kFR≫ 1) and in d dimensions is given by:

χ(R) ∼ sin (2kFR+ πd/2)
Rd

.

As multiple impurities are included, the problem is complicated
by the fact that there are now competing energy scales.
This perturbative approach ignores many important features
such as the many-body physics that can lead to a Kondo
ground state. Therefore, as we shall see, these arguments
alone can not accurately describe multiple impurity physics at
low temperatures.

As perturbative approaches fail for strongly interacting
systems, numerical methods become essential for a better
understanding of experimental results. In this review, we describe
in detail a completely unbiased and controlled numerical
approach to solve quantum impurity problems in d-dimensional
lattices [27–29]. The method relies on an exact canonical
transformation in which a Lanczos recursion allows one to recast
the complete lattice Hamiltonian as a tri-diagonal matrix that
in turn can be associated to an equivalent one dimensional
tight-binding problem. This procedure can be recognized as a
generalization of Wilson’s numerical renormalization approach

[30] and Haydock’s recursion method [31–34]. After the non-
interacting part of the problem has been reduced to a chain,
the many-body physics is introduced in the form of a Kondo
or Anderson impurity. The resulting low-dimensional problem
can efficiently be solved using the density matrix renormalization
group (DMRG) [35–38] method.We generalize these concepts to
the multi-impurity case and discuss improvements to optimize
the calculations in certain particular cases.

2. MAPPING AND DIMENSIONAL
REDUCTION

2.1. Single Impurity
2.1.1. Lanczos Transformation
Solving for the ground state in an interacting lattice problem
in dimensions greater than one is quite a challenging problem.
Some impurity solvers include quantum Monte Carlo (QMC)
[39–43] and the numerical renormalization group (NRG)
[30, 44]. However, these methods have limitations, such as
capturing the finite details of a lattice, or running into
the well-known sign-problem (modern diagramatic QMC
techniques somewhat overcome these issues). Fortunately, one-
dimensional systems can be solved efficiently with the density
matrix renormalization group (DMRG) technique [35–38]. This
section is dedicated to transforming an d-dimensional non-
interacting lattice Hamiltonian, onto an equivalent, solvable one-
dimensional chain [27].

A general Hamiltonian for impurity problems will have
the form

H = Hl +Himp + Vc. (3)

Here, Hl is a single-particle tight-binding Hamiltonian of a
lattice. Himp and Vc describe the impurity and the coupling
between impurity and lattice, respectively. We point out
that this method is applicable regardless of the geometry or
dimensionality of the lattice.

First, let one consider a single impurity problem and one
orbital per site. More general cases of multiple orbitals and
impurities will be discussed in the next section. We start by first
considering the non-interacting band Hamiltonian without the
impurity. In the presence of translational symmetry, this matrix
can be readily diagonalized by transforming to a plane-wave
basis. However, the impurity breaks this invariance but preserves
other point group symmetries of the lattice, such as rotations
and reflections. We would like to generate a single particle basis
compatible with these. We get our inspiration fromNRG:Wilson
considered a free electron gas in the continuum and used a
basis of partial waves centered at the position of the impurity.
A lanczos transformation allowed him to map the problem onto
an equivalent one dimensional chain that he solved by block
decimation [30, 44] (NRG also introduces the idea of logarithmic
discretization of energy scales and renormalization, that will not
be used here). In our case, we carry out a similar procedure, but in
the presence of the lattice. The intuition is as follows: consider a
single electron state en real space representation corresponding
to a particle at the lattice site connected to the impurity r0.
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By applying the non-interacting term of the Hamiltonian Hl

we obtain a new state that is a superposition of single-particle
states at the neighboring sites; this is the first “Lanczos orbital.”
By continuing this procedure the wave-functions will expand
radially outward, away from r0. However, the action of the
hopping also makes these orbitals “contract” inward. In order to
obtain an orthogonal basis, one needs to orthogonalize each new
orbital with those obtained in prior iterations. This is precisely
what the Lanczos recursion does for us. Formally, the procedure
starts by choosing an appropriate single particle “seed” state as:

|90〉 = c†r0 |0〉 , (4)

where c†r0 creates an electron at site r0 and |0〉 is the vacuum
state. This site can be chosen according to two situations. First,
for a Kondo impurity, it is the site the impurity will couple to.
Alternatively, for a substitutional impurity, typically described
with an Anderson-type model, the seed is the impurity site (see
Figure 1). As it will bemade clear, themapping does not effect the
“seed” state and, therefore, does not modify Himp. In both cases,
the mapping is performed in the same way.

Once the seed is chosen, the rest of the states are constructed
with the following iterative procedure:

|91〉 = Hl |90〉 − a0 |90〉 (5)

|9n + 1〉 = Hl |9n〉 − an |9n〉 − b2n |9n−1〉 (6)

an = 〈9n|Hl |9n〉
〈9n|9n〉

(7)

b2n = 〈9n|9n〉
〈9n−1|9n−1〉

. (8)

The equations for an and bn are obtained by requiring the states
to be orthogonal. Note, however, that at this stage the states are
not normalized.

After this transformation, Hl is tri-diagonal and has the form:

Hl =











a0 b1 0 0
b1 a1 b2 0
0 b2 a2 b3

0 0 b3
. . .











. (9)

Equivalently, in second quantization it reads

Hl =
L
∑

i=0

aiñi +
N−1
∑

i=0

bi+1(c̃
†
i c̃i+1 + h.c.), (10)

where c̃†i , c̃i are normalized creation and annihilation operators,

respectively, ñi = c̃†i c̃i is the particle number operator and L is the
total length of the chain. The geometry of this new Hamiltonian
is a chain as in Figure 1. The diagonal an terms are on-site
potentials, while the bn’s are the new hoppings along the chain.

While performing this recursion in practice, numerical errors
are introduced for large L due to finite precision. There are
two ways to reduce these errors: (1) Since 〈9n|9n〉 grows
with n, normalize 9n−1 at each iteration. (2) To prevent loss

FIGURE 1 | (A) Real space wave-functions of Lanczos orbitals on the square

lattice after 8 iterations (orbital “0” represents the seed). The colors are

proportional to the wave function amplitude at each lattice site. (B) Resulting

chain geometry of the transformed Hamiltonian.

of orthogonalization, introduce re-orthogonalization. This can
easily done with the following procedure:

|9n〉′ = |9n〉 −
n−1
∑

j=0

〈9j|9n〉 |9j〉. (11)

As an example, consider a 2D square lattice of linear dimension
L. Instead of L2 sites, one now has to keep only ∼ O(L)
sites. This is indeed an exact canonical transformation. The
remaining missing orbitals correspond to different symmetry
sectors of the Hamiltonian and consequently are completely
decoupled from the impurity. The impurity is only coupled to
the “s-wave” channel. The seed site acts as center of symmetry
for the group D4h. The “s-wave” channel corresponds to the
totally symmetric representation A1g and is formed by the basis
function {x2 + y2}. Different symmetry channels corresponding
to different representations such as those shown in Figure 2

will form their own independent chains. An example of this is
the B1g representation formed by the {x2 − y2} basis function
which can be thought of as a “d-wave” channel. The key point
of this mapping is that it leaves Himp and Vc in Equation (3)
unchanged after the transformation. The first site of the chain
corresponds to a real lattice site in real space. Therefore, as
mentioned, the impurity will only couple to this single site of
the chain.

If the lattice is infinite, the recursion can be performed
indefinitely. In practice, the iterations are stopped and the chain
is cut after some sufficient number of iterations. This is equivalent
to assuming the lattice has the same “shape and size” as the last
orbital in the Lanczos iteration. Alternatively, one can consider
a finite lattice of arbitrary shape. Once the boundary is reached
by the orbitals, they will “bounce” or reflect back, retracing the
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FIGURE 2 | Examples of two orbitals corresponding to different

representations: (A) is associated to the “s”-wave channel that is directly

connected to the impurity, while (B) belongs to a different sector. Clearly, both

are orthogonal and a Lanczos recursion will produce two orthogonal chains.

path to the seed site. At some point, we will find that bn+1 =
0, meaning that all orbitals within that symmetry sector have
been exhausted and we have a chain of finite length. If the
finite lattice has no symmetry elements, the chain length will be
equal to the total number of lattice sites. For instance, for the
case of a square lattice, Lanczos orbitals for a single impurity
have a diamond-like shape (see Figure 1). If the lattice has a
boundary with a different symmetry, the different symmetry
sectors will mix.

The full many body problem is recovered by connecting the
impurity back to the chain. The recursion has not affected the
terms Himp and Vc in Equation (3), so the impurity will now be
connected to the first site of the chain (the seed orbital) by Vc

without any changes. These Hamiltonian can now be solved with
DMRG, or any method of choice.

2.1.2. Entanglement Reduction
As previously described, the Lanczos orbitals are defined by their
symmetry properties, or channel, and their radial distance from
the center of symmetry, which can be associated to the linear
distance along the equivalent one-dimensional chain. These
considerations provide for an intuitive understanding of the
scaling of the entanglement. In the equivalent problem after
the Lanczos transformation, the region enclosed by an area of
“radius” L in the d-dimensional lattice maps onto ∼ Ld−1 one-
dimensional chains, each corresponding to a different symmetry
sector. The entanglement per channel between this region and
the rest of the lattice is exactly the same as the entanglement
between the first L sites of each chain and their complement.
In cases where the system under consideration is gapless, the
chain is a critical one-dimensional system (for square and
cubic lattices, for instance) and the von Neumann entanglement
entropy is proportional to log(L) [45, 46]. All channels contribute
to the entropy with similar factors. This yields a final result
proportional to Ld−1 log(L). These simple arguments easily
explain why free fermions in higher-dimensions have logarithmic
corrections to the area law [47–50]. Remarkably, one only
needs to solve the problem in the channel that is directly
coupled to the impurity, reducing the entanglement by a
factor of Ld−1!

2.1.3. Continued Fractions and Non-interacting

Green’s Functions
The Lanczos transformation described above can be used to
obtain non-interacting Green’s Functions (GF). As a matter
of fact, it was originally introduced in the literature with this
purpose and it is known as the continued fraction expansion, or
method of the moments [31–34]. Consider the Green’s Function,

G(ω) =
∑

n

|9n〉 〈9n|
ω − En

. (12)

Define a projection operator as P0 = |80〉 〈80|, where |80〉 is our
seed state of the mapping. The projected GF is then defined as

〈80|G(ω) |80〉 = G0(ω) =
∑

n

| 〈9n|80〉 |2
ω − En

= 〈φ0|
1

ω − Ĥ
|φ0〉 . (13)

Now, it is clear that the function G0(ω) is just the 00 element of
the matrix (ωÎ − Ĥ)−1, where Ĥ is the tri-diagonal Hamiltonian
after the Lanczos transformation as in Equation (9). To compute
this inverse, it is best to partition the matrix into blocks, then
utilize properties of partitioned matrices. For example, anm×m
matrix of the form:

M =
(

a bT

b C

)

, (14)

where a is a scalar, b is an (m − 1) × 1 vector and C is an
(m− 1)× (m− 1) matrix. Then the 00 entry is given by,

M−1
00 = 1

a− bTC−1b
. (15)

In the current case, bT is just (b1, 0, 0, 0, . . . ), so the above
equation reduces to, switching back to the an and bn notation of
Equation (9):

G−1
00 = 1

a0 − b1G
−1
11 b1

. (16)

The process is then repeated for G−1
11 . This method can be used

to find any matrix element of G(ω). After iterating, the result is a
continued fraction:

G00(z = ω + iδ) = 1

z − a0 −
b21

z − a1 −
b22

z − a2 −
b2n

z − an

. (17)
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Recall that |φ0〉 represents a site in real space of the lattice. The
density of states (DOS) and local density of states (LDOS) for a
system are defined, respectively as,

ρ(ω) =
∑

n

〈9n|9n〉 δ(ω − En) (18)

ρ0(ω) =
∑

n

| 〈9n|φ0〉 |2δ(ω − En) = − 1

π
lim
η→0

ImG0(ω + iη).

(19)

The LDOS of any geometry can then be computed numerically.
Notice the first site of the chain has the exact DOS of the lattice.
One way to terminate the expansion is just to cut the chain at
some sufficient chain length n, as in Equation (17). However, this
results in poor resolution of the LDOS, even for quite large n.
Instead, consider a continued fraction with all an and bn constant,
i.e., an = a and bn = b for all n. The continued fraction, after an
equivalence transform can be written as

Y(η) = η

1+ η

1+ η

1+ η

....

, (20)

where η ≡ −b2

(z−a)2
and the continued fraction is carried out

indefinitely. This expression converges to a finite value for all
complex z with finite imaginary part. This value is given by

Y(z) = 1
2 (1+

√

4η + 1)− 1. (21)

Using the square lattice again for an example, the hoppings
bn along the Lanczos chain converge to b∞ = 2 as seen in
Figure 3A. After a sufficient number of iterations, the values of
an and bn are approaching their asymptotic limits. This permits
the insertion of the expression Y(z) into the continued fraction
yielding the desired result,

G00(z) =
1

z − a0 −
b21

z − a1 −
b22

a2 −
b2n

z − an + (z − a)Y(z)

. (22)

Doing so, results in the ability to take the limit δ → 0, resulting
in a well resolved LDOS as seen in Figure 3B.

This method can be generalized to the case when bn is
alternating between two or more values. This can happen if there
is a gap in the band structure, such as when there are different
on-site energies for opposite sublattices of a bipartite lattice. The
continued fraction is then considered periodic and a similar but
slightly more complicated expression can be found for Y(z).

FIGURE 3 | (A) Hopping terms along the equivalent chain for a square lattice.

Values oscillate around and converge to 2, while an = 0 for all n. (B) Resulting

LDOS. The length of the chain is L = 400 before insertion of the expression

Y (z) as described in the text.

2.2. Multiple Impurities
2.2.1. Block Lanczos
In this section, an extension of the previous method based on
the block Lanczos transformation [51, 52] for multiple orbital or
multi-impurity problems will be presented, following the original
work in Shirakawa and Yunoki [29] and Allerdt et al. [28]. These
considerations apply to different orbitals of the same atom, or
impurities sitting at different lattice sites. As before, the first
step is to choose the seed states. For illustrative purposes, let us
consider a square lattice with two seeds at positions r1 and r2,
defined as:

|α0〉 = c†r1 |0〉
|β0〉 = c†r2 |0〉 ,

with the additional requirement that 〈α0|β0〉 = 0. Once the
seeds are chosen, a new set of states can be obtained through
the block Lanczos method [53]. The idea is the same: apply the
Hamiltonian to each state and require orthogonality. The new set
of states can be found through the iterative procedure as

|αn+1〉 = H |αn〉 − aααn |αn〉 − aαβn |βn〉 − bααn |αn−1〉
− bαβn |βn−1〉 (23)

|βn+1〉 = H |βn〉 − aββn |βn〉 − aβαn |αn〉 − bββn |βn−1〉
− bβαn |αn−1〉 . (24)
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By requiring the states |αn〉, |βn〉 to be orthogonal to all |αk<n〉,
|βk<n〉, the a and b coefficients can be found by solving the
following matrix equations:

(〈αn|H |αn〉 〈βn|H |αn〉
〈αn|H |βn〉 〈βn|H |βn〉

)

(

aααn a
αβ
n

a
βα
n a

ββ
n

)

(〈αn|αn〉 〈βn|αn〉
〈αn|βn〉 〈βn|βn〉

)

(25)

(〈αn−1|H |αn〉 〈βn−1|H |αn〉
〈αn−1|H |βn〉 〈βn−1|H |βn〉

)

=
(

bααn b
αβ
n

b
βα
n b

ββ
n

)

(〈αn−1|αn−1〉 〈βn−1|αn−1〉
〈αn−1|βn−1〉 〈βn−1|βn−1〉

)

. (26)

A solution to these is ensured by the fact that 〈αn|αn〉 6=
〈αn|βn〉. The block Lanczos recursion will result in the geometry
of a ladder as shown in Figure 4. Note that the states are not
normalized at this stage. An important aspect of this method is
that states within the same block are not generally orthogonal,
i.e., 〈αn|βn〉 6= 0 (resulting in the vertical rung coupling in
the ladder). Since we are interested in an orthonormal basis, we
can use a Gram Schmidt procedure—although there are many
ways—, to orthogonalize them. This is done by choosing

|xn〉 = |αn〉 ; (27)

|yn〉 = |βn〉 − 〈αn|βn〉 |αn〉 , (28)

which will also simplify the geometry causing some hoppings in
the ladder to vanish. If the seed orbitals are spatially separated
such that the Lanczos orbitals have not yet met or overlapped,
the hoppings connecting the legs of the ladder will remain zero
and the hoppings along the chain will be equal to the single
seed case.

Our Hamiltonian can now be written in the desired
tridiagonal form:

Hband =















A0 B1 0 0 · · ·
B1 A1 B2 0
0 B2 A2 B3
0 0 B3 A3
...

. . .















, (29)

where An and Bn are 2 × 2 matrices. These ideas can readily
be generalized to an arbitrary number of impurities. For k
impurities, eachA and Bmatrix will be k×k. As long as the initial
states are orthogonal, a new set of states can be found as

|λn+1〉 = H |λn〉 −
∑

λ′

(

aλλ
′

n |λ′n〉 + bλλ
′

n |λ′n−1〉
)

. (30)

This matrix represents a new non-interacting tight-binding
Hamiltonian where each block becomes a “unit cell” (there is
no-translational invariance in this case, though).

Intuitively, we can understand this geometry as follows:
if the impurities are far apart, we can imagine performing

FIGURE 4 | Geometry produced by the block Lanczos method before

orthogonalization. Some hoppings (black lines) may be zero depending on the

geometry of lattice and placement of the seeds.

independent single-impurity mappings for each of them that
yield two decoupled one-dimensional chains. At some point,
when the length of the chains is about half the separation distance
between impurities, the orbitals interfere and orthogonality
is lost. Therefore, after re-orthogonalizing them, we end up
introducing mixing that translates into a hopping term between
the chains, leading to the resulting ladder.

For k impurities, it can be recognized as k coupled
chains forming a k × L ladder. The new geometry is now
quasi one-dimensional.

2.2.2. Symmetric and Anti-symmetric Channels
In the presence of inversion symmetry, the legs of the ladder
can be decoupled into independent chains [28]. This method
can be employed in two-impurity problems on simple lattices
such as square, hexagonal, cubic, triangular, etc. An example of
when it can not be used is for Bernal stacked graphene when the
seeds are both on A-sites of opposite layers. Following Allerdt
et al. [28], the first step is to choose the initial seed states. This
symmetrization is similar to a folding transformation used in
bosonization and NRG [54–58] and is carried out by choosing
symmetric and antisymmetric (or bonding and anti-bonding)
combinations of the original single particle states. For two seeds
at r1 and r2, they read:

|ψ+
0 〉 = c†+ = 1√

2
(c†r1 |0〉 + c†r2 |0〉); (31)

|ψ−
0 〉 = c†− = 1√

2
(c†r1 |0〉 − c†r2 |0〉). (32)

Once the initial states are constructed, the Lanczos recursion
is identical to the one seed case. The procedure is carried out
for each initial state yielding two completely independent and
orthogonal chains. Only after the impurities are introduced
are these chains coupled. The resulting geometry is shown in
Figure 5 including the impurities. This transformation however,
does not leave Vc unchanged. We illustrate it for the case of the
two-impurity Kondomodel introduced above in Equation (1). To
write the many-body terms of the Hamiltonian in the new basis
we use the inverse transformation,

c†r1,2 = 1√
2

(

c†+ ± c†−
)

, (33)
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FIGURE 5 | Geometry produced by the Lanczos transformation using the

symmetric and anti-symmetric seeds [28]. Red arrows represent

Kondo adatoms.

where c†+, c
†
− are defined in Equations (31) and (32), respectively,

and the fact that

Szi = 1
2

(

ni↑ − ni↓
)

, S+i = c†i↑ci↓, S−i = c†i↓ci↑,

niσ = c†iσ ciσ , (34)

one arrives at the transformed Hamiltonian:

V ′
c = JK

2

(ES1 + ES2
)

·
∑

µ,ν,γ

c†γµ Eσµνcγ ν +
JK

2

(ES1 − ES2
)

.

∑

µ,ν,γ

c†γµ Eσµνc−γ ν . (35)

By applying this symmetry, not only the recursion is greatly
simplified, but also that the equivalent problem reduces from a
ladder to a chain. Since the real space entanglement on a chain is
half of that on the ladder, this results into an exponential gain that
dramatically improves the efficiency of the DMRG simulations.

2.3. Star Geometry
In certain cases, it can be beneficial to transform from a chain to a
star geometry. It was recently shown that a star geometry results
in lower ground state entanglement than the chain [59], making
it ideal for DMRG calculations.

The single impurity case is presented here and same
considerations can easily be extended to multiple impurities.
This mapping corresponds to a second unitary transformation
on top of the original lattice-to-chain conversion. In order to do
this mathematically and numerically, the matrix Hl is split into
two blocks (similar to the partition when calculating the LDOS
with the continued fractions). One contains just the seed state,
which remains unaltered and the other block contains the rest.
Explicitly, Equation (9) is split into

Hl =





a0 b1 0
b1 H′

0



. (36)

The block corresponding to the non-interacting chain H′ is then
diagonalized. The couplings to the seed site are then Vn = b1a

′
n,

where a′n are the values of the nth eigenvector of H′ on the site

FIGURE 6 | Star geometries for the (A) single impurity Anderson model and

(B) single impurity Kondo model. The center sites correspond to the seed sites

in the Lanczos transformation. The black lines represent the new hoppings Vn
as in Equation (37). The Kondo impurity is coupled via JK shown by the

dashed line in (B).

H′
00 (or the second site of the chain). Equation (36) then becomes

Hl =















a0 V1 V2 V3 · · ·
V1 ǫ1 0 0 · · ·
V2 0 ǫ2 0 · · ·
V3 0 0 ǫ3 · · ·
...

...
...

...
. . .















, (37)

where a0 corresponds seed of the Lanczos transformation and the
center sites in Figures 6A,B. The new bath energies ǫn are just the
eigenvalues of H′.

To extend this idea to two impurities is straight forward.
The Hamiltonian after the Lanczos transformation is again split
into blocks, where now the first block contains both seed states.
Obtaining the new hoppings and bath energies is identical to the
single impurity case. The new form of Equation (29) will then be

Hl =

















aαα0 a
αβ
0 Vα1 Vα2 · · ·

a
βα
0 a

ββ
0 V

β
1 V

β
2 · · ·

Vα1 V
β
1 ǫ1 0 · · ·

Vα2 V
β
2 0 ǫ2 · · ·

...
...

...
...

. . .

















. (38)

The resulting geometry is shown in Figure 7. Depending on the
symmetry of the lattice and impurities, certain Vn’s will vanish,
as in the case where the symmetric/antisymmetric seeds are used.
Here, the most general form is shown.

In some circumstances, the impurities entangle strongly to
some states in the metallic substrate within a window of width
∼ JK around the Fermi energy, while a large fraction remains
disentangled. When this occurs, it is convenient to use the star
geometry, which allows one to reach extremely large systems,
practically in the thermodynamic limit. The advantage here is
that after the transformation to the star, some bath sites (in the
interacting problem) will be double occupied and some will be
empty. Observing that these states play no role in the physics,
they can be safely discarded. For an application we refer the
reader to Allerdt et al. [60].
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FIGURE 7 | Star geometry for the two impurity Kondo model [60]. The Kondo

impurities are represented by the orange arrows coupled via JK to the seed

sites (blue circles). Green circles represent bath sites with energies ǫn
connected to the seeds via hoppings Vn as in Equation (38).

3. DMRG SIMULATIONS

In the block Lanczos approach, the equivalent problem consists
of a ladder with k legs, where k is the number of impurities.
As discussed above, by means of a folding transformation
one can reduce the entanglement by a factor of 2, with the
consequent reduction in the number of DMRG states needed
in the calculation. Typically, for S = 1/2 impurities we take
a total system size to be L = 4n (including impurities), such
that each impurity can form part of a collective RKKY state or
its own Kondo cloud (it has been already observed that Kondo
does not develop in chains of length L = 4n + 2 [61]). For
instance, L = 204 corresponds approximately to a “sphere”
around the two impurities of radius ∼ 100. As explained above
and described in Büsser et al. [27], we assume that the lattice has
the same shape/symmetry as the orbitals. When this is the case,
orbitals never “bounce back” inward and the Lanczos recursion
can be stopped at an arbitrary number of iterations without
introducing any bias. Typically, we consider system sizes at least
4 times larger than the maximum inter-impurity distance. Notice
that each impurity configuration will generate a new mapping
and the shape of the lattice will be modified as a consequence,
depending on the relative position of the impurities and the
number of Lanczos iterations. This could potentially lead to
artifacts and care must be taken to make sure that no finite size
effects are introduced.

Since the energy difference between the ground-state and
the first excited state can be very small (∼ 10−6), we fix the
truncation error at 10−9 in all simulations. This translates into
a number of DMRG states of the order of 3,000 or more in
most cases. Achieving this level of accuracy in a ladder geometry
(without the bonding-antibonding symmetrization) would be
practically impossible due to the larger entanglement. However,
as previously pointed out, it is possible to work in the star
geometry directly. This is particularly ideal in the strong coupling
limit, since the impurity is mostly entangled to an electron at
position r0. The rest of the free electrons remain disentangled
and, in “momentum” (or energy) space, they practically form

a product state. In this basis, the number of states required to
achieve the same accuracy is reduced dramatically.

4. ENERGY SCALES

As suggested by Doniach [62] (see also [63]), one could define a
binding energy (or “Kondo temperature”) for forming a Kondo
singlet TK ≃ e−1/JK , or an RKKY state, TRKKY ∼ J2K and a
competition between these two energy scales will dictate which
phase will win. Another consideration that plays an important
role in finite systems is the energy level spacing1 that introduces
another competing energy scale which can become significant
in, for example, quantum dots [64]. The Kondo effect in small
or confined systems has been referred to as the “Kondo Box.”
It is expected that 1 will dominate the physics when TK ∼ 1.
Large amounts of work have been dedicated to studies of the
competition between TK and1, which is a complicated problem,
as well as scaling in the presence of finite bandwidth [65].
A fully developed resonance (fully screened impurity) requires
a finite density of states at the Fermi level. In this regime,
even/odd effects in chain length and particle number are also
observed [63, 66].

In order to understand the relevance of these scales in
numerical simulations we first analyze the single impurity
case at zero temperature. According to renormalization group
arguments, the system flows to a strong coupling fixed point
characterized by a single energy scale—the Kondo temperature
TK . In this regime, the impurity and the conduction electrons
form a scattering state, the “Kondo cloud,” that has a
characteristic extensionRK [22–24, 67–70] that depends on JK (or
TK). At distances of the order of RK electrons are more entangled
to the impurity. In finite systems where the conduction electrons
are confined to a “Kondo box” [64, 71–74] all the electrons may
all be inside the Kondo cloud, without an “outside.” This regime
would correspond to the “crossover” between weak coupling and
strong coupling in the RG flow.

The strong coupling limit can be explicitly realized by taking
JK ≫ W, where W is the bandwidth, and physically results into
a tightly bound singlet formed by the impurity and a localized
electron at r0. This corresponds to RK = 0. As JK is reduced,
the impurity will become correlated with electrons farther and
farther from it and RK will increase. If the system is finite, at some
point we will find RK ∼ L and the Kondo singlet will extend
to the entire volume and the impurity will couple mostly to one
electron at the Fermi level. According to the analysis presented in
Yang and Feiguin [75], practically a single conduction electron
is responsible for most of the screening: In the weak-coupling
limit, this electron is precisely at the Fermi level [63], while in
the strong-coupling limit, it corresponds to the localized orbital
directly in contact with the impurity spin. In both cases, the
remaining conduction electrons form a completely disentangled
Fermi sea. As a consequence, it is important in finite systems to
have a single occupied state at the Fermi energy in order to realize
screening (otherwise, the impurity will behave as a local moment,
decoupled from the Fermi sea). This situation, however, is far
from the universal, strong coupling regime [65].

To make these observations more explicit, we study the
behavior of gap10 to the first (triplet) excited state as a function

Frontiers in Physics | www.frontiersin.org 8 June 2019 | Volume 7 | Article 67

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Allerdt and Feiguin Exact Approach to Quantum Impurity Problems

of system size. We focus our discussion at JK = 1, where the
effects are more obvious. In the thermodynamic limit the system
is gapless, 10 → 0 as L → ∞: it costs no energy to flip a spin
infinitely far from the impurity. In addition, we introduce the
“correlation gap,” defined as:

1K =
〈g.s.|S−impHS

+
imp|g.s.〉

〈g.s.|S−impS
+
imp|g.s.〉

− E0. (39)

The first term is a variational energy obtained by flipping
the spin of the impurity with the S+imp operator. This action
will disentangle the impurity from the chain and destroy the
Kondo singlet. Equivalently, one could apply the Szimp operator
to transform the Kondo singlet into a “Kondo triplet.” Both
quantities are equivalent in the SU(2) symmetric case. This
estimate will yield what we identify as the minimum energy cost
for destroying the Kondo state, which can also be related to the
Kondo temperature.

For small systems the energy spacing 1 is large and the gap
10 is determined by the correlation gap 1K . As we increase the
size of the Fermi sea, the level spacing is reduced and, at some
point, 1 will become smaller than the correlation gap. When
this happens, the system gap 10 follows the behavior of the level
spacing and shrinks as 1/L, as clearly observed in Figure 8: the
system undergoes a crossover from the weak Kondo-box-like
regime to the universal strong coupling regime and1K becomes
a system-independent characteristic energy scale.

One way to reach this regime in finite systems is by
introducing “damped boundary conditions” [76]. In this
particular case, we multiply the hoppings by a factor λ−n/2,
where λ is a number larger than one and n is the position along
the chain, counting from Lb sites before the boundary (we pick
Lb = 15 in this case). This is reminiscent of Wilson leads, which
have been successfully used in a number of contexts (besides
NRG calculations) and are known to alleviate finite-size effects
[77, 78] by making the energy spacing smaller around the Fermi
energy. To illustrate this behavior we also show 1,10 and 1K

FIGURE 8 | Level spacing 1, singlet-triplet gap 10 and correlation gap 1K as

a function of system size L for λ = 1, 2, 3 and JK = 1.

for different system sizes and JK = 1. We find that, as long as
the “bulk” level spacing is large (for λ = 1), the gap 1 does not
depend on the chain length, but only on λ and Lb (which is kept
constant). Therefore, now one needs to focus on the behavior of
the different quantities with λ and not L. As we see, for all values
of λ considered here 1 is smaller than 1K and is practically
equal to 10. In addition, we see that while 1 gets smaller with
increasing λ, the correlation gap 1K stays constant, indicating
that this is basically a measure of the correlation energy in the
thermodynamic limit.

In the multi-impurity problem the correlation gap cannot
distinguish between Kondo or RKKY physics and the origin of
the correlation effects. In the two-impurity case, one compares
1K against twice the value for a single impurity. The difference
indicates the energy gained by forming a correlated RKKY state
vs. to the one gained by two independent Kondo singlets.

5. APPLICATIONS

The single impurity mapping can be used to study Kondo physics
on graphene [79] or multi-band problems such as phosphorene,
for instance [80]. It was found that, in the case of graphene, edge
states tend to hybridize with the impurity spin introducing a
competition between bulk and edge-induced Kondo screening.

The multi-impurity version allows one to explore a broad
range of interesting open problems. Although briefly suggested
in Büsser et al. [27], the block Lanczos method was formally
introduced in Shirakawa and Yunoki [29] to study spin-spin
correlations between an impurity and conduction electrons
in graphene. The folding transformation was later used to
investigate the competition between Kondo and RKKY physics
on different geometries with small [28] and large spin [81]
and a number of surprising results were found. Notably, there
are important non-perturbative effects that in some cases make
Kondo more robust than an RKKY state, even at short distances
[28] of the order of a few lattice sites. This is a consequence
of lattice effects that make the RKKY interaction very weak
when impurities are sitting at positions where single particle
wave-functions interfere destructively. See for instance Figure 1,
the single particle wave functions that expand away from
the impurity site have very small amplitude on the opposite
sublattice, hindering the possibility of mediating an RKKY
exchange interaction between impurities. Moreover, due to the
fast decay of the RKKY interaction, Kondo screening becomes
the dominant effect at relatively short inter-impurity separation.
Interestingly, in the spin-1 problem, it was found that impurities
can be practically screened by the substrate, while simultaneously
forming an RKKY state [81].

The method is particularly suited to study the structure of
the correlations around a single impurity. In this case, one seed
site is connected to the impurity and the second one is used
to measure the two-point correlations between the conduction
electron in the substrate and the impurity spin [29]. For instance,
one could place the impurity at the edge or bulk of the material
and calculate the correlations around substitutional impurities
and adatoms at the edge of a topological insulator [82, 83]. Unlike
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previous calculations that consider the coupling of the impurity
to one-dimensional effective modes [84, 85], in this formulation
the helical liquid arises naturally as an edge effect of the two-
dimensional bulk. Similarly, one could place the impurity on
metallic (111) surfaces and study the influence of bulk states and
Shockley surfaces states on the RKKY interaction [60].

Remarkably, this approach can be extended to a one-
dimensional interacting “wire” connected to a substrate [86, 87].
The many-body physics in this case is contained in the wire
(for instance, a Hubbard chain), while the substrate remains
non-interacting. The mapping leads to Lanczos orbitals that
describe cylindrical “shells” centered at the wire as their axis of
symmetry. The generalization takes advantage of the translational
invariance of the system along the wire direction that results
into the wire being connected to an array of independent semi-
infinite 1D chains, each characterized by a momentum kx. In this
representation the chain Hamiltonian becomes non-local due
to the interaction terms. Other mappings are possible, mixing
real-space and momentum representation. It is convenient to
preserve the locality of the interaction terms in the chain
by using the real-space representation of it. As a price, the
tunneling terms between the chain and the substrate become
non-local. In the case of an insulating substrate, the length of
the chains can be truncated and the system can be solved with
the DMRG.

6. CONCLUSIONS

We have discussed a powerful method to study multi-impurity
problems in realistic lattice geometries and configurations. This
approach can readily be generalized to study generic band

structures, multi-orbital problems, and magnetic molecules. It
can be used in conjunction with first-principles band structure
calculations, where the information about the metallic substrate
is calculated using density functional theory. Quantum chemistry
methods such as CASPT2 or NEVPT2 can be used to precisely
calculate the hybridization terms in the structure of the
seed state, paving the way toward a first principles modeling
and a better understanding of correlation effects in quantum
impurity problems.

We point out that any quadratic Hamiltonian can be
mapped onto an equivalent one-dimensional system following
this prescription, including problems with spin-orbit interaction,
disorder and superconductors (at the mean field/BdG level).

Although the DMRG method was used as a solver for
the effective one-dimensional impurity Hamiltonian, other
methods are equally applicable, such as the embedded cluster
approximation [24] or quantum Monte Carlo. One could
also use these techniques to study time-dependent [88, 89]
and thermodynamic properties [90], or to calculate spectral
functions [91, 92].
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