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A new approach is presented for interpreting low level Langmuir probe measurements in

terms of physical plasma parameters such as density or temperature. Instead of relying

on analytic expressions as in most analyses, the method uses regressions combined with

a suitably prepared solution library consisting of precomputed probe characteristics for

selected plasma parameters. In machine learning language, this amounts to generating

a training data set, constructing and training a model, and validating it over a domain of

physical parameters of interest. This study aims at establishing the feasibility and limits

of the method by using synthetic data sets that can be generated quickly from analytic

approximations. The ultimate goal is to use this approach with model training on data sets

constructed with detailed kinetic simulations capable of accounting for more physical

processes, and more realistic geometry, than are possible with analytic models.
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1. INTRODUCTION

The near-Earth space environment is of strategic importance in commercial, scientific and
security endeavors. Space is a dynamic environment in which space-weather events can affect
communication, remote sensing, global positioning satellites (GPS), as well as large ground
infrastructure such as pipelines and power grids. For those reasons considerable efforts are made
to monitor and characterize this harsh and variable environment in order to better understand
its behavior and mitigate possible adverse effects. Monitoring and characterizing these conditions
relies upon the acquisition of plasma parameters such as the electron and ion densities and
temperatures. Because of its relative simplicity, the Langmuir probe is a common instrument
used to make such measurements. Langmuir probes are electrodes biased to various voltages with
respect to the satellite ground, from which characteristics, that is, current as a function of bias
voltage, are measured. These characteristics then constitute low level (L1B in space instrument
terminology) data that must then be interpreted in terms of physical parameters (level L2) such as
the plasma density, temperature, or spacecraft floating potential. The physics of current collection
by Langmuir probes has been studied by many authors over the course of nearly one century [1–7],
and the resulting analytic approximations form the basis of probe characteristic interpretation in
most laboratory and space experiments. The use of analytic expressions to infer plasma parameters
from characteristics is dictated by the need for fast algorithms capable of providing answers in
real time. Unfortunately, analytic approximations cannot account for a combination of the many
physical processes at play in the lab or in space, such as the effect of a magnetic field, plasma drift, or
the proximity to other objects capable of deflecting or intercepting incoming particles.With present
computing facilities, an interesting alternative would be to use detailed three-dimensional kinetic
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simulations capable of accounting for all the relevant physical
processes under realistic geometry conditions. Kinetic
simulations have been, and continue to be, applied to specific
case studies and elucidate selected processes [8–10] but, due to
the considerable computational resources and run times that they
require, they cannot be used in real-time interpretation of probe
measurements. An approach is proposed here to process low
level L1B data from probe measurements (current as a function
of voltage) into higher level L2 data (density, temperature,
floating potential, ...) from kinetic simulations. The method
consists of constructing a data set of probe characteristics
for a given satellite and probe geometry, corresponding to
selected plasma parameters. Given a measured characteristic, the
corresponding plasma parameters would then be inferred with
an adequate multivariate regression from the set of precomputed
solutions, or “solution library.” This can be thought of as a
specialized interpolation of plasma parameters in the space
of probe characteristics. For simplicity in this first feasibility
study, all characteristics are calculated analytically in the Orbital
Motion Limited (OML) approximation, with the assumption that
the results obtained with these synthetic data will bear relevance
to those that would be obtained using computer simulations.

In the following we assess the feasibility of using multivariate
regression to infer higher level plasma parameters from low level
probe characteristics. The method used to construct a synthetic
data base is explained, as well as two regression approaches based
on kriging and neural networks. Results obtained with these two
approaches are then presented. We conclude with a summary of
our findings and concluding remarks.

2. METHODOLOGY

Two regression approaches are considered, both requiring
training and validation data sets of varying size. As mentioned
in the introduction, it would be prohibitively time consuming
to construct such sets from computer simulations because of
the large computing resources that would be required. Thus,
for the purpose of evaluating the approaches, synthetic data
sets are generated using the analytic OML approximation. This
approximation is used here for speed and convenience, without
any assumption concerning its accuracy.

2.1. Synthetic Data
We assume a drifting Maxwellian velocity distribution

fα(Ev) = nα

(

mα

2πkTα

)3/2

exp

(

−m|Ev− Evd|2
2kTα

)

, (1)

for electrons and ions (α being e and i, respectively), where nα ,
Tα , and mα are the density, temperature and mass of species α,
and k is the Boltzmann constant. The thermal speed of species
α is defined as vthα =

√

2kTα/mα , and the normalized drift
speed as xαd = vd α/vthα . For a repulsive potential qαV >

0 where qα is the particle charge and V is the potential with
respect to background plasma, the minimum speed far from
the probe, at which a particle can reach the probe, is given by
vm =

√

2qαV/mα . Defining xα m = vαm/vthα , and making use

of conservation of energy and angular momentum of incident
particles, it can be shown after some algebra and integrations
in velocity space, that in the OML approximation, the current
collected by a spherical probe of radius a is given by
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ifV > 0, where a single ion species with unit charge e is assumed,
and plasma is assumed to be neutral with ne = ni = n. In actual
measurements, a characteristic also depends on other factors such
as the strength and direction of a magnetic field, the proximity
to other satellite components, solar illumination and associated
photoelectron emission. These effects are neglected here for
simplicity. The regression problem considered then reduces to
an inversion problem whereby a measured characteristic I has
to be interpreted in terms of one or several of the physical
parameters that it depends on. The first step in our approach
consists of constructing data sets, or solution libraries that
are representative of ionospheric conditions. This is done by
“numerically sampling” the ionosphere with the International
Reference Ionosphere (IRI) model [11] over a range of time
periods, altitudes, latitudes and longitudes as listed in Table 1,
and from there, construct a large set of points in a representative
domain of ionospheric plasma parameters. The result is shown

TABLE 1 | Parameters used to define the spatial and temporal ranges for

sampling ionospheric densities and temperatures using the IRI model.

Parameter Domain Step-size and epochs

Latitude [−90◦, 90◦] 1 sin(θ ) = 0.1

Longitude [0◦, 360◦] 20◦

Years 2003 descending solar activity

2010 minimum solar activity

Dates 03/20, 06/21 equinox

09/22, 10/21 solstice

Time of day [0,24] h 4 h

Height [300,1,000] km 50 km

Each density and temperature is used to compute a spherical probe characteristic and

from there, construct data sets used in our regression approaches.
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FIGURE 1 | Illustration of the n− T ionospheric-relevant parameter space

generated with the IRI model.

in Figure 1 in which a subset of 5, 000 randomly selected points
are plotted in the n− T plane. For simplicity and for the purpose
of assessing the feasibility of the proposed regression approaches,
we assume equal electron and ion temperatures (Te = Ti = T),
a pure O+ plasma, and a fixed plasma flow speed vd = 7, 000
m/s. For each (n, T) in the set, a characteristic is calculated using
Equations 2 and 3, and parameterized in terms of 25 currents
calculated for 25 voltages V uniformly distributed between −5
and +5 V. Characteristics therefore consist of 25-tuples, or
vectors EI = (I1, I2 , ... , I25) from which plasma parameters will
be inferred. The set of characteristics with associated n and T
then constitutes our full data set, or solution library. Models
are trained using “training data sets” made of subsets of the
solution library, and their skills are assessed by comparing their
predictions against known values from validation data sets made
of different subsets of the full library. Ourmodels’ skill are defined
quantitatively as the largest relative error of model predictions as
defined in Equation 6 over a given validation data set. Training
data sets consist typically of 6–100 entries, while validation data
sets consist of approximately 5, 000 randomly selected entries.

3. REGRESSION WITH KRIGING

Kriging was first introduced in geostatistics to map the
distribution of geological formations from limited field samples
[12]. The mathematical basis of the approach has later been
further developed and applied to a variety of other problems
[13–16]. The method has a simple approach which lends
itself to providing fast computational speeds. In its complete
form, kriging provides models which are statistically unbiased
to normal statistical errors in given input data sets. It can
be constructed to do collocation at selected data points and
relax collocation at others in order to account for “nugget
effects,” where uncertainties are known to be larger [17]. In
what follows we use a simplified formulation in which the
affine terms used to remove bias, and the terms used to
account for nugget effects, are not included. The result is
pure collocation at selected “pivots,” or points in parameter

space, positioned so as to best approximate a given physical
variable in a given validation set. Assuming a scalar field p
(e.g., density or temperature) to be predicted, from measured
characteristics EI, the modified multivariate kriging model has
the form

p ≃
Np
∑

j=1

ajG(|EI − EIj|), (4)

where Np is the number of pivots used in the model,
G is a suitably chosen scalar function of a real variable,
EIj are vector characteristics computed at selected pivots
(nj, Tj) in parameter space, and aj are fitting coefficients
determined by requiring collocation at pivots; that is, by
solving for

yi =
N

∑

j=1

ajG(|EIi − EIj|), i = 1, 2, ...,N, (5)

where yi are known values from the training data
set. In these equations, the arguments of G are the
norms of the vector differences. The construction
and optimization of a model then reduces to
selecting:

• a function G which gives the “best” predictions over a given
validation data set,

• a number of pivots N, and
• the positions of pivots in parameter space, which minimize

the maximum error in the predictions over a given validation
data set.

Several functions G have been considered, including G(x) =
x, x2, x2 ln(x), and x2 exp(−x/λ) and the latter has been
adopted with λ = 1 for density, and λ = 1.5 for
temperature, for empirically giving the best approximations.
The choice of a number of pivots N is straightforward, and
its effect on a model skill is obvious; model predictions
become increasingly accurate with larger values of N. More
importantly, the distribution of pivots in parameter space
has a direct impact on the accuracy with which model
predictions can be made. Pivots must be positioned so as
to best capture the connection between characteristics and
plasma parameters in the full range considered. The strategy
used to determine the optimal pivot positions is described in
section 3.1.

3.1. Distribution of Pivots
The goal is to position Np pivots in a relevant domain in
parameter space so that, for a given function G, Equation 4 gives
the best approximation of known data values in a given validation
data set. In this analysis “best approximation” is determined by
the maximum relative error ǫr in the prediction, as defined by

ǫr = max

(∣

∣

∣

∣

yi − pi

pi

∣

∣

∣

∣

)

, i = 1, Nv, (6)

whereNv is the number of entries in the validation data set, and pi
is the model prediction given by Equation 4. With this definition,
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FIGURE 2 | Illustration of a 70 vertex triangular mesh used to find optimal

pivot positions in n− T parameter space.

the model can be optimized so as to ensure predictions within a
known maximum relative uncertainty ǫr .

The distribution of pivots in the parameter space is done by
constructing an unstructured triangular mesh with Nv vertices,
enclosing the points in Figure 1, and by successively trying
all combinations of Np pivots among the Nv vertices in the
mesh. This is illustrated in Figure 2 with a mesh consisting of
70 vertices.

In each combination, the maximum relative prediction error
is determined using the validation set, and the distribution of
pivots giving the lowest maximum relative error is selected
for the model. Considering that pivots are indistinguishable
(swapping two pivots produces the same model), the number of
combinations Nc is

Nc =
(

Nv

Np

)

= Nv

Np!(Nv − Np)!
(7)

With several pivots and many mesh points, this number
can be quite large. Combined with a large validation set, a
direct approach in which all pivot positions are optimized
simultaneously might require many hours or days. In such cases,
it may be more practical to proceed in steps—first optimizing a
few pivots, fixing their positions, and then incrementally adding
more until the desired model accuracy is achieved.

3.2. Example Results
Kriging has been applied to construct models to approximate
the density n and temperature T in a set of 5000 entries as
described in section 2.1. Several numbers of pivots have been
considered, using triangular meshes with numbers of nodes
ranging from 33 to 70. As expected it is found that smaller
meshes generally yield less accurate models. However, model
accuracy does not necessarily increase monotonically with the
size of the mesh and, for the mesh sizes considered, the changes
in accuracy were not significant. For a given mesh however,
the model skill always increases with the number of pivots.
The results presented here were all obtained with the mesh

FIGURE 3 | Comparison between model-predicted and actual densities from

the validation data set. The model used here was constructed with a direct

optimization of five pivots. The dashed line corresponds to a perfect

correlation between the two densities.

illustrated in Figure 2, consisting of 70 vertices distributed
approximately uniformly in a log(n) - T plot. In both cases,
several numbers of pivots have been considered, with direct and
incremental optimization. For example, with direct optimization
of 5 pivots, model predictions have a maximum relative error
of 1.3% for n and 4.3% for T. These errors in turn are 2.0
and 9.3%, respectively, with 3 + 3 incremental optimization.
A loss of model accuracy with the incremental optimization is
expected because it does not involve all pivots simultaneously.
With multidimensional domains in parameter space and large
validation sets, however, the incremental optimization may be
the only practical option. The skill of the model constructed for
the density with a direct optimization of 5 pivots is shown in
Figures 3, 4. In Figure 3, the dashed line shows what is expected
for a perfect one-to-one correlation between model and data.
In addition to relative errors, Figure 4 also shows the positions
of pivots with empty circles. Similarly, Figures 5, 6 show the
skill of a model constructed for the temperature using direct
optimization of six pivots. The model in this case is less accurate
than that for the density, with a maximum relative error of
4.3%. The correlation between model and data temperatures in
Figure 5 is noticeably different from that in Figure 3 for the
density. While the latter shows apparent random scatter on
either side of a perfect correlation, the former seems to follow
a thin trajectory with no apparent random scatter, but with
structured deviations from the dashed line. Finally, it is worth
noting the differences in pivot positions between the two cases.
In a practical application of this approach, in which a solution
library would be obtained from kinetic simulations, much fewer
entries would be computed than are available here with the
OML approximation. If more than one physical variable is to
be inferred with kriging-based regression, it would be best if
pivots optimized for different variables were nearly the same, at
least in part. The distribution of pivots in Figures 4, 6, however,
suggests otherwise. While some pivots are at nearby positions in
the two figures, differences are seen to be appreciable for most
of them. The optimization of a model capable of inferring more
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FIGURE 4 | Color plot of relative errors in model-inferred densities in a

validation data set consisting of approximately 5, 000 randomly selected

points. Circles show the positions of the five directly optimized pivots used to

construct the kriging model.

FIGURE 5 | Comparison between model-predicted and actual data

temperature values. The model used here was constructed with a direct

optimization of six pivots. The dashed line corresponds to a perfect correlation

between the two temperatures.

than one plasma parameter from measured characteristics would
therefore likely require more pivots than for a single parameter,
as well as a compromise between the inference skill for these
different parameters.

4. REGRESSION WITH NEURAL
NETWORKS

Artificial neural networks have been studied extensively in the
last several decades. They are derived from cognitive theory in
the human brain, where a neural network consists of connections
and nodes. In a computational setting, it is the goal of these
networks to optimize numerical weights (connections) such that
they map independent variables to a specific dependent outcome,

FIGURE 6 | Color plot of relative errors in model-inferred temperatures in a

validation data set consisting of approximately 5, 000 randomly selected

points. Circles show the positions of the six directly optimized pivots used to

construct the kriging model.

FIGURE 7 | Schematic of a feed forward neural network. Arrows represent the

weight values that are optimized during the training of a neural network model

and circles represent the nodes.

or simply perform regression on a given set of data. A schematic
of a neural network is shown in Figure 7.

This type of network is known as feed forward, where the
inputs are propagated forward through the network. In practice,
each node in the input layer is assigned a numerical value u0,j
where 0 stands for the input layer, and j is the node index in that
layer. Node values are then transformed and fed to the nodes of
the following layer and so on, until reaching the output layer. To
be specific, given values ui,j in node j of layer i, node m of the
following layer would then be assigned ui+1,m as follows:

ui+1,m =
ni

∑

j=1

wi,j,mf (ui,j + bi,j), (8)

where ni is the number of nodes in layer i, wi,j,m are weight
factors, bi,j are bias terms, and f is a nonlinear activation function.
The activation function is a key component in neural networks
for their ability to capture complex dependencies in a data set,
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and its choice can greatly impact the quality of model predictions.
In practice, training the network involves the minimization of
a positive cost function that measures the discrepancy between
predicted pi and data values yi on a given training data set. The
cost function used in this study is

C = 1

N

N
∑

i=1

(pi − yi)
2, (9)

where N is the number of entries in the training data set.
In the problem considered here, the input layer contains
probe characteristics, which are parameterized in terms of 25
currents for given 25 voltages. The network used to perform
the regressions consists of an input layer of 25 nodes, for each
component of a 25-tuple current, (I1, I2 , ... , I25), two hidden
layers of 25 and 13 nodes and a single output node for either
the predicted density or temperature. Minimization of the cost
function is done through a backpropagation algorithm, such that
the discrepancies in the cost function are propagated backwards
to each weight [18, 19].

All neural networks utilized in this study were created with
TensorFlow [20], and the cost functions were minimized with the
Adam algorithm, an improved backpropagation, which has been
shown to achieve very high levels of accuracy in many common
machine learning problems [21]. The bias terms appearing in
Equation 8 are ignored (all set to zero) because they are found to
make no significant difference in the outcome, and the activation
function f used is the hyperbolic tangent; f (x) = tanh(x) which
ranges between −1 and +1. Finally, a simple normalization
technique was used to ensure all training input values were
bound between −1 and +1, the same range as the hyperbolic
tangent function, which is known to aid in the training process
for neural networks to avoid saturation of values in certain nodes
[18]. However, as a result of this normalization scheme, input
characteristics used in the validation of a network could have
normalized values beyond −1 or +1, forcing the network to
extrapolate outside its training range.

4.1. Example Results
By adopting the same pivots found in section 3.2, both density
and temperature models were created with neural networks.
However, results were found to be sub-optimal, with maximum
relative errors in n and T above 100%. Instead, to indicate
the performance of neural networks in this regression problem,
training data sets with 20, 50, and 100 characteristics were
generated from random density and temperature pairs from our
full IRI database.

As expected, increasing the size of the training data
set increases the accuracy of the network for predicting
plasma parameters. For the smallest models, where only 20
characteristics were used in training, the networks are able to
generalize very well considering the system is severely under-
determined. The networks were able to train to a maximum
relative error in the testing set of 16 and 27% for n and T
respectively. At this small training set size, it was clear that the
temperature models were comparable to density models in mean
relative error as they both obtained below 10% for this metric.

However, when training a network for temperature predictions,
it was very difficult to find a random set of 20 characteristics such
that the maximum relative error was comparable to the results
for density.

As the training data sets were increased in size to 50 and 100
entries, maximum relative errors below 10% and mean relative
errors of roughly 3% were obtained for both n and T. Figures 8–
11 illustrate the skill of the model trained with 100 data entries.
The correlation between predicted and known values of the
density, and temperature respectively in Figures 8 and 10 is very
good, as there is a strong linear trend along the diagonal in
both plots, indicating very little deviation from absolute accuracy.
Furthermore, Figures 9, 11 display the prediction skill for each
point in the testing data set on the n − T plane. Here there is
better evidence for the claims surrounding the unreliability in
randomly selecting the training data points, which are shown as
the black circles. In regions where they are heavily concentrated,
the local accuracy of surrounding points is generally very high.
Conversely, in regions where training points are more sparse,
the accuracy drops. However, in some instances there may be
a concentration of training points, and very near to this the
prediction skill drops off rapidly. This effect of course cannot
be tracked and remedied when the entries for the training data
set are selected at random, suggesting that perhaps if points
from denser regions could be moved to these areas of reduced
accuracy, the skill of the entire network would be increased.

Due to the effects discussed above, the training data sets
should be optimized to best represent the entire n− T parameter
space. It was clear that random selection was not an optimal
method in determining the n− T pairs from the IRI database, as
this was found to drastically effect the skill of the models created
with 20 and 50 characteristics. Often, a random selection would
result in the maximum relative error for the testing data set to
remain at very high values (> 100%) during training. This could
also be a result of the initialization of weights at the beginning of
training as this process is also random, furthering the challenge
to find the global minimum of the cost function. An approach
similar to the pivot selection method with kriging, but in a neural
network setting, could be possible and should be explored. This
problem was considered, however a stopping condition during
the training of a network was difficult to define, as the training
procedure can be limited to a number of iterations or an accuracy
threshold. With both of these cases, the number of iterations may
be too large or a threshold may never be reached, making this
approach very volatile to hyper-parameter adjustment, compared
to kriging’s rather simple analysis on a set of pivots.

The task of obtaining a subset of data, such that its prediction
skill is equivalent to that of an optimal data set, is known as
instance selection. Computational techniques such as wrapper
and filter algorithms have been applied to instance selection
problems and were reviewed by Olvera-López et al. [22]. With
these algorithms, a more rigorous selection would be made for
a small data set compared to a random sampling method. Other
future considerations should involve the application of few-shot
learning, where a neural network is given a small amount of data
and is then tasked with learning the entire nature of the given
data [23–26]. Often, this is done in image classification problems,
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FIGURE 8 | Comparison between model-predicted and actual densities from the validation data set. The neural network used here was trained with 100 randomly

selected characteristics. The dashed line corresponds to a perfect correlation between the two densities.

where the network has access to many images that are similar to
the new class of image in question and thus uses this pre-trained
network to aid in the few-shot learning process. In a regression
model proposed by Finn et al. [27], they show that a few-shot
approach (10 training examples) provides state-of-the-art results
for classification and regression problems. It is important to
reiterate that an assumption was made regarding the likeness
of the synthetic data used in this study to that of real plasma
environments. Without adequately tested and controlled data
sets, it cannot be concluded if neural networks will produce the
same skill when analyzing kinetically simulated characteristics.
A physical model that best characterizes plasma behavior in the
Ionosphere should be applied to the neural network approach.

5. SUMMARY AND CONCLUSION

Two regression approaches were presented and applied to infer
plasma parameters from Langmuir probe characteristics. One
is based on a simplified version of kriging developed and
used in geostatistics, and the other uses a neural network
as developed for machine learning and artificial intelligence.
The goal of this study is to assess the feasibility of using
regression techniques to interpret probe characteristics in terms
of physical parameters, given a data set, or solution library,
consisting of probe characteristics and corresponding plasma
parameters. Sets of representative ionospheric plasma parameters
at different times and locations were generated using the
International Reference Ionosphere (IRI) model, which is a
statistical model based on a combination of observations and

FIGURE 9 | Color plot of relative errors in model-inferred density in a validation

data set consisting of approximately 5, 000 randomly selected points. Circles

show the positions of the 100 density and temperature pairs corresponding to

the randomly selected characteristics.

computer models. For simplicity, in this feasibility study, only
the density n and temperature T are considered as independent
plasma parameters. For each pair (n, T) a probe characteristic
is calculated analytically in the Orbital Motion Limited (OML)
approximation. The combination of probe characteristics with
corresponding plasma parameters then forms synthetic training
and validation data sets used to construct regression models
and assess their skills. While approximate, the assumption is
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FIGURE 10 | Comparison between model-predicted and actual temperatures

from the validation data set. The neural network used here was trained with

100 randomly selected characteristics. The dashed line corresponds to a

perfect correlation between the two temperatures.

FIGURE 11 | Color plot of relative errors in model-inferred temperature in a

validation data set consisting of approximately 5, 000 randomly selected

points. Circles show the positions of the 100 density and temperature pairs

corresponding to the randomly selected characteristics.

that the results obtained with synthetic data are indicative
of what to expect with more physically accurate data sets
constructed from detailed kinetic simulations or measurements.
Model predictions with relative errors below 10% were possible
with kriging and neural networks for both plasma density and
temperature. Models constructed with kriging made use of pivots
positioned optimally in parameter space, so as to minimize the
maximum relative error in a given validation data set. With
neural networks, the pivot approach was not practical, and
accuratemodels were only possible with sufficiently large (50–100
entries) training data sets. All data sets were created randomly for
neural networks, thus requiring further exploration to produce a
more sophisticated selection method to test if smaller data sets
(20 or less) will provide similar results to those of large sets.

Such future work should include instance selection and few-
shot learning techniques to improve the quality and relevance
of training examples used in neural network models. Owing to
the large computing resources and run times required, our results
suggest that it should be practical to construct regression models
with kriging, because this approach can be used with relatively
small training data sets or equivalently, small numbers of pivots.
A model based on a neural network, on the other hand, requires
larger training sets in order to produce the same level of accuracy.
Such an approach may be practical for data sets constructed from
accurate and validated measurements provided that sufficiently
large (> 20) data sets can be constructed. The analysis considered
here focused on only two physical parameters n and T, with the
assumption that plasma consisted of a single ion species (O+) and
that voltages Vi with respect to background plasma were known.
In general, electron and ion temperatures may differ, there may
be several ion species with different masses and charges, and
probe voltages are not known with respect to background plasma
but rather with respect to the spacecraft ground. Thus, with Vfl

being the spacecraft floating potential, and Vb,i being the probe
bias voltages with respect to ground, it follows that

Vi = Vfl + Vb,i, (10)

which introduces Vfl as an unknown parameter. Many spacecraft
have means of determining the floating potential [28–34]. With
an independent measurement of Vfl it would be straightforward
to extend the analysis considered here by accounting for the
fact that a non-zero floating potential simply changes voltages
by an additive constant. Another possibility would be to
use the regression techniques to infer Vfl directly from the
characteristics. The inclusion of this unknown, as well as others
such as the ion temperature, mass and charge composition,
should also be considered in a generalized regression problem,
and those will be accounted for in future studies. In closing,
we reiterate that simplifications have been made in this first
assessment of the proposed methodology. In particular, synthetic
data was used in lieu of kinetically computed characteristics,
and noise was omitted for simplicity. Nonetheless, we conclude
that regression with kriging, and possibly neural networks, is of
interest for better interpreting particle sensor measurements and
is worth pursuing.
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