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The paper is devoted to the spectral properties of one-dimensional Schrödinger

operators

Squ (x) =
(
− d2

dx2
+ q (x)

)
u (x) , x ∈ R, (1)

with potentials q = q0+qs, where q0 ∈ L∞ (R) is a regular potential, and qs ∈ D′ (R) is a

singular potential with support on a discrete infinite setY ⊂ R. We consider the extension

H of formal operator (1) to an unbounded operator in L2 (R) defined by the Schrödinger

operator Sq0 with regular potential q0 and interaction conditions at the points of the set

Y. We study the closedness and self-adjointness of H. If the set Y ≃ Z has a periodic

structure we give the description of the essential spectrum of operatorH in terms of limit

operators. For periodic potentials q0 we consider the Floquet theory of H, and apply the

spectral parameter power series method for determining the band-gap structure of the

spectrum. We also consider the case when the regular periodic part of the potential is

perturbed by a slowly oscillating at infinity term. We show that this perturbation changes

the structure of the spectra of periodic operators significantly. This works presents several

numerical examples to demonstrate the effectiveness of our approach.

Keywords: periodic Schrödinger operators, limit operators method, spectral parameter power series (SPPS)

method, dispersion equation, monodromy matrices, slowly oscillating at infinity perturbation

1. INTRODUCTION

We consider formal one-dimensional Schrödinger operators

Squ (x) =
(
− d2

dx2
+ q (x)

)
u (x) , x ∈ R (2)

with potentials q = q0 + qs, where q0 ∈ L∞ (R) is a regular potential and qs ∈ D′ (R) is a
singular potential with support on an infinite discrete set Y ⊂ R. The Schrödinger operator Sq
is a far-reaching generalization of the well-known Kronig-Penney Hamiltonian

H = − d2

dx2
+
∑

γ∈Z
αδ (x− γ ) , α ∈ R
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describing the electron propagation in one-dimensional crystals
[1, 2]. There exists an extensive literature devoted to the different
spectral problems of one-dimensional Schrödinger operators
with singular potentials (see, e.g., [3–9]).

Let Y =
{
yj
}
j∈Z be a sequence of points yj ∈ R such that yj <

yj+1 for every j ∈ Z, ej =
(
yj, yj+1

)
, j ∈ Z, and

∣∣ej
∣∣ = yj+1 − yj,

j ∈ Z, is the length of ej. We assume that

0 < inf
j∈Z

∣∣ej
∣∣ ≤ sup

j∈Z

∣∣ej
∣∣ <∞.

Let the formal Schrödinger operator (2) have the potential q =
q0 + qs, where q0 ∈ L∞ (R) and

qs (x) =
∑

y∈Y

(
α
(
y
)
δ
(
x− y

)
+ β

(
y
)
δ′
(
x− y

))
(3)

is a singular potential, which is a distribution in D′ (R) with
support at Y . We assume that the functions α

(
y
)
, β
(
y
)
belong

to the space l∞ (Y) with the norm ‖u‖l∞(Y) = supy∈Y
∣∣u
(
y
)∣∣.

Note that the operator Sq coincides with the operator Sq0
on the space C∞

0 (R \ Y). Following the Kurasov paper [9] we

consider the extension of Sq
∣∣
C∞
0 (R\Y)

to the unbounded operator

Hq0 in L2 (R) defined by the Schrödinger operator Sq0 with

domain DomHq0 = H̃2 (Ŵ), being

H̃2 (Ŵ) =
{
u ∈ H2 (Ŵ) :

(
u
(
y+
)

u′
(
y+
)
)
= A

(
y
) (u

(
y−
)

u′
(
y−
)
)
, ∀ y ∈ Y

}
,

where Ŵ = R \ Y =
⋃

j∈Z ej, H
2 (Ŵ) =

⊕
j∈ZH2

(
ej
)
, being

H2
(
ej
)
the Sobolev spaces of the order 2 on the intervals ej,

u
(
y±
)
= limε→+0 u

(
y± ε

)
, u′

(
y±
)
= limε→+0 u

′ (y± ε
)
, and

A
(
y
)
=
(
a11

(
y
)
a12

(
y
)

a21
(
y
)
a22

(
y
)
)

is a complex 2× 2-matrix with entries aij
(
y
)
∈ l∞ (Y), i, j = 1, 2.

For potential (3) the matrix A
(
y
)
is of the form

A
(
y
)
=




4−α(y)β(y)
4+α(y)β(y)

−4β(y)
4+α(y)β(y)

4α(y)
4+α(y)β(y)

4−α(y)β(y)
4+α(y)β(y)


 , α

(
y
)
β
(
y
)
6= −4, y ∈ Y .

The following results are obtained in the paper:

1. We prove an a priori estimate for the operator Sq0 of the form

‖u‖H̃2(Ŵ) ≤ C
(∥∥Sq0u

∥∥
L2(R)

+ ‖u‖L2(R)
)
, u ∈ H̃2 (Ŵ) .

This estimate implies that the operator Hq0 is closed.
Moreover, if the potential q0 and the entries of thematrixA

(
y
)

are real-valued such that detA
(
y
)
= 1 for every y ∈ Y , the

operatorHq0 is self-adjoint.
2. Let the set Y of the singular points of the potential q to have a

periodic structure. This means that the set Y is invariant with
respect to the groupG = ℓZ, ℓ > 0. Let

{
gm
}
be a sequence of

points of the group G tending to ∞. We associate with
{
gm
}

the operator-valued sequence
{
V−gmHq0Vgm

}
. We define the

limit operators Hqg , which are the limits in some sense of
the operator sequences

{
V−gmHq0Vgm

}
, where Vhu (x) =

u
(
x− h

)
, x ∈ R, h ∈ G is the shift operator. Then we give

the general description of the essential spectrum spessHq0 in
terms of the limit operators.

3. Let every sequence G ∋ gm → ∞ have a subsequence G ∋
hm → ∞ defining a limit operatorHqh0

. Then we prove that

spessHq0 =
⋃

H
qh0
∈Lim(Hq0)

spHqh0
, (4)

where Lim
(
Hq0

)
is the set of all limit operators ofHq0 .

4. Periodic structures. Let the potential q0 (x), x ∈ R, and the
matrix A

(
y
)
, y ∈ Y , be periodic with respect to the group

G and real-valued. Moreover, we assume that detA
(
y
)

=
1 for all y ∈ Y . Then Hq0 is a self-adjoint operator and
formula (4) yields

spessHq0 = spHq0 .

On applying the Floquet transform we obtain that

spHq0 = {λ ∈ R : |D (λ)| ≤ 1} ,

where D (λ) = 1
2

(
ϕ1 (ℓ, λ)+ (ϕ2)′x (ℓ, λ)

)
is a function

defined from a pair of linearly independent solutions ϕ1,
ϕ2 of the Schrödinger equation Sq0u (x) = λu (x), x ∈
[0, ℓ), which satisfy the Cauchy conditions ϕ1 (0, λ) = 1,

(ϕ1)
′
x (0, λ) = 0, ϕ2 (0, λ) = 0, (ϕ2)

′
x (0, λ) = 1, as

well as interaction conditions at the points y ∈ Y0 ⊂
[0, ℓ). In the paper we obtain an explicit expression for
function D in terms of monodromy matrices associated to
the point interactions from the singular potential (3). Entries
of monodromy matrices are calculated by means of the
SPPS method [10], which allows to consider arbitrary regular
potentials q0 satisfying certain smoothness conditions. This
approach in turn leads to an effective numerical method for
calculating the edges of the spectral bands of Schrödinger
operatorsHq0 .

5. Slowly oscillating at infinity perturbations of periodic
potentials. We say that a function a ∈ L∞ (R) is slowly
oscillating at infinity and belongs to the class SO (R) if

lim
x→∞

sup
x′∈K

∣∣a
(
x+ x′

)
− a (x)

∣∣ = 0

for every compact set K ⊂ R. As above we assume that
the set Y is invariant with respect to the group G. We apply
formula (4) for the investigation of the perturbation of the
periodic operatorsHq by adding to the potential q0 ∈ L∞ (R)

a slowly oscillating term q1 ∈ SO (R). Let Hq0 be a periodic
operator with respect to the groupG given by the Schrödinger
operator Sq0 with G-periodic real-valued potential q0 and
the G-periodic real matrices A

(
y
)
satisfying detA

(
y
)
= 1

for every y ∈ Y . We consider the operator Hq0+q1 , where
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q1 ∈ SO (R) is a real-valued function. Note that the operator
Hq0has a band-gap spectrum

spHq0 =
∞⋃

k=1

[
ak, bk

]
, bk ≤ ak+1, k ∈ N.

The limit operators of the operator Hq0+q1 are of the form

Hh
q0+q1

= Hq0+qh1
, where qh1 ∈ R. Hence

spHq0+qh1
=

∞⋃

k=1

[
ak + qh1 , bk + qh1

]
.

Applying formula (4) we obtain the essential spectrum of the
operatorHq0+q1 as

spessHq0+q1 =
∞⋃

k=1

[
ak +mq1 , bk +Mq1

]
,

where mq1 = lim infx→∞ q1 (x), Mq1 = lim supx→∞ q1 (x).
Above formula shows that if the oscillation of q1 at infinity
is large enough, that is ak+1 − bk < Mq1 − mq1 , the gap(
bk, ak+1

)
of the spectrum of periodic operatorHq0 disappears

in spessHq0+q1 . Hence, the slowly oscillating perturbations of
the periodic potentials can substantially change the structure
of the essential spectrum ofHq0 .

6. Numerical calculation of the spectra of Schrödinger operator
with periodic point interactions. We consider several
examples for showing the application of the theory
here presented, and calculate approximations of their
corresponding spectra.

Notations
We will use the standard notations: C∞ (R) is the space of
infinitely differentiable functions on R, C∞

b (R) is a subspace
of C∞ (R) of functions with all bounded derivatives on R,
D (R) = C∞

0 (R) is a subspace of C∞ (R) consisting of functions
with compact support, D′ (R) is the space of distributions
under D (R). We denote by Hs (R), s ∈ R, the Sobolev space
with the norm

‖u‖Hs(R) =
(∫

R

(
1+ ξ 2

)s ∣∣û (ξ)
∣∣2 dξ

)1/2

,

where û (ξ) is the Fourier transform of u (x). If� ⊆ R is an open
set, then Hs (�) is the space of restrictions on � of functions on
R with the standard norm of restriction.

If exist, we denote the one-sided limits of f at x0 by

f
(
x−0
)
:= lim

x→x0 ,
x<x0

f (x) , f
(
x+0
)
:= lim

x→x0 ,
x>x0

f (x) ,

and by
[
f
]
x0
: = f

(
x+0
)
− f

(
x−0
)
the (finite) jump of f at x0.

Let X,Y be Banach spaces, then B (X,Y) is the space of all
bounded linear operators acting from X into Y , and K (X,Y) is
a subspace of B (X,Y) consisting of all compact operators acting

from X into Y . If X = Y we simply write B (X) and K (X),
respectively.

Let A be an unbounded closed operator in a Hilbert space
H with domain Dom (A) dense in H. The essential spectrum
spessA of operator A is the set of numbers λ ∈ C for which the
operator A − λ is not Fredholm as an unbounded operator in
H. If A is self-adjoint in H then its discrete spectrum is given by
spdisA = spA \ spessA, where spA denotes the spectrum of A.

2. ONE-DIMENSIONAL SCHRÖDINGER
OPERATORS WITH POINT INTERACTIONS

In this section we consider one-dimensional Schrödinger
operators with potentials involving a countable set of point
interactions and investigate some of their functional properties
such as closedness, self-adjointness, Fredholmness, as well as
their essential spectrum.

2.1. A Self-Adjoint Extension of
Schrödinger Operators With a Point
Interaction
Let us consider a singular distribution

qs (x) = αδ (x)+ βδ′ (x) , (5)

which represents a point interaction with support at x = 0. By
the definitions

δ (x) u (x) = δ (u) δ (x) = u (0) δ (x) ,

and

δ′ (x) u (x) = δ′ (u) δ′ (x) = −u′ (0) δ′ (x) ,

it follows that the action of qs on the test functions in D (R) is
defined by

qsu = αu (0) δ (x)− βu′ (0) δ′ (x) .

In the study of Schrödinger operators involving point
interactions we define a space of discontinuous test functions
at x = 0,

D0 (R) : = C∞
0

(
R+
)
⊕ C∞

0

(
R−
)

where R± : = {x ∈ R : x ≷ 0}, and C∞
0

(
R±
)
are the spaces of

restrictions on R± of functions in C∞
0 (R). Continuations of δ-

and δ′-distributions on functions inD0 (R) are defined as follows

δ̃ (u) : =
u
(
0+
)
+ u

(
0−
)

2
, δ̃′ (u) : = −

u′
(
0+
)
+ u′

(
0−
)

2
,

u ∈ D0 (R) .

If u ∈ D (R) it follows that δ̃ (u) = δ (u) and δ̃′ (u) = δ′ (u).
Let us consider the formal one-dimensional Schrödinger

operator

Squ (x) =
(
− d2

dx2
+ q (x)

)
u (x) , x ∈ R, (6)
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where q = qs + q0, with q0 ∈ L∞ (R) as a regular
potential, and qs ∈ D′ (R) as a singular potential defined in
(5). Note that operator Sq coincides with operator Sq0 on the
space C∞

0 (R \ {0}). A domain Dom
(
Sq
)
of operator Sq as an

unbounded operator in L2 (R) must consist of functions u ∈
L2 (R) such that Squ ∈ L2 (R). This condition is fulfilled by
functions u ∈ D0 (R) satisfying at the origin the following
interaction conditions

(
u
(
0+
)

u′
(
0+
)
)
= A0

(
u
(
0−
)

u′
(
0−
)
)
, A0 =

(
4−αβ
4+αβ

−4β
4+αβ

4α
4+αβ

4−αβ
4+αβ

)
, αβ 6= −4,

where matrix A0 satisfies detA0 = 1.
The embedding theorem for Sobolev space implies that if

u ∈ H2 (R \ {0}) : = H2 (R+) ⊕ H2 (R−) the one-sided
limits u

(
0±
)
, u′

(
0±
)
exist, and the jumps [u]0,

[
u′
]
0
are well

defined. Let Hq0 be the unbounded operator in L2 (R) defined

by the Schrödinger operator Sq0 = − d2

dx2
+ q0 with domain

Dom
(
Hq0

)
= H̃2 (R \ {0}) where

H̃2 (R \ {0}) =
{
u ∈ H2 (R \ {0}) :

(
u
(
0+
)

u′
(
0+
)
)
= A0

(
u
(
0−
)

u′
(
0−
)
)}

.

If q0 ∈ L∞ (R) is a real-valued function,A0 is a real 2×2-matrix,
and detA0 = 1, thenHq0 is a self-adjoint operator. We will prove
this result in a more general setting in forthcoming Theorem 2.
Thus the unbounded operatorHq0 generated by the Schrödinger
operator Sq0 with domain H̃2 (R \ {0}) is a self-adjoint extension
of formal Schrödinger operator Sq0+qs .

Schrödinger operators involving point interactions of the
form qs (x) = αδ (x) + βδ′ (x) have been considered as norm
resolvent approximations of certain families of Schrödinger
operators with potentials depending on parameters tending
to zero. The norm resolvent convergence of such families
of operators was established and a class of solvable models
that approximate the quantum systems was obtained in the
works [11–13].

2.2. Properties of Schrödinger Operators
With a Countable Set of Point Interactions
Let Y =

{
yj
}
j∈Z be a sequence of real numbers such that yj <

yj+1 for every j ∈ Z. We denote by ej : =
(
yj, yj+1

)
, j ∈ Z, the

corresponding interval between a pair of adjacent points yj and
yj+1. The interval ej has a length

∣∣ej
∣∣
: = yj+1 − yj, such that

0 < inf
j∈Z

∣∣ej
∣∣ ≤ sup

j∈Z

∣∣ej
∣∣ <∞.

We denote

Ŵ := R \ Y =
⋃

j∈Z
ej, and H2 (Ŵ) : =

⊕

j∈Z
H2
(
ej
)
.

Let us consider the Schrödinger operator Sq defined in (6) with
the regular potential q0 ∈ L∞ (R), and the singular potential

qs (x) =
∑

y∈Y

(
α
(
y
)
δ
(
x− y

)
+ β

(
y
)
δ′
(
x− y

))
, (7)

which is a distribution in D′ (R) with support at Y ⊂ R. We
assume that α,β ∈ l∞ (Y), where the space l∞ (Y) consists
of all bounded complex-valued functions on the set Y , which
is equipped by the norm ‖u‖l∞(Y) := supy∈Y

∣∣u
(
y
)∣∣. Note that

the operator Sq coincides with the Schrödinger operator Sq0 :=
− d2

dx2
+ q0 on the space C∞

0 (Ŵ) :=
⊕

j∈Z C∞
0

(
ej
)
. Following

the ideas of the work [9], the operator Sq defined on C∞
0 (Ŵ) is

extended to an unbounded operator Hq0 in L2 (R) defined by

the Schrödinger operator Sq0 with domain Dom
(
Hq0

)
= H̃2 (Ŵ),

where H̃2 (Ŵ) is a subspace of H2 (Ŵ) given by

H̃2 (Ŵ) =
{
u ∈ H2 (Ŵ) :

(
u
(
y+
)

u′
(
y+
)
)
= A

(
y
) (u

(
y−
)

u′
(
y−
)
)
, ∀ y ∈ Y

}
,

where

A
(
y
)
=
(
a11

(
y
)
a12

(
y
)

a21
(
y
)
a22

(
y
)
)
, y ∈ Y ,

are complex 2×2-matrices with entries aij ∈ l∞ (Y) (i, j = 1, 2).
In the case of potential (7), the corresponding matrices are of the
form

A
(
y
)
:=




4−α(y)β(y)
4+α(y)β(y)

−4β(y)
4+α(y)β(y)

4α(y)
4+α(y)β(y)

4−α(y)β(y)
4+α(y)β(y)


 , α

(
y
)
β
(
y
)
6= −4, y ∈ Y ,

which satisfy detA
(
y
)
= 1, for every y ∈ Y .

If the conditions:

1. regular potential q0 ∈ L∞ (R), and

2. matrices A
(
y
)
=
(
aij
(
y
))2

i,j=1
are such that aij ∈ l∞ (Y) for

every y ∈ Y

are fulfilled, then the operator Sq0 is bounded from H̃2 (Ŵ) into
L2 (R). Let us consider the following results for Schrödinger
operators involving a countable set of point interactions.

Theorem 1 (An a priori estimate). Let infj∈Z
∣∣ej
∣∣ > 0, and

conditions (1), (2) be satisfied. Then, there exists a constant C > 0
such that for every function u ∈ H̃2 (Ŵ) the following estimate

‖u‖H̃2(Ŵ) ≤ C
(∥∥Sq0u

∥∥
L2(R)

+ ‖u‖L2(R)
)

(8)

holds.

Proof: A priori estimate (8) is proved similarly as in the theory of
general boundary-value problems (see, e.g., [14]), but instead of
a finite partition of unity we use a countable partition of unity of
finite multiplicity. The proof is similar to that of Theorem 3.1 in
Rabinovich [15].

Theorem 1 implies the following propositions.

Proposition 1 (Closedness). Let conditions (1), (2) hold. Then,
the operatorHq0 is closed in L2 (R).

Proposition 2 (Parameter dependent Schrödinger operators).
Let

Sµ2u (x) := −d2u (x)

dx2
+ µ2u (x) , x ∈ Ŵ, µ > 0
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be a Schrödinger operator acting from H̃2 (Ŵ) into L2 (R). We
assume that the entries of matrices A

(
y
)
, y ∈ Y , are real-valued,

and lim infy→∞
∣∣a12

(
y
)∣∣ > 0 or there exists a finite set N ⊂ Y

such that a12
(
y
)
= 0 for every y ∈ Y \ N . Then, there exists

µ0 > 0 such that the operator Sµ2 : H̃2 (Ŵ)→ L2 (R) is invertible
for every µ ≥ µ0.

Proof: To prove this proposition we follow the approach of the
well-known paper [16] where the authors studied general elliptic
boundary-value problems depending on a parameter in bounded
domains in R

n. Similarly to the proof of Theorem 1, here we
use a partition of unity and construct local inverses depending
on a parameter, and then we form the global inverse operator
by sticking these inverses for large values of the parameter.
Unlike the paper [16], here we use a countable partition of
unity of finite multiplicity, and follow the proof of Proposition
2 in Rabinovich [17].

Theorem 2 (Self-adjointness). Let q0 ∈ L∞ (R) be real-valued,

and let matrices A
(
y
)
=
(
aij
(
y
))2

i,j=1
possess real-valued entries

aij ∈ l∞ (Y). We assume: (i) lim infy→∞
∣∣a12

(
y
)∣∣ > 0 or there

exists a finite setN ⊂ Y such that a12
(
y
)
= 0 for every y ∈ Y \N ;

(ii) detA
(
y
)
= 1, for every y ∈ Y . Then, the unbounded operator

Hq0 defined by the Schrödinger operator Sq0 = − d2

dx2
+ q0 with

domain H̃2 (Ŵ) is self-adjoint in L2 (R).

Proof: Let u, v ∈ Dom
(
Hq

)
. On applying integration by parts

twice we obtain
∫

Ŵ

Squ (x) v (x) dx =
∫

Ŵ

u (x) Sqv (x) dx+
∑

y∈Y

([
uv′
]
y
−
[
u′v
]
y

)
.

Note that
[
uv′
]
y
−
[
u′v
]
y
=
(
u
(
y+
)
v′
(
y+
)
− u

(
y−
)
v′
(
y−
))

−
(
u′
(
y+
)
v
(
y+
)
− u′

(
y−
)
v
(
y−
))

= det

(
u
(
y+
)
v
(
y+
)

u′
(
y+
)
v′
(
y+
)
)
− det

(
u
(
y−
)

v
(
y−
)

u′
(
y−
)
v′
(
y−
)
)

=
(
detA

(
y
)
− 1

)
det

(
u
(
y−
)
v
(
y−
)

u′
(
y−
)
v′
(
y−
)
)
= 0, ∀ y ∈ Y ,

where we have used the condition detA
(
y
)

= 1. Hence,

the operators − d2

dx2
and Sq0 with domain H̃2 (Ŵ) are symmetric

operators in L2 (R). It follows from Proposition 2 that there
exists µ0 > 0 such that Sq0 + µ2

0 : H̃
2 (Ŵ) → L2 (R) is an

isomorphism. To prove that Hq0 + µ2
0 with domain H̃2 (Ŵ)

is a self-adjoint operator in L2 (R) we have to show that
Dom

((
Sq0 + µ2

0

)∗) = Dom
(
Sq0 + µ2

0

)
. Since Sq0 + µ2

0 is a

symmetric operator Dom
(
Sq0 + µ2

0

)
⊂ Dom

((
Sq0 + µ2

0

)∗)
.

Assume that u ∈ Dom
((
Sq0 + µ2

0

)∗)
, then

(
Sq0 + µ2

0

)∗
u = f ∈

L2 (R). Since Sq0 + µ2
0 :Dom

(
Sq0
)
→ L2 (R) is an isomorphism,

there exists v ∈ Dom
(
Sq0 + µ2

0

)
such that

(
Sq0 + µ2

0

)
v = f .

Since Dom
(
Sq0 + µ2

0

)
⊂ Dom

((
Sq0 + µ2

0

)∗)
we obtain that(

Sq0 + µ2
0

)∗
v = f . Hence

u− v ∈ ker
(
Sq0 + µ2

0

)∗ =
(
Im
(
Sq0 + µ2

0

))⊥ = {0} .

Therefore, u = v ∈ Dom
(
Sq0 + µ2

0

)
and Dom

(
Sq0 + µ2

0

)
=

Dom
((
Sq0 + µ2

0

)∗)
. Thus, Sq0 + µ2

0 is a self-adjoint operator in
L2 (R) with domain Dom

(
Sq0
)
= H̃2 (Ŵ). Note that the operator

of multiplication by µ2
0 is strongly dominated by the operator

Sq0 (see, e.g., [18, p. 73]). Hence, Hq0 with domain H̃2 (Ŵ) is a
self-adjoint operator.

2.3. Fredholm Property and Essential
Spectrum of Schrödinger Operators With
Point Interactions
In this subsection we give the necessary and sufficient conditions
of Fredholmness for Schrödinger operators Sq0 : H̃

2 (Ŵ) →
L2 (R) with point interactions in terms of limit operators. We
apply these results to the description of the essential spectrum
of the corresponding unbounded operators Hq0 . Through this
subsection we assume that the sequence of points Y =

{
yj
}
j∈Z ⊂

R where the singular potential qs is supported is periodic with
respect to the group G = ℓZ, ℓ > 0. We also assume that
matrices Y ∋ y 7→ A

(
y
)
are periodic with respect toG.

Definition 1. A potential q0 ∈ L∞ (R) is said to be rich if for every
sequence g =

(
gm
)
, G ∋ gm → ∞, there exists a subsequence

h =
(
hm
)
, hm → ∞, and a limit function qh0 ∈ L∞ (R) such that

for every segment
[
a, b
]
⊂ R

lim
m→∞

sup
x∈[a,b]

∣∣∣qh0 (x)− q0
(
x+ hm

)∣∣∣ = 0.

Definition 2. The Schrödinger operator Sqh0
: H̃2 (Ŵ) → L2 (R)

defined by

Sqh0
u (x) : =

(
− d2

dx2
+ qh0 (x)

)
u (x) , x ∈ Ŵ,

with a limit function qh0 replacing the rich potential q0 is called
a limit operator of Sq0 :H̃

2 (Ŵ) → L2 (R). The set of all limit
operators of Sq0 is denoted by Lim

(
Sq0
)
.

Let ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ (x) ≤ 1, where ϕ (x) = 1

if |x| ≤ 1
2 , and ϕ (x) = 0 if |x| ≥ 1. Let ϕR (x) = ϕ (x/R), and

ψR (x) = 1− ϕR (x).

Theorem 3. Let q0 ∈ L∞ (R) be a rich potential, and let matrices
Y ∋ y 7→ A

(
y
)
be G-periodic. Then Sq0 : H̃

2 (Ŵ) → L2 (R) is a
Fredholm operator if and only if all limit operators Sqh0

: H̃2 (Ŵ)→
L2 (R) are invertible.

Proof: One can prove that the operator Sq0 : H̃
2 (Ŵ) → L2 (R)

is locally Fredholm, that is for every R > 0 there exist operators
LR,RR ∈ B

(
L2 (R) , H̃2 (Ŵ)

)
such that

LRSq0ϕR = ϕR + T
(1)
R , ϕRSq0RR = ϕR + T

(2)
R ,

where T
(1)
R ∈ K

(
H̃2 (Ŵ)

)
, and T

(2)
R ∈ K

(
L2 (R)

)
since Sq0 is an

elliptic operator. Hence, in order to prove that Sq0 : H̃
2 (Ŵ) →

L2 (R) is a Fredholm operator we have to study the local
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invertibility of Sq0 at infinity, i.e., we have to prove that there
exists R0 > 0 and operators L∞

R0
,R∞

R0
∈ B

(
L2 (R) , H̃2 (Ŵ)

)
such

that

L∞
R0
Sq0ψR0 = ψR0 , ψR0Sq0R

∞
R0

= ψR0 .

Let µ0 > 0 be such that the operator Sµ2
0
: H̃2 (Ŵ)→ L2 (R) is an

isomorphism. We set

A = Sq0S
−1
µ2
0

: L2 (R)→ L2 (R) .

It is easy to prove that Sq0 : H̃
2 (Ŵ) → L2 (R) is locally invertible

at infinity if and only if A is locally invertible at infinity. For the
study of local invertibility at infinity we use the results of the book
[19], and the work [20].

Let φ ∈ C∞
b (R), and φt (x) = φ (tx), t ∈ R. Then it is easy to

prove that

lim
t→0

‖[φt ,A]‖ = lim
t→0

‖φtA−Aφt‖ = 0,

that is,A belongs to the C∗-algebra of so-called band-dominated
operators in L2 (R) (see, e.g., [20]). We introduce the limit
operators of A as follows. For G ∋ hm → ∞ let Vhmu (x) : =
u
(
x− hm

)
be the corresponding sequence of shift operators. We

say that Ah is a limit operator defined by the sequence h =
(
hm
)

if
∥∥∥
(
V−hmAVhm −Ah

)
ϕ

∥∥∥
B(L2(R))

=
∥∥∥ϕ
(
V−hmAVhm −Ah

)∥∥∥
B(L2(R))

= 0 (9)

for every ϕ ∈ C∞
0 (R). One can see that

V−hmAVhm = V−hmHq0VhmS
−1
µ2
0
. (10)

Formulas (9), (10) imply that

Ah = Sqh0
S−1
µ2
0
.

Moreover, since the potential q0 is rich the operator A is rich,
that is, every sequence g =

(
gm
)
of G tending to infinity has

a subsequence h =
(
hm
)
tending to infinity that defines the

limit operator Ah. It follows from the results of Rabinovich et al.
[19] and Lindner and Seidel [20] that the operator A is locally
invertible at infinity if and only if all limit operators Ah are
invertible. Since Sµ2

0
: H̃2 (Ŵ) → L2 (R) is an isomorphism, this

yields the statement of the theorem.

Theorem 3 leads to the following description of the essential
spectrum of operatorHq0 .

Theorem 4. Let q0 ∈ L∞ (R) be a rich potential, and let the
matrices Y ∋ y 7→ A

(
y
)
beG-periodic. Then

spessHq0 =
⋃

H
qh0
∈Lim(Hq0)

spHqh0
, (11)

where Hqh0
is the limit operator of Hq0 defined as an unbounded

operator in L2 (R), generated by the Schrödinger operator Sqh0
with

domain H̃2 (Ŵ).

3. SPECTRAL ANALYSIS OF PERIODIC
SCHRÖDINGER OPERATORS WITH POINT
INTERACTIONS

In this section we study the band-gap spectra of periodic
Schrödinger operators with point interactions by using the
Floquet transform (see e.g., [21]). We also analyze the case
when the regular potential q0 is perturbed by a slowly oscillating
at infinity term by means of the limit operators method, and
provide expressions for the essential spectrum of corresponding
Schrödinger operator.

3.1. Periodic Schrödinger Operators With
Point Interactions
From now on we will assume that:

1. the sequence of points Y =
{
yj
}
j∈Z ⊂ R on which the

singular potential qs is supported is periodic with respect to
the groupG = ℓZ, ℓ > 0;

2. the matrices A
(
y
)
=
(
aij
(
y
))2

i,j=1
are periodic with respect

to the group G, that is, A
(
y+ g

)
= A

(
y
)
for every g ∈ G

and y ∈ Y . The entries aij ∈ l∞ (Y) of the matrices are such
that detA

(
y
)
= 1 for every y ∈ Y ; and

3. the potential q0 is a real-valued, piecewise continuous
function, periodic with respect to the groupG.

Let Ŵ0 : = [0, ℓ), and B = [−π/ℓ,π/ℓ) be the reciprocal unit
cell (also known as Brillouin zone) of Ŵ0. Let Y0 : = Y ∩ Ŵ0 ={
y1, · · · , yn

}
be the set of points of discontinuity inside Ŵ0, which

satisfy 0 < y1 < · · · < yn < ℓ. We also assume that the finite
jumps

[
q0
]
yj
, not necessarily zero, are well-defined.

From conditions (1–3) and Theorem 3 it follows that the
operator Hq0 with domain H̃2 (Ŵ) is self-adjoint in L2 (R).
Moreover, the operator Sq0 is invariant with respect to the shifts
on the elements of the groupG, that is

VgSq0u (x) = −
d2u

(
x+ g

)

dx2
+ q0

(
x+ g

)
u
(
x+ g

)

= −
d2u

(
x+ g

)

dx2
+ q0 (x) u

(
x+ g

)
= Sq0Vgu (x) ,

for every g ∈ G. SinceVgSq0 = Sq0Vg , and from (11), it yields that
spessHq0 = spHq0 , and spdisHq0 = Ø. In addition, the operator
Sq0 is semi-bounded from below, that is

〈
Sq0u, u

〉
≥ mq0 ‖u‖2L2(R) ,

wheremq0 := infx∈R q0 (x). This implies that

spHq0 ⊂
[
mq0 ,+∞

)
.
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We introduce the Hilbert space H : = L2
(
Ŵ0, L

2 (B)
)
of

vector-valued functions with components in L2 (Ŵ0), which is
equipped by the norm

‖u‖H =
(∫

Ŵ0

‖u (x, · )‖2L2(B) dx
)1/2

.

The Floquet transform is the map F : L2 (R) → H defined for
functions f that decay sufficiently fast by

(
F f
)
(x, θ) = f̃ (x, θ) := 1√

2π

∑

α∈Z
f (x− αℓ) eiαθ , x ∈ R, θ ∈ B,

where the parameter θ is often called the quasi-momentum. The
Floquet transform is an isometry from L2 (R) toH, whose inverse
is given by

(
F−1̃f

)
(x) = 1√

2π

∫

B

f̃ (x, θ) dθ .

Let us consider the problem

Hq0u (x) = λu (x) , u ∈ H̃2 (Ŵ) , (12)

where λ ∈ R is the spectral parameter. The Floquet transform
applied to (12) gives a spectral problem depending on the
parameter θ ∈ B, defined by the differential equation

Sq0 ũ (x, θ) = λ̃u (x, θ) , x ∈ (0, ℓ) \ Y0, θ ∈ B,

with the interaction conditions at the discontinuity points

(
ũ
(
y+, θ

)

ũ′x
(
y+, θ

)
)
= A

(
y
) ( ũ

(
y−, θ

)

ũ′x
(
y−, θ

)
)
, y ∈ Y0,

and the quasi-periodic conditions

ũ (ℓ, θ) = eiθℓũ (0, θ) , ũ′x (ℓ, θ) = eiθℓũ′x (0, θ) .

The operator Sq0 = FSq0F
−1 is represented as the

orthogonal sum

Sq0 = FSq0F
−1 =

⊕

θ∈B
Sθq0 , (13)

where

Sθq0u (x, θ) := −d2u (x, θ)

dx2
+ q0 (x) u (x, θ) , x ∈ (0, ℓ) \ Y0.

For each θ ∈ B, the operator Sθq0 defines an unbounded operator

Hθ
q0
in L2 (Ŵ0) with domain Dom

(
Hθ

q0

)
= H̃2 (Ŵ0 \ Y0), where

H̃2 (Ŵ0 \ Y0)

=
{
u ∈ H2 (Ŵ0 \ Y0) :

(
u
(
y+, θ

)

u′x
(
y+, θ

)
)
= A

(
y
) ( u

(
y−, θ

)

u′x
(
y−, θ

)
)
, y ∈ Y0,

u (ℓ, θ) = eiθℓu (0, θ) , u′x (ℓ, θ) = eiθℓu′x (0, θ) , θ ∈ B

}
.

Operators Hθ
q0
, θ ∈ B, with domain H̃2 (Ŵ0 \ Y0) have discrete

spectra

spHθ
q0

=
{
λ1 (θ) < λ2 (θ) < · · · < λj (θ) < · · ·

}
,

where λj (θ) are continuous functions on B. Expression (13)
implies that

spHq0 =
⋃

θ∈B
spHθ

q0
. (14)

If the image of the Brillouin zone B under λj is
[
aj, bj

]
, aj ≤ bj,

j ∈ N, then formula (14) gives

spHq0 =
∞⋃

j=1

[
aj, bj

]
, (15)

that is, the spectrum of Schrödinger operator Hq0 with
G-periodic potential q0 involving point interactions has a
band-gap structure.

3.2. Spectral Analysis of Periodic
Schrödinger Operators With Point
Interactions
For each θ ∈ B we define the spectral problem

Hθ
q0
u (x, θ) = λ (θ) u (x, θ) , u ∈ H̃2 (Ŵ0 \ Y0) .

Solutions of this problem are sought in the form

u (x, θ; λ) = C1 (θ , λ) ϕ1 (x, λ)+ C2 (θ , λ) ϕ2 (x, λ) ,

where C1, C2 are arbitrary coefficients, and ϕ1,ϕ2 are linearly
independent solutions of the Schrödinger equation

Sq0u = λu, x ∈ (0, ℓ) \ Y0

satisfying the interaction conditions

(
u
(
y+
)

u′x
(
y+
)
)
= A

(
y
) ( u

(
y−
)

u′x
(
y−
)
)
, y ∈ Y0,

as well as the initial conditions

ϕ1 (0, λ) = 1, (ϕ1)
′
x (0, λ) = 0, (16a)

ϕ2 (0, λ) = 0, (ϕ2)
′
x (0, λ) = 1. (16b)

By the Liouville identity, the Wronskian of ϕ1 and ϕ2 satisfies

det

(
ϕ1 (0, λ) ϕ2 (0, λ)
(ϕ1)

′
x (0, λ) (ϕ2)

′
x (0, λ)

)

= det

(
ϕ1 (x, λ) ϕ2 (x, λ)
(ϕ1)

′
x (x, λ) (ϕ2)

′
x (x, λ)

)
= 1,

∀ x ∈ [0, ℓ] \ Y0.

From the quasi-periodic property

u (ℓ, θ) = eiθℓu (0, θ) , u′x (ℓ, θ) = eiθℓu′x (0, θ)
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we obtain the following system of equations

C1 (θ , λ) ϕ1 (ℓ, λ)+ C2 (θ , λ) ϕ2 (ℓ, λ) = eiθℓC1 (θ , λ) ,
(17a)

C1 (θ , λ) (ϕ1)
′
x (ℓ, λ)+ C2 (θ , λ) (ϕ2)

′
x (ℓ, λ) = eiθℓC2 (θ , λ) ,

(17b)

with C1,C2 as unknowns. System (17) implies
that

(
C1 (θ , λ) C2 (θ , λ)

)⊺
is an eigenvector of the

monodromy matrix

M (λ) =
(
ϕ1 (ℓ, λ) ϕ2 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ) (ϕ2)

′
x (ℓ, λ)

)

associated to the eigenvalue µ := eiθℓ. In order for system (17) to
possess non-trivial solutions its determinant must vanish, that is

det

(
ϕ1 (ℓ, λ)− µ ϕ2 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ) (ϕ2)

′
x (ℓ, λ)− µ

)
= 0

This leads to the dispersion equation

µ2 − 2µD (λ)+ 1 = 0, (18)

where

D (λ) := 1

2

(
ϕ1 (ℓ, λ)+ (ϕ2)′x (ℓ, λ)

)
.

Equation (18) has solutions of the form µ := eiθℓ, θ ∈ B, if and
only if |D (λ)| ≤ 1. Hence, the spectrum ofHq0 is given by

spHq0 = {λ ∈ R : |D (λ)| ≤ 1} ,

and the edges of the spectral bands of spHq0 are solutions λedge ∈
R of the equation

∣∣D
(
λedge

)∣∣ = 1.

3.3. Periodic Potentials Perturbed by
Slowly Oscillating at Infinity Terms
A function a ∈ L∞ (R) is slowly oscillating at infinity if the limit

lim
x→∞

sup
y∈K

∣∣a
(
x+ y

)
− a (x)

∣∣ = 0

holds for every compact set K ⊂ R. We denote by SO (R) the
class of such functions. One can prove (see, e.g., [19, Chap. 3.1])
that all limit functions ah of a ∈ SO (R) defined by the sequence
G ∋ hm → ∞ are real constants.

Let us consider a Schrödinger operatorHq : H̃
2 (Ŵ)→ L2 (R)

with a perturbed potential q = q0 + q1 consisting of a periodic
part q0 ∈ L∞ (R) satisfying conditions (3), and a real-valued
perturbation q1 ∈ SO (R). The result of Theorem 4 can be
used for analyzing the essential spectrum of Hq. Note that the
spectrum of operator Hq0 has a band-gap structure according

to (15). The limit operators of Hq = Hq0+q1 are of the form

Hqh = Hq0+qh1
, where qh1 ∈ R. Therefore

spHq0+qh1
=

∞⋃

j=1

[
aj + qh1 , bj + qh1

]
.

On considering formula (11) and previous expression we obtain
the essential spectrum of perturbed operator Hq = Hq0+q1 ,
that is

spessHq =
∞⋃

j=1

[
aj +m∞

q1
, bj +M∞

q1

]
, (19)

where

m∞
q1

: = lim inf
x→∞

q1 (x) , M∞
q1

: = lim sup
x→∞

q1 (x) .

Formula (19) implies that some spectral bands of spessHq may
overlap depending on the intensity of the perturbation q1. Let(
bl +M∞

q1
, al+1 +m∞

q1

)
, l ∈ N, be a gap of spessHq, hence if the

relation

M∞
q1

−m∞
q1
> al+1 − bl (20)

holds the gap will disappear due to the merging of the adjacent
bands. If condition (20) is satisfied for all l ∈ N, all spectral gaps
of spessHq will disappear resulting a continuous spectrum, that is

spessHq =
[
a1 +m∞

q1
,+∞

)
, and spdisHq ⊂

[
mq0 , a1 +m∞

q1

)
.

4. DISPERSION EQUATION FOR PERIODIC
SCHRÖDINGER OPERATORS WITH POINT
INTERACTIONS

In this section we determine the function D (λ) from a set of
monodromy matrices specified at the points where the singular
potential is supported in the fundamental domain Ŵ0. We
also apply the spectral parameter power series method [10] to
derive a numerical method for calculating the spectral bands of
Schrödinger operators Hq0 with arbitrary regular potentials q0
satisfying certain smoothness conditions.

4.1. Calculation of Function D (λ) in Terms
of Monodromy Matrices
We begin by determining a general solution of the equation

− d2u (x)

dx2
+ q0 (x) u (x) = λu, x ∈ (0, ℓ) \ Y0, (21)

satisfying the interaction conditions


u

(
y+j

)

u′
(
y+j

)

 = A

(
yj
)

u

(
y−j

)

u′
(
y−j

)

 ,

A
(
yj
)
=




4−αjβj
4+αjβj

−4βj
4+αjβj

4αj
4+αjβj

4−αjβj
4+αjβj


 , αjβj 6= −4,
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at the points of discontinuity yj ∈ Y0 (j = 1, · · · , n). By abusing
the notation, we set y0 ≡ 0, and yn+1 ≡ ℓ. The interval between
two adjacent points of discontinuity yj, yj+1 is denoted by ej =(
yj, yj+1

)
(j = 0, · · · , n). Let φ1,j, φ2,j (j = 0, · · · , n) be a pair of

linearly independent solutions of Equation (21) on the interval ej,
which satisfy the Cauchy conditions

φ1,j
(
yj
)
= 1, φ2,j

(
yj
)
= 0, (22a)

φ′1,j
(
yj
)
= 0, φ′2,j

(
yj
)
= 1. (22b)

From these solutions we define the monodromy matrices

Mj,j+1 : =
(
φ1,j

(
yj+1

)
φ2,j

(
yj+1

)

φ′1,j
(
yj+1

)
φ′2,j

(
yj+1

)
)
, j = 0, · · · , n.

Let uej = u|ej (j = 0, · · · , n) be the restriction of solution u of

Equation (21) on ej, which can be written as

uej (x) = uej
(
yj
)
φ1,j (x)+ u′ej

(
yj
)
φ2,j (x) , x ∈ ej.

Hence, on the full interval [0, ℓ), a general solution of Equation
(21) is given by the piecewise continuous function

u (x) =





ue0
(
y0
)
φ1,0 (x)+ u′e0

(
y0
)
φ2,0 (x) , 0 ≤ x < y1,

ue1
(
y1
)
φ1,1 (x)+ u′e1

(
y1
)
φ2,1 (x) , y1 < x < y2,

...
...

uen
(
yn
)
φ1,n (x)+ u′en

(
yn
)
φ2,n (x) , yn < x < ℓ,

where the coefficients uej
(
yj
)
and u′ej

(
yj
)
(j = 1, · · · , n) are given

in a matrix form by

(
uej
(
yj
)

u′ej
(
yj
)
)
= Aj

(
uej−1

(
yj
)

u′ej−1

(
yj
)
)

= AjMj−1,j · · ·A1M0,1

(
ue0

(
y0
)

u′e0
(
y0
)
)
, j = 1, · · · , n. (23)

The restriction uen and its derivative u′en evaluated at x = ℓ gives
the matrix relation

(
uen (ℓ)
u′en (ℓ)

)
= Mn,n+1

(
uen

(
yn
)

u′en
(
yn
)
)
. (24)

By plugging formulas (23) and (24) we obtain the expression

(
u (ℓ; λ)
u′ (ℓ; λ)

)
= T (λ)

(
u (0; λ)
u′ (0; λ)

)
=
(
T11 (λ) T12 (λ)

T21 (λ) T22 (λ)

)(
u (0; λ)
u′ (0; λ)

)
,

whereT : = Mn,n+1AnMn−1,n · · ·A2M1,2A1M0,1 is a 2×2-matrix
called the transmission matrix.

Therefore, solutions ϕ1 and ϕ2 that fulfill conditions (16)
satisfy the matrix equations

(
ϕ1 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ)

)
= T (λ)

(
1
0

)
=
(
T11 (λ)

T21 (λ)

)
,

(
ϕ2 (ℓ, λ)
(ϕ2)

′
x (ℓ, λ)

)
= T (λ)

(
0
1

)
=
(
T12 (λ)

T22 (λ)

)
,

thereby the function D (λ) can be written in the form

D (λ) = 1

2
(T11 (λ)+ T22 (λ)) . (25)

4.2. Some Solvable Models With Periodic
Singular Potentials
If the potential q0 vanishes identically onR it is possible to obtain
exact solutions of Equation (21) on the interval ej =

(
yj, yj+1

)
.

One can see that φ1,j (x, λ) = cos
√
λ
(
x− yj

)
, φ2,j (x, λ) =

1√
λ
sin

√
λ
(
x− yj

)
are solutions of the Schrödinger equation for

a free-particle

−d2u (x)

dx2
= λu, x ∈ ej, j = 0, 1 · · · , n,

with energy λ, which satisfy Cauchy conditions (22). In this case,
monodromy matrices read

Mj,j+1 (λ) =
(

cos
√
λ
∣∣ej
∣∣ 1√

λ
sin

√
λ
∣∣ej
∣∣

−
√
λ sin

√
λ
∣∣ej
∣∣ cos

√
λ
∣∣ej
∣∣

)
, j = 0, · · · , n.

Periodic Potential With Only δ-Distributions
The periodic potential involving only Dirac delta distributions

qδ (x) =
∑

n∈Z
αδ

(
x−

(
n+ 1

2

)
ℓ

)
, α ∈ R (26)

defines at each singular point y ∈ Y the interaction matrix

Aα
(
y
)
=
(
1 0
α 1

)
. (27)

Let Hδ be the Hamiltonian defined by the ℓ-periodic potential
qδ (x). In this case Y0 = {ℓ/2}, that is, y0 = 0, y1 = ℓ/2, and
y2 = ℓ, thereby the transmission matrix reads

Tδ (λ) = M1,2 (λ)AαM0,1 (λ)

=
(

cos ℓ
√
λ+ α

2
√
λ
sin ℓ

√
λ 1√

λ
sin ℓ

√
λ+ α

λ
sin2 ℓ

√
λ/2

α cos2 ℓ
√
λ/2−

√
λ sin ℓ

√
λ cos ℓ

√
λ+ α

2
√
λ
sin ℓ

√
λ

)
,

hence, the spectrum spHδ of Hamiltonian Hδ consists of λ ∈ R

satisfying

− 1 ≤ cos ℓ
√
λ+ α

2
√
λ
sin ℓ

√
λ ≤ 1. (28)

This is the so-called Kronig-Penney model (see [1, 2] and
[4, §III.2.3]) that describes the non-relativistic interaction of
electrons in a fixed crystal lattice, with ions represented by
δ-distributions.

Periodic Potential With Only δ′-Distributions
Consider the periodic singular potential

qδ′ (x) =
∑

n∈Z
βδ′

(
x−

(
n+ 1

2

)
ℓ

)
, β ∈ R
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with the following matrix

Aβ
(
y
)
=
(
1 −β
0 1

)

defined at the each singular point y ∈ Y . Like in the previous case
only one point interaction lies inside the fundamental domain
Ŵ0, i.e., Y0 = {ℓ/2}. Let Hδ′ be the Hamiltonian defined by
the periodic potential qδ′ (x). The corresponding transmission
matrix is

Tδ′ (λ) = M1,2 (λ)AβM0,1 (λ)

=
(

cos ℓ
√
λ+ β

2

√
λ sin ℓ

√
λ 1√

λ
sin ℓ

√
λ− β cos2 ℓ

√
λ/2

−
√
λ sin ℓ

√
λ− βλ sin2 ℓ

√
λ/2 cos ℓ

√
λ+ β

2

√
λ sin ℓ

√
λ

)
.

Hence, the spectrum spHδ′ of HamiltonianHδ′ consists of λ ∈ R

satisfying

−1 ≤ cos ℓ
√
λ+ β

2

√
λ sin ℓ

√
λ ≤ 1.

This is the analogous of the Kronig-Penney relation (28), [4,
Chap. III.3].

The analysis of problems involving δ′-interactions has gained
interest over the years [22–24]. In particular, the spectral analysis
of Wannier-Stark Hamiltonians including a countable set of δ′-
interactions lead to models for describing high-energy scatterers
with vanishing transmission amplitudes as the wave-number
k → ∞ (see, e.g., [25–29]).

4.3. Spectral Parameter Power Series
Method for the Calculation of Function
D (λ)
In previous subsection it was defined a set of monodromy
matrices for the pointsY0∪{0} fromwhich a transmissionmatrix
T is defined. This leads to a neat expression for the function
D (λ), defined in (25). Given a potential q0 with discontinuities
at the points Y0, obtaining solutions φ1,j, φ2,j (j = 0, · · · , n)
of Schrödinger equation (21) in the intervals ej (j = 0, · · · , n)
could be a challenging task. However, it is always possible to apply
some numerical method for calculating approximations φ̃1,j, φ̃2,j
of the solutions. Nonetheless, if the potential q0 satisfies certain
smoothness conditions it is possible to obtain exact solutions of
the equation in the form of power series of the spectral parameter.
Here we employ the SPPS method [10, 30] for constructing
the entries of transmission matrix T from which we construct
function D (λ).

Let u0,j be a particular solution of the equation

−
d2u0,j (x)

dx2
+ q0,j (x) u0,j (x) = 0, x ∈ ej,

such that u20,j, 1/u
2
0,j ∈ C

(
ej
)
, where q0,j : = q0

∣∣
ej
(j = 0, · · · , n)

is the restriction of potential q0 on the interval ej. Then a general
solution of (21) on ej (j = 0, · · · , n) has the form

uj (x) = c1u1,j (x)+ c2u2,j (x) , x ∈ ej,

where c1, c2 are arbitrary coefficients,

u1,j (x) = u0,j (x)

∞∑

k=0

λkX̃
(2k)
j (x) ,

u2,j (x) = u0,j (x)

∞∑

k=0

λkX
(2k+1)
j (x) , (29)

with the functions X̃
(n)
j , X

(n)
j defined by the recursive integration

X̃
(0)
j ≡ 1, X̃

(n)
j (x) =





∫ x

yj

X̃
(n−1)
j (s) u20,j (s) ds, n odd,

−
∫ x

yj

X̃
(n−1)
j (s)

1

u20,j (s)
ds, n even,

(30a)

X
(0)
j ≡ 1, X

(n)
j (x) =





−
∫ x

yj

X
(n−1)
j (s)

1

u20,j (s)
ds, n odd,

∫ x

yj

X
(n−1)
j (s) u20,j (s) ds, n even.

(30b)
Moreover, series (29) converge uniformly on ej. From the
recursive integration procedure we deduce that solutions u1,j, u2,j
satisfy the conditions

u1,j
(
yj
)
= u0,j

(
yj
)
, u′1,j

(
yj
)
= u′0,j

(
yj
)
,

u2,j
(
yj
)
= 0, u′2,j

(
yj
)
= −1

u0,j
(
yj
) .

We can see that the following solutions

φ1,j (x) =
1

u0,j
(
yj
)u1,j (x)+ u′0,j

(
yj
)
u2,j (x) ,

φ2,j (x) = −u0,j
(
yj
)
u2,j (x)

fulfill conditions (22). Hence, the monodromy matrices can be
calculated from the matrix expressions

Mj,j+1 (λ) = Vj (λ)Uj, j = 0, · · · , n,

where

Uj :=
(

1
u0,j(yj)

0

u′0,j
(
yj
)
−u0,j

(
yj
)
)
, and

Vj (λ) :=
(
u1,j

(
yj+1; λ

)
u2,j

(
yj+1; λ

)

u′1,j
(
yj+1; λ

)
u′2,j

(
yj+1; λ

)
)

j = 0, · · · , n.

In the numerical implementation of the problem, power series
(29) should be truncated up to a finite number of terms. Let ũ1,j,
ũ2,j be the truncated versions of u1,j, u2,j, respectively, which are
given by the sums

ũ1,j (x) = u0,j (x)

N∑

k=0

λkX̃
(2k)
j (x) ,

ũ2,j (x) = u0,j (x)

N∑

k=0

λkX
(2k+1)
j (x) .
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From these approximate solutions we construct approximate
matrices Ṽj (λ) (j = 0, · · · , n), and approximate monodromy
matrices as follows

M̃j,j+1 (λ) = Ṽj (λ)Uj, j = 0, · · · , n,

from which we obtain an approximation of the transmission
matrix

T̃ := M̃n,n+1AnM̃n−1,n · · ·A2M̃1,2A1M̃0,1,

thereby, function D (λ) is approximated by

D̃ (λ) = 1

2

(
T̃11 (λ)+ T̃22 (λ)

)
. (31)

Regarding the accuracy of approximate solutions ũ1,j, ũ2,j, a
rough estimation of the tail of u1,j is given by (see [10])

∣∣u1,j − ũ1,j
∣∣ = max

∣∣u0,j
∣∣
∣∣∣∣∣cosh

√
ζj −

N∑

k=0

ζ kj(
2k
)
!

∣∣∣∣∣ ,

where

ζj : = |λ|
(
max

∣∣∣u20,j
∣∣∣
)(

max

∣∣∣∣∣
1

u20,j

∣∣∣∣∣

)
∣∣yj+1 − yj

∣∣2 .

The corresponding estimation of the tail of u2,j involves the tail of
the function sinh

√
ζj. According to these expressions, the error

associated to ũ1,j mainly depends on the value of the spectral
parameter λ, and on the length of the interval ej. If a number N
of terms does not provides the required accuracy, the interval ej
can be subdivided, and the resulting initial value problems should
be sequentially solved. The particular solution u0,j also influences
the accuracy of ũ1,j, ũ2,j. This solution can be obtained by means
of numerical techniques, or by the SPPS method itself [10].

Given that the error increases for the large values of λ, a
shifting of the spectral parameter (29) can be implemented for
reducing the error. More precisely, if u0,j is a solution of the
equation

−
d2u0,j (x)

dx2
+ q0,j (x) u0,j (x) = λ0u0,j (x) x ∈ ej,

FIGURE 1 | Plot of the approximate function D̃ (λ) for the Kronig-Penney

model from Example 1.

corresponding to λ = λ0, then the series

u1,j (x) = u0,j (x)

∞∑

k=0

(λ− λ0)k X̃(
2k)

j (x) ,

u2,j (x) = u0,j (x)

∞∑

k=0

(λ− λ0)k X(
2k+1)

j (x)

satisfy equation (21) in the interval ej (j = 0, · · · ,N).

5. NUMERICAL EXAMPLES

In this section we employ the SPPS approach for the calculation
of the band edges of the spectral bands of periodic Schrödinger
operators with point interactions. For this aim we use the
approximate version D̃ (λ) of the function D (λ) given by
(31), and fix N = 200 as the number of terms in the
approximate solutions ũ1,j and ũ2,j. This implies calculating finite

sets of formal powers
{
X̃
(k)
j

}2N
k=0

and
{
X
(k)
j

}2N+1

k=0
according to

recursive integration procedure (30). We employ of Wolfram
Mathematica for the numerical study of the spectra of the
examples considered in this section. For accurately handling
the upper formal powers, even the double-precision floating-
point format is not enough, nonetheless Wolfram Mathematica
provides the instruction SetPrecision[] for increase the
precision of the numbers. In this work we fix the precision of
numerical results up to 100 decimal places. For the numerical
implementation of our approach we distinguish two main parts,
namely, calculating the formal powers, and searching for the
zeros of the equation

∣∣D̃
(
λedge

)∣∣ = 1

that define the band edges.
For calculating the formal powers, the integrands are

numerically handled by an array of their values at a discrete
set �j ⊂ ej of M + 1 points. These values are interpolated
by cubic splines with the instruction Interpolation[], and
then integrated by the instruction Integrate[]. Here we have
segmented each ej into M = 2, 000 parts. Once formal powers
are computed, approximate monodromy matrices M̃j,j+1 (λ) are
determined from the functions φ̃1,j (x) and φ̃2,j (x), which were
calculated at the points of �j. In turn these matrices lead to

the approximate transmission matrix T̃ that defines the function
D̃ (λ) according to (31). Calculating the band edges reduces to
calculating the polynomial roots of D̃ (λ) ± 1 = 0. We use the
instruction FindRoot[] to search for numerical solutions of
the polynomial equations near the real axis of the complex λ-
plane. We prescribe a small tolerance ε > 0 such that if the
imaginary part of a root λj satisfies

∣∣ℑλj
∣∣ ≤ ε then its real

part can be considered as an approximate band edge, that is,
λ̃edge = ℜλj.

Example 1 (Kronig-Penney model). Let us consider the Kronig-
Penney model with the singular potential specified by (26). It
was shown that transmission matrix in this case reads T (λ) =
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M1,2 (λ)AαM0,1 (λ), where matrix Aα is defined in (27). For
showing the accuracy of the SPPS approach, in this example we
compare the zeros from of the approximate equations D̃ (λ)±1 =
0 and those obtained from the exact Kronig-Penney relation
(28), where we take α = 10 and ℓ = 1, see Figure 1. In
Table 1 we can see that the results coincide in at least eight
decimal places in the least accurate results, and up to fourteen
decimal places in the most accurate result. The loss in accuracy
is due to the fact that truncated power series with center at
λ = 0 depart from exact solutions as |λ| increases. The
accuracy of the results can be improved by either increasing
the number of subdivisions of the intervals ej, by increasing
the number N of terms of the truncated series, or by means
of the shifting of the spectral parameter, in which power series
are expanded about another center λ0 6= 0, as was explained
above.

Example 2 (Potential without point interactions). Suppose that
operator Sq has a potential q consisting on only the regular part
q0 defined by

q0 (x) = −2− sech (x− 2) , 0 ≤ x < 4, (32a)

q0 (x+ 4) = q0 (x) , ∀ x ∈ R. (32b)

It follows that n = 0, ℓ = 4, and Y0 = Ø. Operator Sq0 defines
an unbounded operator Hq0 in L2 (R) with domain H2 (R). The
transmissionmatrix is given byT = M0,1, where themonodromy
matrix

M0,1 (λ) =
(
φ1 (ℓ; λ) φ2 (ℓ; λ)
(φ1)

′
x (ℓ; λ) (φ2)′x (ℓ; λ)

)

is defined from a pair of solutions φ1,φ2 of the equation Sq0u =
λu, 0 < x < ℓ, satisfying the Cauchy conditions φ1 (0; λ) = 1,
φ′1 (0; λ) = 0, φ2 (0; λ) = 0, φ′2 (0; λ) = 1. In this example the
function D (λ) = 1

2

(
φ1 (ℓ; λ)+ (φ2)′x (ℓ; λ)

)
is approximated

by the SPPS approach described in subsection 4.3. In Figure 2

we can see the plot of the approximate function D̃ (λ) and its
intersections with the horizontal lines±1 that define the spectral
bands

[
aj, bj

]
. In Table 2 we observe some spectral bands ofHq0 ,

whose edges were calculated from the zeros of the equations
D̃ (λ) ± 1 = 0. The fourth and fifth columns of the table
show the widths of the bands and the gaps, respectively. We
can see a monotonically increasing of the band widths, while the

gaps monotonically decrease. Such a behavior is a characteristic
of smooth periodic potentials (see, e.g., [31]) The considered
potential q0 is smooth except at a countable set of points of the
form xk = kℓ, k ∈ Z, nonetheless the potential is continuous at
these points.

Example 3 (Potential including δ-interactions). Let the potential
q of Schrödinger operator Sq be a π-periodic function defined by

q (x) = q0 +
∑

n∈Z
2δ

(
x+

(
n+ 1

2

)
π

)
,

FIGURE 2 | Plot of the approximate function D̃ (λ) from Example 2.

TABLE 2 | Some spectral bands
[
aj ,bj

]
of the Hamiltonian Hq0 from Example 2.

j aj bj bj − aj aj − bj−1

1 −2.67428666671436 −2.21034342939206 0.463943 —

2 −1.86953451704338 −0.18788534501576 1.68165 0.340809

3 −0.16355607594023 2.89703477791651 3.06059 0.0243293

4 2.91041104450921 7.21694695958455 4.30654 0.0133763

5 7.22365825701727 12.76922201025541 5.54556 0.0067113

6 12.77350452947204 19.55493528380191 6.78143 0.00428252

7 19.55787702778062 27.57420128901233 8.01632 0.00294174

8 27.57635166441515 36.82709282973720 9.25074 0.00215038

9 36.82873349589631 47.31364139486438 10.4849 0.00164067

10 47.31493463461126 59.03386368002606 11.7189 0.00129324

TABLE 1 | Some spectral bands of the Kronig-Penney model calculated from the SPPS approach and the exact expression (28).

SPPS approach Exact Kronig-Penney expression Absolute differences

j aj bj a∗
j

b∗
j

∣∣∣aj − a∗
j

∣∣∣
∣∣∣bj − b∗

j

∣∣∣

1 5.21872875114394 9.86960440108947 5.21872875114393 9.86960440108935 1.06581× 10−14 1.19016× 10−13

2 22.66987264962470 39.47841760436475 22.66987264962356 39.47841760435743 1.14042× 10−12 7.31859× 10−12

3 55.70646200094253 88.82643960988765 55.70646200092423 88.82643960980421 1.82965× 10−11 8.34319× 10−11

4 106.63889490746644 157.91367041789846 106.63889490733228 157.91367041742975 1.34149× 10−10 4.68702× 10−10

5 176.52421330245437 246.74011002902202 176.52421330183057 246.74011002723395 6.23799× 10−10 1.78807× 10−9

6 265.79200348467112 355.30575844455604 265.79200348251038 355.30575843921678 2.16073× 10−9 5.33925× 10−9

7 374.62223620638347 483.61061566684185 374.62223620027810 483.61061565337854 6.10538× 10−9 1.34633× 10−8
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FIGURE 3 | Plot of the approximate function D̃ (λ) from Example 3.

TABLE 3 | Some spectral bands
[
aj ,bj

]
of the Hamiltonian Hq0 from Example 3.

j aj bj bj − aj aj − bj−1

1 3.06183781347907 3.46162839690882 0.399791 —

2 5.69859494475109 6.52258314515798 0.823988 2.23697

3 12.41958132212809 13.72611107363096 1.30653 5.89699

4 19.18349016467425 20.94891270433824 1.76542 5.45738

5 29.80585404067745 31.98452624002360 2.17867 8.85694

6 40.84052913551672 43.46896744277874 2.62844 8.85600

7 55.26982482796178 58.31214991061162 3.04233 11.8009

8 70.47604145435538 73.95789867313669 3.48186 12.1639

9 88.77758666329101 92.67469008649469 3.89710 14.8197

10 108.09491317730821 112.42506663387381 4.33015 15.4202

where the regular potential is the piecewise continuous periodic
function

q0 (x) =
{
sin (2x)+ 1, 0 ≤ x < π/2,

−1, π/2 ≤ x < π ,
(33a)

q0 (x+ π) = q0 (x) , ∀ x ∈ R. (33b)

It follows that n = 1, ℓ = π , and Y0 = {π/2}. The transmission
matrix is given by T (λ) = M1,2 (λ)A1M0,1 (λ), where

A1 =
(
1 0
2 1

)
.

The approximation of function D (λ) = 1
2 (T11 (λ)+ T22 (λ))

obtained by the SPPS approach is plotted in Figure 3. In Table 3

we observe some spectral bands of Hq0 , whose edges were
calculated from the zeros of the equations D̃ (λ) ± 1 = 0.
According to the fourth and fifth columns of the table we can
see that both the band widths and gaps have a tendency to grow.
Moreover, the band-to-gap ratio also has an exponential tendency
to grow. This characteristic is shared by operators with singular
potentials including point interactions (cf. [25]).

Example 4 (Potential including δ′-interactions). Let us consider
a periodic potential q involving δ′-interactions

q (x) = q0 +
∑

n∈Z

(
δ′
(
x+ n+ 1

4

)
+ 2δ′

(
x+ n+ 1

2

))
,

FIGURE 4 | Plot of the approximate function D̃ (λ) from Example 4.

where the regular potential is defined by

q0 (x) = 4x− 2, q0 (x+ 1) = q0 (x) , ∀ x ∈ R. (34)

In this example n = 2, ℓ = 1, and Y0 =
{
1
4 ,

1
2

}
. The transmission

matrix is given by

T (λ) = M2,3 (λ)A2M1,2 (λ)A1M0,1 (λ) , (35)

where

A1 =
(
1 −1
0 1

)
, A2 =

(
1 −2
0 1

)
.

The approximate function D̃ (λ) obtained from the SPPS
approach is plotted in Figure 4. In this case the spectral bands
are indicated by thin vertical strips in the plot. In Table 4 we
observe some spectral bands of Hq0 calculated from the zeros of
the equations D̃ (λ)± 1 = 0. The table shows a narrowness of the
bands compared with the large gaps, which can be understood on
the fact that at the high values of λ the unit cells of the periodic
problem get decoupled since δ′-interaction approximates to
Neumann conditions [25, 26]. We also observe that the peaks of
the plot of D̃ are dominated by a straight line with positive slope,
which accounts for the increasing gaps of the spectrum. The
considered problem has spectral properties that resemble those
of Wannier-Stark ladders for a periodic array of δ′-scatterers
[26]. These observations agree with the spectra of systems with
periodically distributed δ′-distributions (see, e.g., [22, 27, 28]).

Example 5 (Potential including both δ- and δ′-interactions). In
this example we consider the following periodic potential

q (x) = q0 +
∑

n∈Z

(
2δ
(
x+ n+ 1

4

)
− 2δ′

(
x+ n+ 3

4

))
,

which involves both δ- and δ′-interactions, where the regular
potential is given by

q0 (x) = 10
(
x− 1

2

)2
, q0 (x+ 1) = q0 (x) , ∀ x ∈ R.
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TABLE 4 | Some spectral bands
[
aj ,bj

]
of the Hamiltonian Hq0 from Example 4.

j aj bj bj − aj aj − bj−1

1 −7.85411657153512 −6.83369602987881 1.02042 —

2 −0.65046048277948 1.84587555882338 2.49634 6.18324

3 11.65425503800808 13.43273085127024 1.77848 9.80838

4 68.26969354771300 69.03634328596869 0.76665 54.8369

5 144.85052700115227 148.79531015416193 3.94478 75.8142

6 157.67353066071464 161.42975111317477 3.75622 8.87822

7 273.31957684722038 273.70125145939630 0.38167 111.8898

8 439.51292832002877 439.81704937865748 0.30412 165.8116

9 618.73286597182914 622.54765426193728 3.81479 178.9158

FIGURE 5 | Plot of the approximate function D̃ (λ) from Example 5.

In this case n = 2, ℓ = 1, Y0 =
{
1
4 ,

3
4

}
, and the transmission

matrix is given by expression (35), where the matrices

A1 =
(
1 0
2 1

)
, A2 =

(
1 2
0 1

)
.

On applying the SPPS approach we calculate the approximate
function D̃ (λ), which is shown in Figure 5. From the zeros of
the equations D̃ (λ) ± 1 = 0 we obtain the spectral bands of
Hq0 , which are shown in Table 5. The spectrum of this operator
shares common characteristics with the previous spectra, for
instance, the large gap-to-band ratio due to the presence of δ-
and δ′-interactions.

Previous examples show the applicability of the SPPS method
in the numerical determination of the spectral bands of periodic
Schrödinger operators with point interactions. For numerically
simulating the influence of a slowly oscillating at infinity potential
q1 on the gaps of the essential spectrum of the operators it
is necessary to determine the numbers m∞

q1
and M∞

q1
, and

employ formula (19) for calculating the essential spectrum of the
perturbed operator.

Example 6 (Perturbed periodic potential). Let q1 (x) =
A sin |x|ε , ε ∈ (0, 1), A > 0, x ∈ R. Since q1 ∈ SO (R) , it is
easy to see that for every sequence R ∋ hm → ∞ the limit qh1 is

TABLE 5 | Some spectral bands
[
aj ,bj

]
of the Hamiltonian Hq0 from Example 5.

j aj bj bj − aj aj − bj−1

1 2.86762223529348 10.23246965803260 7.36485 —

2 45.56882948698923 48.61942765089296 3.05059 35.3364

3 101.27707819595177 106.08760865097772 4.81053 52.6577

4 163.54551092639027 170.36688233214974 6.82137 57.4579

5 225.66146649230063 231.02984943621416 5.36838 55.2946

6 361.63534945045842 364.93962223189151 3.30427 130.606

7 512.49899820086693 517.49353325243941 4.99454 147.559

8 637.30399761249782 644.20426504160877 6.90027 119.810

9 761.93050746223082 767.18997844883585 5.25947 117.726

TABLE 6 | Some spectral bands
[
aj ,bj

]
of the perturbed Hamiltonian Hq0+q1

from Example 2.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −3.67428666671436 −1.21034342939206 2.46394 —

2 −2.86953451704338 0.81211465498424 3.68165 −1.65919

3 −1.16355607594023 3.89703477791651 5.06059 −1.97567

4 1.91041104450921 8.21694695958455 6.30654 −1.98662

5 6.22365825701727 13.76922201025541 7.54556 −1.99329

6 11.77350452947204 20.55493528380191 8.78143 −1.99572

7 18.55787702778062 28.57420128901233 10.0163 −1.99706

8 26.57635166441515 37.82709282973720 11.2507 −1.99785

9 35.82873349589631 48.31364139486438 12.4849 −1.99836

10 46.31493463461126 60.03386368002606 13.7189 −1.99871

a real constant. The limiting values satisfy
∣∣∣qh1
∣∣∣ ≤ A for every real

sequence h =
{
hm
}
, hence,m∞

q1
= −A andM∞

q1
= A.

Let us consider the previous Example 2 and suppose that
its regular potential q0 defined in (32) is perturbed by the
potential q1 ∈ SO (R) with A = 1. In Table 6 we observe the
influence of this slowly oscillating function on the spectrum of
the unperturbed operator Hq0 . We observe the broadening of
the bands and their corresponding overlapping when the gaps
are negative. Since the gaps of the unperturbed problems are
monotonically decreasing all the bands will overlap producing a
continuous spectrum

spessHq0+q1 =
[
a1 +m∞

q1
,+∞

)
= [−3.67428666671436,+∞) .

Now, let us consider the previous Example 3, and suppose that
its regular potential q0 defined in (33) is perturbed by a more
intense perturbation q1 ∈ SO (R) with A = 6. The bands of the
resulting perturbed operatorHq0+q1 are shown in Table 7. In this
case the first seven bands of the spectrum overlap, yielding the
merged band

[
a1 +m∞

q1
, b7 +M∞

q1

]
= [−2.93816218652093, 64.31214991061162]

⊂ spessHq0+q1 .
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TABLE 7 | Some spectral bands
[
aj ,bj

]
of the perturbed Hamiltonian Hq0+q1

from Example 3.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −2.93816218652093 9.46162839690882 12.399791 —

2 −0.30140505524891 12.52258314515798 12.823988 −9.76303

3 6.41958132212809 19.72611107363096 13.30653 −6.10299

4 13.18349016467425 26.94891270433824 13.76542 −6.54262

5 23.80585404067745 37.98452624002360 14.17867 −3.14306

6 34.84052913551672 49.46896744277874 14.62844 −3.14399

7 49.26982482796178 64.31214991061162 15.04233 −0.19914

8 64.47604145435538 79.95789867313669 15.48186 0.163892

9 82.77758666329101 98.67469008649469 15.89710 2.819690

10 102.09491317730821 118.42506663387381 16.33015 3.420221

TABLE 8 | Some spectral bands
[
aj ,bj

]
of the perturbed Hamiltonian Hq0+q1

from Example 4.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −10.85411657153512 −3.83369602987881 7.02042 —

2 −3.65046048277948 4.84587555882338 8.49634 0.18323

3 8.65425503800808 16.43273085127024 7.77848 3.80838

4 65.26969354771300 72.03634328596869 6.76665 48.8369

5 141.85052700115227 151.79531015416193 9.94478 69.8142

6 154.67353066071464 164.42975111317477 9.75622 2.87822

7 270.31957684722038 276.70125145939630 6.38167 105.8899

8 436.51292832002877 442.81704937865748 6.30412 159.8119

9 615.73286597182914 625.54765426193728 9.81479 172.9158

From the eighth band, the gaps of the spectrum are open. Hence,
in order to closemore gaps, it is necessary to increase the intensity
of the perturbation.

Finally, on considering the potential (34) from Example 4
and the perturbation q1 ∈ SO (R) with A = 3 we obtain the
spectral bands shown in Table 8. In this case, though the bands
get broader, none of them overlap with the given perturbation.

6. CONCLUSIONS

In this work we have approached one-dimensional Schrödinger
operators with point interactions from their corresponding self-
adjoint extensions. On assuming that the point interactions are
supported on an infinite countable set with a periodic structure
we were able to employ the limit operators method for analyzing
their essential spectra. If the regular potentials are periodic the
Floquet-Bloch theory leads to a formula defining the band-gap

spectra of the periodic operators, which is given in terms of a
function D (λ). This function is obtained from the monodromy
matrices specified at the points where the singular potential is
supported. In this work the function D (λ) is determined by
the SPPS method, which allows to consider arbitrary regular
potentials q0 satisfying certain smoothness conditions, and to
derive numerical methods for calculating the band edges of
spectra of periodic problems involving point interactions.

We also considered the case when periodic problems are
perturbed by slowly oscillating at infinity terms, which can
model impurities in the crystals. The perturbed problems are
also approached by the limit operators method, which gives a
neat formula for their essential spectra. The spectral analysis
of perturbed periodic problems relies on a pair of numbers
m∞

q1
and M∞

q1
that depend on the perturbation q1 ∈ SO (R)

specified in the problem. These numbers, in general, lead to
the broadening (narrowing) of the bands (gaps), which may
change significantly the spectra of the operators. The SPPS
approach together with the determination of the numbers m∞

q1
,

M∞
q1

give a simpler way for determining the spectra of perturbed
periodic problems.

The applicability of the SPPS method and the limit operators
method is shown by the numerical examples considered in
this work that involved δ- and δ′-interactions as well as a
periodic regular potential q0. The accuracy of the results relies
on the uniform convergence of power series of the spectral
parameter that define the solutions of the involved Schrödinger
equations, so that an increasingly number N of terms in the
truncated series will reduce the associated errors in the numerical
values. Finally, the theory developed in this work can be used
for analyzing photonic crystals and electromagnetic waveguides
with periodic refractive profiles, as well as quantum problems
involving periodic potentials.
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