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We consider singular self-adjoint extensions for the Schrödinger operator of spin-1/2

particle in one dimension. The corresponding boundary conditions at a singular point are

obtained. There are boundary conditions with the spin-flip mechanism, i.e., for these

point-like interactions the spin operator does not commute with the Hamiltonian. One of

these extensions is the analog of zero-range δ-potential. The other one is the analog of

so called δ(1)-interaction. We show that in physical terms such contact interactions can

be identified as the point-like analogs of Rashba Hamiltonian (spin-momentum coupling)

due to material heterogeneity of different types. The dependence of the transmission

coefficient of some simple devices on the strength of the Rashba coupling parameter is

discussed. Additionally, we show how these boundary conditions can be obtained from

the Dirac Hamiltonian in the non-relativistic limit.

Keywords: Schrödinger operator, self-adjoint extension, Rashba interaction, spin-flip, Pauli Hamiltonian, Dirac

Hamiltonian

1. INTRODUCTION

Point-like interactions can be described as the singular extensions of the Hamiltonian and
are very useful quantum mechanical models because of their analytical tractability [1–5]. They
are equivalent to some boundary conditions imposed on a wave function at the singular
points and represent the limiting cases of field inhomogeneities. Therefore it is important to
understand the relation between parameters of these BC and the specific physical characteristics
of inhomogeneities. In modern nanoengineering the spin control is of great interest [6]. Besides
the external magnetic field another interaction is the spin-momentum coupling which could be
used for such a control [7, 8]. Thus the inclusion of magnetic field and other interactions which
influence spin dynamics is a natural route for searching spin-dependent singular interactions. The
interactions which influence spin polarization would give new examples of contact interactions
with applications in condensed matter physics and QFT [9].

2. CONTACT INTERACTIONS FOR SPIN 1/2 CASE

In non-relativistic limit spin s = 1/2 particle is described by the Pauli Hamiltonian [10]:

Ĥ =
(

p̂− q
c A

)2

2m
+ qϕ − q h̄

2mc
σ̂ · EH , (1)
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where σ represents the vector of Pauli matrices, EH is the
external magnetic field and A,ϕ are vector and scalar potentials
correspondingly. This Hamiltonian acts in space of 2-component
wave functions:

9 =
(

ψ↑
ψ↓

)

. (2)

Here ψ↑,ψ↓ are the wave functions of corresponding spin “up-”
and “down-” states |↑〉 , |↓〉. The probability current for Eq. (1) is
as following:

Jw = h̄

m
Im

(

9†∇9
)

− q

mc
A9†9 + h̄

2m
rot

(

9†
σ 9

)

, (3)

where the last term describes the magnetization current (see
e.g., [11]).

Bearing in mind the application to the 1-dimensional layered
systems with spatial heterogeneity we use the conservation of
current 3 to derive the boundary conditions (BCs) for the
Hamiltonian 1 which model point-like interactions. We use the
results of [12] where all possible self-adjoint BCs were related
with the following Hamiltonian:

LX = −D2
x ( 1+ X4 δ )+ i Dx

(

2X3 δ − i X4 δ
(1)

)

+ X1 δ

+ (X2 − i X3) δ
(1) . (4)

Here symbol Dx stands for the derivative in the sense of
distributions on the space of functions continuous except at the
point of singularity where they have bounded values along with
their first derivatives [12, 13]:

δ(ϕ) = ϕ(+0)+ ϕ(−0)

2
, δ(1)(ϕ) = −ϕ

′(+0)+ ϕ′(−0)

2
. (5)

The parameters Xi ∈ R determine the values of the
discontinuities of the wave function and its first derivative. The
boundary conditions (b.c.) corresponding to each contribution
in Eq. (4) can be represented in matrix form:

(

ψ(0+ 0)
ψ ′(0+ 0)

)

= MXi

(

ψ(0− 0)
ψ ′(0− 0)

)

(6)

and conserve the current∗

j = 2 Im
(

ψ∗ ψ ′) (7)

of the Hamiltonian

Ĥ = − d2

d x2
(8)

of a spinless particle. Physical classification of all these b.c. on the
basis of gauge symmetry breaking was proposed in Kulinskii and
Panchenko [14]. They can be divided into two subsets. The first
one is formed by the matrices:

MX1 =
(

1 0
X1 1

)

, MX4 =
(

1 −X4

0 1

)

(9)

∗here we put h̄ = 1, c = 1 andm = 1/2.

and can be associated with point-like interactions of electrostatic
nature, e.g., standard zero-range potential is nothing but the
limiting case of the potential field barrier. Another one is given
by the BC matrices:

MX2 =
(

µ 0
0 1/µ

)

, MX3 = eπ i8

(

1 0
0 1

)

(10)

and represents the point-like interactions of the “magnetic” type.
The parameters of 4 are related with the physical ones:

X2 = 2
µ− 1

µ+ 1
, eπ i8 = 2+ i X3

2− i X3
, (11)

where µ = √
m+/m− is the mass-jump parameter and 8 is the

magnetic flux (in units of 80 = 2π h̄ c/q). The magnetic nature
of MX3 is obvious because of its interpretation as the localized
magnetic flux. The last breaks the homogeneity of the phase of
the wave functionψ . Also the scattering matrix of this b.c. has no
time reversal symmetry [14].

The natural question arises as to the consideration of a particle
with internal magnetic moment, e.g., a particle with spin s = 1/2.
The very straightforward way for derivation of corresponding b.c.
is the conservation of current Eq. (3). Therefore we introduce
4-vector (bispinor) of the boundary values at the singular point:

80±0 =









ψ↑
ψ ′
↑
ψ↓
ψ ′
↓









0±0

(12)

and boundary condition 4× 4-matrixM:

80+0 = M80−0 . (13)

Due to the structure of current Eq. (3) for the Hamiltonian 1 we
have conservation of all its components:

Jx =
1

i

(

9† ∂9

∂x
− ∂9†

∂x
9

)

,

Jy =−
(

∂9†

∂x
σz9 +9†σz

∂9

∂x

)

,

Jz =
∂9†

∂x
σy9 +9†σy

∂9

∂x
.

(14)

Note that here we use expanded form of “curl” operator in Eq. (3)
with explicit derivatives because we expect the discontinuity
in their values. In fact, this the very form follows from the
Dirac equation in non relativistic limit and the curl-operator
appears after collecting the corresponding terms (see [10]). This
point is important in view of X2-interaction which breaks the
homogeneity of dilatation symmetry [15] because of the mass
jump [14, 16]. In general Jy and Jz are different from zero
even if we consider 1-dimensional case, e.g., layered system. The
only demand consistent with the hermiticity of the Hamiltonian
Eq. (1) is the conservation of current components Eq. (14). In
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terms of vector 8 the components of the probability current are
as following:

Ji = 8†6i8 , i = x, y, z (15)

where 4 × 4 matrices 6i are calculated by comparison of
expressions Eqs. (14) and (15):

6x =
1

i

(

Sp2 0
0 Sp2

)

, 6y =
(−σx 0

0 σx

)

, (16)

6z =
1

i

(

0 σx
−σx 0

)

and Sp2 =
(

0 1
−1 0

)

. (17)

The conservation constraint of total current 15 gives the
conditions forM-matrix:

M†6iM = 6i , i = x, y, z (18)

Besides trivial solution for M-matrix consisting of two MX2,3-
blocks (no spin-flip), simple algebra gives the nontrivial 1-
parametric solution of Eq. (18):

Mr =









1 0 0 r
0 1 0 0
0 r 1 0
0 0 0 1









, r ∈ R (19)

with

Mr1 Mr2 = Mr1+r2 .

and b.c. of the form









ψ↑
ψ ′
↑
ψ↓
ψ ′
↓









0+0

= Mr80−0 =









ψ↑ + rψ ′
↓

ψ ′
↑

ψ↓ + rψ ′
↑

ψ ′
↓









0−0

(20)

This defines the spin-flip variant of X4-extension. E.g.,
corresponding scattering matrix forMr is as following:

Ŝr =
1

k2 r2 + 4









k2 r2 4 −2 i k r 2 i k r
4 k2 r2 2 i k r −2 i k r

−2 i k r 2 i k r k2 r2 4
2 i k r −2 i k r 4 k2 r2









(21)

The scattering characteristics related to the scattering matrix
Eq. (21) are in Figure 1.

Another solution of Eq. (18) is

M̃r̃ =









1 0 0 0
0 1 r̃ 0
0 0 1 0
r̃ 0 0 1









, r̃ ∈ R (22)

with the b.c. of the form:








ψ↑
ψ ′
↑
ψ↓
ψ ′
↓









0+0

= M̃r̃80−0 =









ψ↑
ψ ′
↑ + r̃ψ↓
ψ↓

ψ ′
↓ + r̃ψ↑









0−0

(23)

FIGURE 1 | Scattering of |↑〉 - state on r − X4 defect.

FIGURE 2 | Resonator.

It can be considered as the δ-potential (X1-extension) augmented
with the spin-flip mechanism. From the explicit form of the
boundary conditions, e.g.,:









ψ↑
ψ ′
↑
ψ↓
ψ ′
↓









0+0

= Mr MX2 80−0 =









µ−1 ψ↑ + µ rψ ′
↓

µψ ′
↑

µ−1ψ↓ + µ rψ ′
↑

µψ ′
↓









0−0

(24)

where MX2 is the block-diagonal matrix of X2-extensions. Thus
the boundary condition for s = 1/2 particle with the spin-flip
contact interaction can be written in general form:

80+0 = M̃r̃ Mr MX2 . (25)

Note that X3-extension can not be augmented with the spin-flip
mechanism since it decouples from r, r̃-couplings. In accordance
with the spin-momentum nature of the r-couplings the physical
reason of such factorization is that X3 contact interaction does
not include spatial inhomogeneity in electric field potential ϕ.
This is quite consistent with the difference between X2 and X3

from the point of view of breaking the gauge symmetry [14, 17].
Using the b.c. obtained above the standard test systems and

their transport characteristics can be calculated straightforwardly
in order to demonstrate spin-filtering properties. We give just
two examples. First is the resonator (see Figure 2) for which
the scattering amplitudes are in Figures 3, 4. Also we give the
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FIGURE 3 | Intensity of reflected spin-↓ state for r − X4 resonator (see Figure 2) at different values of r.

FIGURE 4 | Intensity of reflected spin-↓ state for r̃ − X1 resonator (see Figure 2) at different values of r̃.

FIGURE 5 | Amplitude of the wave function |↑〉 , |↓〉-components in the

resonant region.

results of calculation of the resonant (quasilocalized) states (see
Figure 5). Second is the filter (see Figure 6) with scattering
characteristics are in Figure 7. The intensity of spin-flip process,
generating the spin-↓ state from incident spin-↑ state is shown
in Figure 3. These results demonstrate that spin-flip mechanism
even at small values of r-coupling can reach high probabilities

FIGURE 6 | Filter.

with increasing the energy of incident particle. Of course this
directly follows from the boundary conditions (19) and (22)
since the effects depend on both r and the momentum. Figure 4
represents the spin-flip effect for X1-resonator. Using such device
it is possible to create the resonant (quasibound) states in the
area between the wall and the defect (see Figure 5) for X4-filter.

Frontiers in Physics | www.frontiersin.org 4 April 2019 | Volume 7 | Article 44

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kulinskii and Panchenko Point-Like Rashba Interactions

FIGURE 7 | Transmission r − X4 filter intensity for different values of r.

FIGURE 8 | Comb structure.

Comparison of r̃ − X1 and r − X4 cases shows that the last one is
more effective as spin-flip mechanism.

The zone structure for periodic comb (see Figure 8) can
be also calculated in standard way using Bloch representation
of the wave function and imposing the corresponding b.c. In
comparison with the spinless case considered in Albeverio et al.
[3] here the spin degree of freedom doubles the number of zones
(see Figures 9, 10). The corresponding dispersion laws are:

cos q = cos k± rX1

2 k
sin k (26)

cos q = cos k± rX4 k

2
sin k (27)

where q is the quasimomentum vector. Note that in case of
X4-comb the lowest states belong to two parabolic zones with
different effective masses at rX4 < 1:

E±(k) =
h̄2 k2

2m±
, m± = 1± rX4 (28)

At r = 1 one branch of excitations becomes massless:

E(k) = 2
√
3 k+ . . . (29)

Of course this is the remnant of what happens in standard X4-
structure (see e.g., [3]). More intriguing problem here is the
inclusion of the correlation effects due to spin statistics and
investigation of phases with magnetic (dis)order in dependence
on the intensity of point-like interactions. This way of research
may be useful formodeling 1-dimensionalmagnetic systems [18].

2.1. Spin-Flip Contact Interaction in 3D
As is known 3D case with the spherical symmetry can be
effectively reduced to one dimensional problem on semi-axis
r > 0 of the radial coordinate. Indeed let us define φ(r) = rψ(r)
as the effective 1D wave function and consider natural definition
domain of free Hamiltonian:

||Ĥ09||2 =
∞

∫

0

|(rψ)′′|2d r <∞ (30)

then the limiting value φ(0) as well as its derivative φ′(0) is
defined since Eq. (30) is well defined on the corresponding
Sobolev spaceW2

2 (R+) which is dense in L2(R+). The probability
current is as following:

J =
∞

∫

0

Im

(

9† ∂9

∂r

)

r2 dr =
∞

∫

0

Im

(

(r9†)
∂(r9)

∂r

)

dr (31)

so the results for 1D case can be used. Introducing 2-spinor
boundary-value vectors:

8 =
(

φ↑
φ↓

)

, 8′ =
(

φ′↑
φ′↓

)

(32)
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FIGURE 9 | Zone structure of r − X1 - comb. Red and green are for “minus” and “plus” branches in Eq. (26) correspondingly.

FIGURE 10 | Zone structure of r − X4 - comb. Red and green are for “minus” and “plus” branches in Eq. (27) correspondingly.
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where

φα = lim
r→0

rψα(r)

from Eq. (31) we get:

8′ = W8 (33)

whereW is the hermitean matrix. In standard decomposition on
the Pauli matrices:

W = � I + w · σ (34)

the scalar part (first term) corresponds to standard point-like
potential b.c. [2, 19]:

8′ = �8 (35)

and the states |↑〉 , |↓〉 evolve independently. There is also spin-
dependent repulsive/attractive version of 35:

8′ = ω

(

1 0
0 −1

)

8 (36)

which might be interpreted as the point-like potential with
internal spin so that the sign of the potential depends on the
spin-spin orientation of the particle and the center. The vector
part (traceless second term) of Eq. (34) describes polarizational
contact interactions with the spin-flip b.c.:

8′ =
(

0 z
z∗ 0

)

8 , z ∈ C (37)

These b.c.’s in general describe how spin of an incident particle
(e.g., an electron) interacts with the electrostatic potential
localized at the singular point. In the absence of the external
magnetic field the only mechanism for acting on spin in such
situation is the relativistic spin-momentum coupling which we
discuss in the following section.

3. PHYSICAL ORIGIN OF THE SPIN-FLIP
BOUNDARY CONDITIONS

The spin-flip point interactions introduced above make the
spin operator no longer the integral of motion. There are two
obvious physical origins for it (a) an external magnetic field
with x, y-components and (b) spin-momentum coupling (Rashba
coupling). The explicit k-dependence of the amplitudes of the
spin-flip processes indicates that these interactions are due to
spin-momentum coupling. Thus the physical interpretation of
interactions represented by the b.c. matricesMr , M̃r̃ can be given
in terms of the Rashba Hamiltonian [7, 8] (see also [20] and
reference therein). Indeed, the Pauli Hamiltonian Eq. (1) as well
as the current density Eq. (3) can be derived as the non relativistic
limit for the Dirac Hamiltonian

ĤD = α ·
(

p̂− A
)

+ β m+ ϕ (38)

where α = αi, i = 1, 2, 3 and β are the Dirac matrices

α =
(

0 σ

σ 0

)

, β =
(

I 0
0 −I

)

(39)

with I being 2 × 2 unit matrix. They act in the space of
bispinors9 :

9D =
(

ξ

η

)

(40)

where spinors ξ and η represent particle and hole with respect
to the Dirac vacuum states respectively [10]. The probability
density is:

JD = 9
†
D α9D (41)

and in non relativistic limit transforms into

J = ξ∗ σ η + η∗ σ ξ (42)

with

η = 1

2m
v̂ ξ (43)

Here v̂ is the velocity operator. In the absence of external
electromagnetic field this is equivalent to the following reduction
of the bispinor in 1-dimensional case

9D →
(

ξ

ξ ′

)

(44)

so that the boundary element 4-vector 12 appears. Also we refer
to the paper [21] where mass jump matching conditions were
derived for the Dirac Hamiltonian in a graphen-like material
where the velocity vF at the Fermi level serves as the speed of light.

The expansion of next order generates the spin dependent
operator in the Hamiltonian:

ĤSP = λ σ ·
(

∇ϕ × p̂
)

(45)

It couples the spin with the momentum due to inhomogeneous
background of the electric potential ϕ. In the limiting case of
point-like interaction on the axis when ∇ϕ → 0 on both
sides of the singular point this term drops out and should be
interchanged with the boundary condition for the boundary
vector 12 of the Pauli Hamiltonian 1. The conservation of the
corresponding probability density current Eq. (3) provides self-
adjointess of the boundary conditions for Eq. (1) in the presence
of point-like singularity.

As a result, all extensions Xi , i = 1, 2, 4 which are
singular limiting cases of the spatial distribution of the external
electric field potential ϕ can be augmented with the spin-flip
mechanism. Thus Eq. (25) defines the one-dimensional analog
of the Hamiltonian with the point-like Rashba spin-momentum
interaction [7].

4. CONCLUSION

The main result of the paper is that those extensions of the
Schrödinger operator which are physically constructed on the
basis of the inhomogeneous distribution of the electric field
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potential ϕ(x) can be augmented with the spin-flip mechanism.
Note that in Eq. (24) both r-coupling andµ-parameter determine
the spin-flip mechanism. This is in coherence with the results
of Kulinskii and Panchenko [17] where X2 and X4 extensions
were treated on the common basis of the spatial dependent
effective mass. In its turn it is caused by the electrostatic field
of the crystalline background. So it is not a surprise that these
extensions can be combined through spin-momentum coupling
in the Rashba Hamiltonian thus forming the “internal” magnetic
field. In contrast to this pure “magnetic” X3-extension which is
due to the external magnetic field does not couple with other
Rashba point-like interactions.

Thus we can state that all point-like interactions δ, δ′-local and
δ′-nonlocal (in terms of [22]) which are due to inhomogeneous
electrostatic background can be augmented with the Rashba
(spin-momentum) coupling. It is interesting to check this result
independently using the Kurasov’s distribution theory technique
[12] and modified correspondingly for spin 1/2 case. Also we
expect that such b.c.’s can be related to the zero-range potential
models with the internal structure of the singular point studied
in Pavlov [23]. This will be the subject of future work.
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