
ORIGINAL RESEARCH
published: 12 March 2019

doi: 10.3389/fphy.2019.00025

Frontiers in Physics | www.frontiersin.org 1 March 2019 | Volume 7 | Article 25

Edited by:

Michele Viviani,

Istituto Nazionale di Fisica Nucleare

(INFN), Italy

Reviewed by:

Andrea Celentano,

Istituto Nazionale di Fisica Nucleare

(INFN), Italy

Jacopo Ferretti,

Yale University, United States

*Correspondence:

Maurizio De Sanctis

mdesanctis@unal.edu.co

Specialty section:

This article was submitted to

Nuclear Physics,

a section of the journal

Frontiers in Physics

Received: 30 November 2018

Accepted: 14 February 2019

Published: 12 March 2019

Citation:

De Sanctis M (2019) Chromo-Electric

Field Energy in Quark Models.

Front. Phys. 7:25.

doi: 10.3389/fphy.2019.00025

Chromo-Electric Field Energy in
Quark Models
Maurizio De Sanctis*

Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

We study the contribution of the chromo-electric field to the total energy of the hadrons.

We analyze the case of quarks considered as extended sources of the field. Specific

forms of the interaction potential of the quarks are obtained. Moreover, the color charge

distribution of these sources allows to determine the zero-point energy that is commonly

introduced, as a free (independent) parameter, in the total quark model Hamiltonian of

the hadronic systems. The ground states of charmonium (qq̄) and nucleon (qqq) are

studied in more detail: their mass is calculated within a relativized dynamical model and

the expectation value of the chromo-electric field energy is consistently obtained.
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1. INTRODUCTION

1.1. The Chromo-Electric Field Energy in the Context of Hadronic
Physics
According to Quantum Chromo-Dynamics (QCD) the chromo-electric and chromo-magnetic
fields, brought by the eight gluons, transmit the interaction among the quarks and contribute to
the total energy of the hadrons. Due to the difficulties to solve analytically the QCD field equations,
approximate techniques have been developed to study these fields and the energy associated
with them.

In the first place, lattice simulations have been developed in order to determine
non-perturbatively the chromo-electric and chromo-magnetic fields produced by static
quarks [1–4].

At general level, we note that interesting analytical calculations have been carried out within
Coulomb Gauge QCD [5, 6].

It is necessary to recall that the spectroscopy of hadronic systems (baryons and mesons) has
been also successfully studied by means of various forms of Quark Models (QMs), partially related
to QCD, that can be grouped in the following categories: Bag Models (BMs), see for example
references [7–11]; Constituent Quark Models (CQMs), see for example, for charmonium and
so-called higher quarkonia, referenes [12–31]; for baryons, see for example references [32–46];
Quark Diquark Models (QDMs), see for example references [47–61]. In the BMs the calculation
of the chromo-electric and chromo-magnetic fields has been performed taking into account the
specific boundary conditions on the surface of the bag [7, 8].

On the other hand, the results for the hadronic spectra given by the CQMs andQDMs are usually
obtained directly by means of phenomenological interaction potentials, so that the specific form of
the produced fields and the energy associated with them are not studied in detail.

However, the experimental discovery at LHCb, in 2015, of two new hadronic peaks, the P+c (4380)
and the P+c (4450) [62], has stimulated new interest on the theoretical study of the quark interaction,
enphasizing the role of the chromo-electric field produced by the quarks.
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Even though in the present work we shall not develop directly
a specific model for those peaks, it is necessary to summarize
here the state of the art of this phenomenology, in particular with
respect to the chromo-electric field energy.

In the first place, we recall that those peaks have
been interpreted as new resonances given by pentaquark
configurations. This interpretation has been developed in the
framework of the so-called hadro-quarkonium model, defined
more specifically, in this case, as baryo-charmonium model;
for an orientation about this model, see references [63–71].
But, in this concern, it is necessary to recall that also other
theoretical interpretations have been proposed: in Guo et al.
[72, 73], Liu et al. [74], and Mikhasenko [75], it has been
suggested that these peaks have a non-resonant nature related
to the rescattering of known particles, in the triangle diagram,
near kinematical thresholds. We note that, in any case, robust
theoretical models should be developed to explain these exotic
experimental observations.

With respect to the interest of the present study and
considering, for example, the baryo-charmonium model of
Ferretti et al. [63], we note that a cc̄− qqq configuration has been
introduced, where q represents a light quark. The (multi-gluon)
interaction between the compact, heavy cc̄ state and the light-
quark baryonic qqq field is written in terms of the QCDmultipole
expansion, retaining only the leading E1 term of the chromo-
electric field [64, 65]. The final effective interaction (obtained by
means of further approximations) depends on the cc̄ chromo-
electric polarizability and on the chromo-electric field energy of
the baryonic state qqq.

We note that, in this model, based on QCD and on effective
field theories, the interaction is not written directly at quark
level. In particular, an approximated estimation is taken for the
chromo-electric field energy.

This situation suggests the possibility of a different calculation,
in the framework of the CQM, provided that a sensible definition
of the chromo-electric field energy is obtained.

The hadro-quarkonium model has been also used in
Ferretti [76], in another context, to study some hadronic
resonances that cannot be described accurately by CQMs as
standard cc̄ excitations. Also in this case, a variety of different
theoretical interpretations has been proposed, including (as in
the pentaquark case discussed above) kinematical effects related
to rescattering. A careful discussion of this phenomenology is
given in Molina et al. [31], where the mass of these resonances
is compared to the results of a fully relativistic Dirac quark model
in which the theoretical uncertainties of the predicted masses are
also taken into account.

We recall that in the hadro-quarkonium model of
Dubynskiy and Voloshin [64] and Ferretti [76], the
effective interaction between a compact cc̄ state and the
light-meson state (analogously to the baryo-charmonium
case, discussed above) depends on the cc̄ chromo-electric
polarizabilty and on the chromo-electric field energy of the
light meson.

We observe that also this physical problem could be
studied with a CQM in which the chromo-electric field energy
is correctly determined.

For completeness, we finally recall that hidden-charm
tetraquark spectroscopy has been also studied in Naeem Anwar
et al. [77] by means of a generalized CQM.

As discussed above, in the baryo-charmonium and hadro-
charmoniummodels, the chromo-electric field energy represents
a necessary element to perform the complete calculation of the
quark effective interaction. We recall that, lattice techniques
[2] have been also used to determine the quarkonium chromo-
electric polarizability matrix elements.

1.2. Objective and Methods of This Work
We can now specify the aim of the present work, that is to
study the chromo-electric field energy within the framework
of the CQM, defining at the same time a phenomenological
quark interaction.

We disregard here the three gluon interaction terms. This
approximation is usually made in an implicit way in the CQMs
and is discussed in more detail in the BMs [7, 8].

According to another standard approximation, see for
example references [8, 65], we also disregard the chromo-
magnetic field contributions (smaller than those given by the
chromo-electric field), that would give rise to the spin-spin
interaction terms, as shown, for example, in DeGrand et al. [7].

Finally, we neglect the electromagnetic interaction between
the quarks because it is much smaller than their strong
interaction. Furthermore, the theoretical uncertainties related to
the quark model formulation are, in any case, bigger than the
contributions of the electromagnetic interaction.

As it will discussed in section 2, if point-like quarks were
considered as sources of the chromo-eletric field, it would be
not possible to obtain a finite result for the energy associated to
that field. More precisely, with point-like quarks, the chromo-
electric field energy, would be, as such, an infinite, ill-defined, and
useless quantity. To avoid this difficulty, the (positive) infinite
contributions of the quark self-energy should be “subtracted” and
only the negative attractive (pure) Coulombic interaction term
would remain. But this conclusion would be in contrast to the
widely accepted result shown in Voloshin [65] (and used in the
hadro-quarkonium model), in which the chromo-electric field
energy is a positive, finite quantity.

Moreover, we note that in many quark models the Coulombic
interaction term is often regularized to avoid the short-
distance divergence (obtaining an interaction that is not purely
Coulombic) and a zero-point energy is added to improve the
reproduction of the hadronic spectra.

In the present work we make the hypothesis that these
properties of the quark effective interaction can be directly
obtained by considering the quarks as extended particles.
The extended nature of the constituent quarks has been
already proposed for the study of hadronic systems; see, for
example, [78].

The quarks represent the sources of the chromo-electric
field, with specific color charge distributions and, within that
hypothesis, their self-energies are finite and must not be
subtracted, so that the total chromo-electric field energy is a
positive, well-defined quantity whose general properties will be
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derived and analyzed in the same section 2. The total chromo-
electric field energy developed here is given by the sum of two
contributions: the quark finite self-energies and the attractive
interaction term between the two quarks. This total energy
is substantially different with respect to the electromagnetic
interaction of point-like particles: in the case of positronium, the
electric field self-energy produced by the electron and positron,
would be infinite and, in consequence, is subtracted, leaving no
effect on the observable quantities. On the other hand, in the case
of nuclei, that are extended objects, the electrostatic repulsion of
the protons gives rise to well-known, observable contributions
to the rest mass of the nuclei. The analogy with this effect can
illustrate the meaning of the finite self-energy introduced in
this work.

In the present model, the total chromo-electric field energy
is then used as a quantum operator that represents the total
potential of the CQM. In this way, we can study the ground
states of charmonium (qq̄ state) and nucleon (qqq state) that
will be examined in sections 3 and 4, respectively. We make the
hypothesis that, in the ground states, the confining interaction
can be disregarded. This hypothesis should hold better for
charmonium than for nucleon. A complete model is necessary to
understand completely the hadronic bound state interaction. In
the present, preliminar work, with a simple relativistic dynamical
model, we reproduce the experimental masses of those ground
states and fix, for a given value of the effective coupling constant
αs, the dimensional parameter d of the color charge distribution.

In Appendix A we show the formal details of the derivation
of the self-energy and of the interaction energy. The quark model
developed here is, obviously, not complete: spin-spin effects and,
moreover, a confining interaction should be added to study the
excited states of the spectra.

Throughout this paper we shall use the word quark to indicate,
in a generic way, both a quark and an antiquark. The word
antiquark will be used only in specific cases, when strictly
necessary. Furthermore, the natural set of units h̄ = c = 1
will be used.

2. THE TOTAL CHROMO-ELECTRIC FIELD
ENERGY: INTERACTION AND EXTENDED
COLOR DISTRIBUTIONS

In this section we specify the general formalism of our model.
Considering that we work in the framework of the CQM, we
disregard, as discussed before, the three gluon interaction that is
given by QCD.

The model developed in the following represents an extension
of electrostatics, related to U(1) charge symmetry, to a color
quark effective interaction, related to SU(3) color symmetry. As a
reference for the concepts and metods of electrostatics, we follow
a standard textbook [79], unless otherwise stated.

As a first step, we introduce the differential form of the Gauss’s
low for the chromo-electric field:

∇x · Eai (x− ri) = 4πFai
√
αsρ(x− ri) . (1)

In the previous equation the upper index a = 1, . . . , 8 denotes the
eight color components of the field; the lower index i indicates the
quark that produces the field. Inmore detail, Eai (x−ri) represents
the chromo-electric field at the spatial point x, produced by the
i-th quark, located at ri. At variance with standard formulation
of electrostatics, we prefer to write explicitly the dependence
on αs that represents the (effective) strong coupling constant.
Furthermore, ρ(x − ri) represents the color charge density; this
quantity has the dimensions of L−3; finally, we have introduced
the color operators, defined by means of the Gell-Mann matrices
as Fai = λai /2. For the following calculations, we also recall some
standard expressions for the color operators:

8
∑

a= 1

Fai F
a
i = 4

3
(2)

when only the quark i is considered. For two different quarks (i, j)
we introduce the color expectation valueGh, in the following way:

Gh =<

8
∑

a=1

Fai F
a
j > (3a)

where the index h can represent a meson (h = m) or
a baryon (h = b). Specifically, for a meson we have:

Gm =< qq̄|
8

∑

a=1

Fai F
a
j |qq̄ >= −4

3
(3b)

and for a baryon:

Gb =< qqq|
8

∑

a=1

Fai F
a
j |qqq >= −2

3
. (3c)

In the previous equations, a meson (m) is represented as a quark
and an antiquark in a colorless state, and a baryon (b) as three
quarks, also in a colorless state. Note that, in both cases, Gh

is negative.
In the static limit, we also take into account the irrotational

character of the chromo-electric field:

∇x × Eai (x− ri) = 0 . (4)

In this way, with Equations (1–4), we have generalized the
standard Maxwell theory of the electrostatic field to the case
of a field with an effective SU(3) color symmetry in which the
non-abelian contributions have been disregarded. For clarity,
we recall that, to recover the expression corresponding to the
electromagnetic interaction, one should eliminate the color index
a, replace Fai with the adimensional charge ei of the particle,
with its sign, and, finally, replace αs with the fine structure
constant αem.

We analyze now in more detail some possible forms of the
distributions for the color charge density, assuming for brevity,
up to Equation (16), that the quark is located at the origin,
that is ri = 0.
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For a point-like particle, one would have:

ρpoint(x) = δ(x) (5)

that gives the standard point-like color distribution.
In the case of an extended distribution (that represents the

main object of this study), we assume that:

a) the distribution is spherically symmetric;
b) it depends on a parameter d, with the dimensions of L.

In consequence, by introducing the adimensional quantity s =
x/d, we can write the charge density as:

ρ(x) = 1

d3
ρ̂(s) (6)

being ρ̂(s) the adimensional color charge distribution. In the
present work we shall study in more detail three specific forms
of extended (normalized) distributions:

i) The exponential distribution, with

ρ̂exp(s) =
1

8π
exp (−s) ; (7)

ii) The Gaussian distribution, with

ρ̂Gauss(s) =
√

1

2π
exp (−s2/2) ; (8)

iii) The step-wise (spherical) distribution, with

ρ̂step(s) =
{

3
4π for s ≤ 1,

0 for s > 1 .
(9)

In order to write the chromo-electric field produced by the
color distributions introduced above, we note that the field is
always radial (given that spherical distributions are considered);
furthermore, we introduce the charge contained in a sphere of
radius x:

Q(x) = 4π

∫ x

0
dx′x′2ρ(x′) ; (10)

by using the standard substitution s′ = x′/d, we can write the
charge Q(x) by means of a manifestly adimensional expression,
in the following way:

Q(x) = Q̂(s) = 4π

∫ s

0
ds′s′2ρ̂(s′) . (11)

In consequence, the chromo-electic field, by means of the Gauss
theorem, can be written in the following general form, as:

Eai (x) = Eai (x)x̂ (12a)

with

Eai (x) = Fai
√
αsQ̂(s)

1

x2
. (12b)

For a point-like distribution, one has:

Q̂point(s) = 1 (13)

so that the standard expression for the Coulombic field
is recovered.

For the extended distributions one has to integrate Equation
(11) with the specific expressions of Equations (7,8,9). The
following results for the color charge Q̂(s) are obtained.

i) For the exponential distribution, one has:

Q̂exp(s) = 1− (
1

2
s2 + s+ 1) · exp(−s) . (14)

ii) For the Gaussian distribution, one has:

Q̂Gauss(s) = 8(u)− 2√
π
u · exp(−u2) (15)

being u = s/
√
2 and8(u) the standard error function.

iii) For the step-wise distribution, one has:

Q̂step(s) =
{

s3 for s ≤ 1,

1 for s > 1 .
(16)

For the calculation of the total chromo-electric field energy
we shall follow the standard procedure of electrostatics [79].
Considering the field produced by the quarks i, j, the total energy
can be written as the spatial integral of the square of the chromo-
electric field at the point x:

Wi,j =
1

8π

∫

d3x <

8
∑

a=1

[

Eai (x− ri)+ Eaj (x− rj)
]2
> (17)

where the notation< > refers here to the color state (qq̄ or qqq)
of the system.Wi,j is evidently a non-negative quantity. We have
calculated directly total energy Wi,j by using the chromo-electric
field expression of Equations (12a, 12b) performing numerically
the integration over x; the obtained result, for the extended color
charge distributions, is a non-negative, finite function of the
interquark distance r = |r|, being r = rj − ri.

However, some manipulations will help to understand the
physical meaning of the different contributions and will also
speed the quantum calculations of sections 3 and 4. In the first
place, expanding Equation (17), we obtain:

Wi,j =
1

8π

∫

d3x <

8
∑

a=1

[

[Eai (x− ri)]
2 + [Eaj (x− rj)]

2

+2Eai (x− ri) · Eaj (x− rj)
]

> .

(18)

The first two terms of Equation (18) give the self-energies of the
color charge distributions of the two quarks i, j; this contribution
will be denoted in the following as:

Wself = W
self
i +W

self
j . (19)
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The last term of Equation (18) represents the interaction
contribution, depending on r, and will be denoted as Wint

i,j (r).

Synthetically, we write:

Wi,j = Wself +Wint
i,j (r) . (20)

In this work we also assume that the two sources have the same
color charge distribution.

In the first place, we discuss the self-energies. Their
contribution is divergent in the case of a point-like distribution
[79]; the analogous contribution in classical and quantum
electrodynamics, in that case, is “subtracted”. On the other hand,
for extended distributions, a finite result is obtained. The details
of the derivation are shown in Appendix A. Synthetically, we
recall here that the self-energy represents the straightforward
generalization of the uniformly charged sphere energy (in
electrostatics) to the case of a color charge distribution, not
necessarily uniform. From Equation (A7), the result can be
written in the following general form:

Wself = 2× 4

3

αs

d
Ŵself (21a)

with

Ŵself = 4π

∫ ∞

0
dssρ̂(s)Q̂(s) . (21b)

In Equation (21a) the factor 4/3, taken from Equation (2), holds
for both mesonic and baryonic states. Furthermore, the factor
2 has been highlighted here to recall that the contributions
of the distributions of the two quarks are taken; Ŵself is an
adimensional constant that depends on the specific form of the
distribution. In particular, the calculation gives the following
results:

Ŵ
self
exp = 5/32 , Ŵ

self
Gauss = (2

√
π)−1, Ŵ

self
step = 3/5 ; (22)

note that the very well-known result (3/5) for the step-wise
uniform distribution is obtained.

In the second place, we now consider the interaction energy
Wint

i,j (r) between the two color charge distributions. To study

this contribution we introduce the adimensional relative distance
vector between the two quarks: ξ = r/d. With standard
handlings [79], explicitly shown in Appendix A, the interaction
energy obtained in Equation (A13), can be written in the
following form:

Wint
i,j (r) = Gh

αs

d
Û(ξ ) (23a)

with the adimensional function

Û(ξ ) =
∫

d3s

∫

d3s′ρ̂(s)ρ̂(s′)
1

|s− s′ + ξ | ; (23b)

obviously the final result does not depend on the angles of r.
Note thatWint

i,j (r) is a negative function, expressing the attractive

character of the chromo-electric interaction, both in mesons
and baryons.

FIGURE 1 | Adimensional interaction functions Y (ξ ) for exponential (red),

Gaussian (green), and step-wise (blue) distributions. The arrows on the right

indicate the corresponding asymptotic values 2Ŵ.

The function Û(ξ ) is calculated numerically for the
different distributions.

We note that for r >> d one recovers the Coulombic form:

Û(ξ ) ≃ 1

ξ
and Wint(r) ≃ Wint

Coul.(r) = Gh
αs

r
. (24)

For r → 0 one has:

Û(0) = 2Ŵself and Wint
i,j (0) = 2Gh

αs

d
Ŵself . (25)

In the first place we discuss the case of a quark and an antiquark
in a meson. By using Equation (3b) for Gm, and Equations (21a,
23a), the total chromo-electric field energy takes the form:

Wqq̄(r) = Wself +Wint
qq̄ (r) =

4

3

αs

d
[2Ŵself − Û(ξ )] . (26)

This expression, that includes Wself , gives rise, considered as a
whole, to a qq̄ potential that is vanishing at r = 0 and grows up
to the constant valueWself as r → ∞. This potential is calculated
numerically and compared, for a check, with the direct numerical
calculation of Equation (18).

For clarity, in Figure 1 we plot the adimensional factor

Y(ξ ) = 2Ŵself − Û(ξ ) (27)

for the three distributions. We also show in Figure 2 the ratio
X(ξ ) = Y(ξ )/(2Ŵself ).

We now consider a couple of quarks (qq) in a baryon state
(qqq). The procedure is similar to the qq̄ case but using Gb of
Equation (3c). To calculate the total chromo-electric energy of
the hadron one has to sum up the contributions of the interaction
energies of the three couples of quarks and the self-energies
of the three quarks. To obtain correctly (i.e., without double
counting) that result [see also Equation (33) of section 4], the
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FIGURE 2 | Adimensional ratio functions X (ξ ) for the three distributions,

plotted with the same colors as in Figure 1.

total chromo-electric energy of one couple of quarks is written
as:

Wqq(r) =
Wself

2
+Wint

qq (r) =
2

3

αs

d
[2Ŵself − Û(ξ )] ; (28)

Comparing with Equation (26), we find that:

Wqq(r) =
Wqq̄(r)

2
. (29)

This result is in accordance with general properties of hadronic
interactions, as discussed, for example, in Richard [46].

Finally, we highlight that for extended color charge
distributions, the chromo-electric field energy, given by
Equations (26, 28) is a positive quantity, in accordance with
the initial definition, given in Equation (17). The positive
(finite) self-energy contributions play a crucial role to obtain
this result that, on the other hand, cannot be obtained for a
point-like distribution.

3. CHARMONIUM GROUND STATE

In this section we study the charmonium ground state by using
the chromo-electric field energy obtained in section 2. More
precisely, we consider the chromo-electric energy as a quantum
operator function of the quark-antiquark distance operator r =
r2 − r1 = rq − rq̄. We also assume that the chromo-electric field
energy represents the main contribution to the potential energy
of the ground state of charmonium, disregarding the confining
interaction and the chromo-magnetic interaction. Considering
this latter approximation, the spin-spin mass splitting between
the state ηc, with spin S = 0, and the state J/ψ , with S = 1,
is not reproduced by the present calculation. Assuming that this
splitting could be calculated apart, perturbatively, by means of a
spin-spin interaction of the form:

Vss(r) = Uss(r)s1 · s2 , (30)

with the use of the standard Landé formula, one has for the two
charmonium states introduced above:

M(S) = Mcc̄ + < Uss >
1

2

[

S(S+ 1)− 3

2

]

. (31)

Taking the experimental values of the masses of the two states
[80], one obtains the value of the unperturbed mass that will be
reproduced in this work, that isMcc̄ = 3.070 GeV .

We consider, in the Center of Mass, a very simple relativized
Hamiltonian, of the following form:

H = 2
√

p2 +m2
q +W(r) . (32)

We calculate the ground state eigenvalue E0 of this Hamiltonian
by means of a variational procedure with a harmonic oscillator
basis [22]. Recalling that the interaction potential, W(r) =
Wqq̄(r) of Equation (26), only depends on the parameters αs
and d, the condition E0 = Mcc̄ allows to determine, for a
given αs, the corresponding value of d. In the present CQM
approch, αs represents a purely phenomenological parameter.
For a rough orientation about some possible numerical values,
see, for example, references [19, 24, 31]. Here we explore
tentatively the interval 0.2 ≤ αs ≤ 1.0 and find the value of
the parameter d (of the selected color charge distribution) that
gives the fixed value of Mcc̄. Finally, for the quark charm mass,
we take the numerical valuemq = 1.275 GeV , that represents the
QCD current mass value [80]. In any case, the phenomenological
values of the quark mass in CQMs do not differ very much form
the QCD value.

The results for d as a function of αs are shown in Figure 3.
We note that a growing function of αs is obtained. The results
for the expectation values of the chromo-electric field energy
in charmonium are shown in Figure 4 where we plot the
expectation values of W(r), that is < W >=< ψc|W(r)|ψc >,
calculated with the ground state charmonium wave function
|ψc >. A decreasing function of αs is obtained.

FIGURE 3 | The parameter d is plotted as a function of αs. The results of the

numerical calculation are indicated by points, joined by lines for convenience.

As before, red, green, and blue refer to exponential, Gaussian, and step-wise

distributions, respectively.
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FIGURE 4 | The expectation values of the potential energy W(r) are plotted as

a function of αs with the values of d shown in Figure 3. The results of the

numerical calculation are indicated by points, joined by lines for convenience.

As before, red, blue, and green refer to exponential, Gaussian, and step-wise

distributions, respectively.

Finally, we highlight that, for a given value of αs, the results
for the chromo-electric energy < W > are not very different
for the exponential, Gaussian, and step-wise distributions. The
differences increase for growing values of αs. At αs = 1.0, the
maximum difference for < W > between the exponential and
the step-wise distribution is only 0.014 GeV that represents, in
any case, only a small amount with respect to<W >.

4. NUCLEON (QQQ) GROUND STATE

In this section we study the ground state energy of the nucleon
(qqq) state. Analogously to the charmonium case, we take a
relativized Hamiltonian of the form:

H =
∑

i

√

p2i +m2
q +

∑

i>j

W(rij) . (33)

In the first (kinetic) term the sum is performed over the three
quarks, in the second (interaction) term over the three couples of
quarks. The calculation is done in the Center of Mass, that is with
the condition

P = p1 + p2 + p3 = 0 . (34)

We use the standard Jacobi coordinates ρ, λ and their conjugate
momenta pρ , pλ. For the nucleon ground state we take a
completely symmetric spatial wave function that depends on

the hyperradius xh =
√

ρ2 + λ2 as defined, for example, in
Giannini [40].

As in the case of charmonium, we use a variational procedure,
in the harmonic oscillator basis, to calculate the eigenvalue E0.
In the Hamiltonian of Equation (33) we have not included
any chromo-magnetic term. Due to this approximation, the
spin-spin splitting between the N(939) and 1(1232) is not
reproduced. Analogously to the charmonium case, we determine

FIGURE 5 | Value of d as a function of αs. The same conventions as in the

previous figures are used.

FIGURE 6 | Value of W as a function of αs. The same conventions as in the

previous figures are used.

the “unperturbed“ value Mqqq = 1.086 GeV as the three quark
ground state mass to be reproduced.

With the same procedure discussed in the charmonium case,
for a given value of αs, we determine (for the three extended
distributions considered in this work) the value of d that gives
Mqqq. We have explored the interval αmin

s ≤ αs ≤ 4.5, where
αmin
s represents the minimum value of αs that gives the bound

state massMqqq. We have also calculated the expectation value of
the chromo-electric field energy, that is given by the expression
< W >=< ψqqq|

∑

i>j W(rij)|ψqqq > where |ψqqq > represents

the (qqq) ground state wave function.
At variance with respect to the charmonium case, the quark

massmq (for the quarks up, down) cannot be fixed unambigously
but is generally considered as a model dependent quantity with
very different values. The QCD quark mass is mq = 0.0035 GeV
[80]. On the other hand, in non-relativistic CQMs it was
customary to take mq ≃ Mqqq/3; in relativized models smaller
values are often considered: for example, in a hyperspherical
interaction model [45], the value mq = 0.100 GeV was taken;
in a quark-diquark interacting model [61], for the quark not
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FIGURE 7 | Value of d as a function of αs. The same conventions as in the

previous figures are used.

FIGURE 8 | Value of W as a function of αs. The same conventions as in the

previous figures are used.

belonging to the diquark, the value mq = 0.140 GeV has
been used. Considering this situation, we have explored here
tentatively the range 0.040 GeV ≤ mq ≤ 0.200 GeV .

The results for d as a function of αs are shown in Figures 5, 7
and Figure A1 ; furthermore, the results for the corresponding
values of < W >, are shown in Figures 6, 8 and Figure A2.
The specific values of mq = 0.040 GeV , mq = 0.120 GeV and
mq = 0.200 GeV have been chosen for these figures.

As in the case of charmonium, d is a growing function of αs,
while<W > decreases when αs increases.

We note that for a given distribution and a fixed value of αs,
<W > decreases when higher values ofmq are taken.

Quite different walues of d are obtained for the three extended
color charge distributions; however, the maximum difference for

<W > (between the exponential and the step-wise distribution)
at αs = 4.5, is only a small fraction of < W >: 0.035 GeV ,
0.024 GeV , 0.014 GeV , for mq = 0.040 GeV , mq = 0.120 GeV
andmq = 0.200 GeV , respectively.

Finally, we note that the values of αs that give a bound state
for the qqq system are higher than the values that give a bound
qq̄ charmonium.

The previous results indicate that our preliminarmodel for the
quark interaction is able to reproduce, in principle, the ground
state of the nucleon. To obtain further information, it would be
necessary to study the whole spectroscopy of this system and
to analyze its electromagnetic form factors. In the case of the
nucleon, the confining interaction may be more relevant than in
the case of charmonium, so that it is strictly necessary to include
it in a complete model for this system.

5. CONCLUSIONS

In this work we have shown that the chromo-electric field
energy can be calculated without inconsistencies, in the
framework of the CQM, for mesons and baryons, by taking
extended (i.e., not point-like) distributions for the color
charge sources. In this context, the chromo-electric field

energy directly represents the interaction operator for the
hadronic interaction in the CQM. This interaction has the very
interesting properties of being regular for vanishing interquark
distance and of containing (automatically) a zero-point
energy contribution.

Starting from the interaction operator studied in this work,
a full model should be constructed for the hadronic systems
in order to analyze all the resonances of the spectra and,
for the nucleon case, the elastic and inelastic electromagnetic
form factors.

In the full model, the introduction of confining interaction

and the use of a complete vector interaction to reproduce the
spin-spin splittings, are mandatory. We have shown that it is
possible to reduce the number of free parameters of the quark
interaction; in particular we refer to the zero-point energy for
which a possible physical interpretation has been given as the
self-energy term of the chromo-electric field. The calculation
of the chromo-electric field energy can also help to construct
more consistent and sound models for the exotic tetraquark and
pentaquark configurations.

AUTHOR CONTRIBUTIONS

MD performed all the theoretical calculations, wrote and
tested the computer programs, prepared the figures, and wrote
the manuscript.

REFERENCES

1. Baker M, Cea P, Chelnokov V, Cosmai L, Cuteri F, Papa A. The

nonperturbative color field in the SU(3) flux tube. arXiv:1810.07133

(2018).

2. Polyakov MV, Schweitzer P. Determination of the J/ψ chromoelectric

polarizability from lattice data. Phys Rev. (2018) D98:034030.

doi: 10.1103/PhysRevD.98.034030

3. Cea P, Cosmai L, Cuteri F, Papa A. Flux tubes at finite temperature. J High

Energ Phys. (2016) 33:1–23. doi: 10.1007/JHEP06(2016)033

Frontiers in Physics | www.frontiersin.org 8 March 2019 | Volume 7 | Article 25

https://doi.org/10.1103/PhysRevD.98.034030
https://doi.org/10.1007/JHEP06(2016)033
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


De Sanctis Chromo-Electric Field Energy in Quark Models

4. Okiharu F, Woloshyn RM. A study of colour field distributions in the baryon.

Nucl Phys Proc Suppl. (2004) 129:745–7. doi: 10.1016/S0920-5632(03)02700-2

5. Bowman PO, Szczepaniak AP. Chromoelectric flux tubes. Phys Rev. (2004)

D70:016002. doi: 10.1103/PhysRevD.70.016002

6. Szczepaniak AP, Krupinski P. Coulomb energy and gluon distribution

in the presence of static sources. Phys Rev. (2006) D73:034022.

doi: 10.1103/PhysRevD.73.034022

7. DeGrand T, Jaffe RL, Johnson K, Kiskis J. Masses and other parameters of the

light hadrons. Phys Rev. (1975) D12:2060–76. doi: 10.1103/PhysRevD.12.2060

8. HaxtonWS, Heller L. Heavy-quark-antiquark potential in theMIT bagmodel.

Phys Rev. (1980)D22:1198–208. doi: 10.1103/PhysRevD.22.1198

9. Chodos A, Jaffe RL, Johnson K, Thorn CB, Weisskopf VF.

New extended model of hadrons. Phys Rev. (1974) D9:3471–95.

doi: 10.1103/PhysRevD.9.3471

10. Chodos A, Jaffe RL, Johnson K, Thorn CB. Baryon structure in the bag theory.

Phys Rev. (1974)D10:2599–604. doi: 10.1103/PhysRevD.10.2599

11. Johnson K. The M.I.T. bag model. Acta Phys Polon. (1975) B6:865–92.

12. Eichten E, Gottfried K, Kinoshita T, Lane KD, Yan TM. Charmonium: the

model. Phys Rev. (1978)D17:3090–117. doi: 10.1103/PhysRevD.17.3090

13. Ono S, Törnqvist NA. Continuum mixing and coupled channel effects in cc̄

and bb̄ quarkonium. Z Phys. (1984) C23:59–66. doi: 10.1007/BF01558041

14. Heikkila K, Törnqvist NA, Ono S, Heavy cc̄ and bb̄ quarkonium states and

unitarity effects. Phys Rev. (1984)D29:110–20. doi: 10.1103/PhysRevD.29.110

15. Godfrey S, Isgur N. Mesons in a relativized quark model

with chromodynamics. Phys Rev. (1985) D32:189–231.

doi: 10.1103/PhysRevD.32.189

16. Eichten EJ, Lane K, Quigg C. Charmonium levels near threshold and

the narrow state X(3872) → π+π−J/ψ Phys Rev. (2004) D69:094019.

doi: 10.1103/PhysRevD.69.094019

17. Barnes T, Godfrey S, Swanson ES. Higher charmonia. Phys Rev. (2005)

D72:054026. doi: 10.1103/PhysRevD.72.054026

18. Ebert D, Faustov RN, Galkin VO. Masses of heavy tetraquarks

in the relativistic quark model. Phys Lett. (2006) B634:214–9.

doi: 10.1016/j.physletb.2006.01.026

19. Radford SF, Repko WW. Potential model calculations and

predictions for heavy quarkonium. Phys Rev. (2007) D75:074031.

doi: 10.1103/PhysRevD.75.074031

20. Pennington MR, Wilson DJ. Decay channels and charmonium mass shifts.

Phys Rev. (2007)D76:077502. doi: 10.1103/PhysRevD.76.077502

21. Barnes T, Swanson ES. Hadron loops: General theorems and

application to charmonium. Phys Rev. (2008) C77:055206.

doi: 10.1103/PhysRevC.77.055206

22. De Sanctis M, Quintero P. Charmonium spectrum with a

generalized Fermi-Breit equation. Eur Phys J. (2010) A46:213–22.

doi: 10.1140/epja/i2010-11032-y

23. Ferretti J, Galatà G, Santopinto E, Vassallo A. Bottomonium self-energies due

to the coupling to themeson-meson continuum. Phys Rev. (2012)C86:015204.

doi: 10.1103/PhysRevC.86.015204

24. Ferretti J, Galatà G, Santopinto E. Interpretation of the X(3872) as

a charmonium state plus an extra component due to the coupling

to the meson-meson continuum. Phys Rev. (2013) C88:015207.

doi: 10.1103/PhysRevC.88.015207

25. Brambilla N, Groher M, Martinez HE, Vairo A. Effective string theory and the

long-range relativistic corrections to the quark-antiquark potential. Phys Rev.

(2014)D90:114032. doi: 10.1103/PhysRevD.90.114032

26. Ferretti J, Galatà G, Santopinto E. Quark structure of the X(3872) and χb(3P)

resonances. Phys Rev. (2014)D90:054010. doi: 10.1103/PhysRevD.90.054010

27. Ferretti J, Santopinto E. Higher mass bottomonia. Phys Rev. (2014)

D90:094022. doi: 10.1103/PhysRevD.90.094022

28. Lu Y, Naeem Anwar M, Zou BS. Coupled-channel effects for the

bottomonium with realistic wave functions. Phys Rev. (2016) D94:034021.

doi: 10.1103/PhysRevD.94.034021

29. Lu Y, Naeem Anwar M, Zou BS. How large is the contribution of excited

mesons in coupled-channel effects? Phys Rev. (2017)D95:034018.

30. Lu Y, Naeem Anwar M, Zou BS. X(4260) revisited: a coupled channel

perspective. Phys Rev. (2017)D96:114022.

31. Molina D, De Sanctis M, Fernández-Ramírez C. Charmonium spectrum

with a Dirac potential model in the momentum space. Phys Rev. (2017)

D95:094021. doi: 10.1103/PhysRevD.95.094021

32. Isgur N, Karl G. P-wave baryons in the quark model. Phys Rev. (1978)

D18:4187–205. doi: 10.1103/PhysRevD.18.4187

33. Isgur N, Karl G. Positive-parity excited baryons in a quark model

with hyperfine interactions. Phys Rev. (1979) D19:2653–677.

doi: 10.1103/PhysRevD.19.2653

34. Isgur N, Karl G. Ground-state baryons in a quark model with hyperfine

interactions. Phys Rev. (1979)D20:1191–4. doi: 10.1103/PhysRevD.20.1191

35. Capstick S, Isgur N. Baryons in a relativized quark model

with chromodynamics. Phys Rev. (1986) D34:2809–35.

doi: 10.1103/PhysRevD.34.2809

36. Bijker R, Iachello, Leviatan A. Algebraic models of hadron

structure. I. Nonstrange baryons. Ann Phys. (1994) 236:69–116.

doi: 10.1006/aphy.1994.1108

37. Santopinto E, Iachello F, Giannini MM. Nucleon form factors in

a simple three-body quark model. Eur Phys J. (1998) A1:307–16.

doi: 10.1007/s100500050065

38. Bijker R, Iachello, Leviatan A. Algebraic models of hadron structure: II.

Strange baryons. Ann Phys. (2000) 284: 89–133. doi: 10.1006/aphy.2000.6064

39. Bijker R, Iachello F, Santopinto E. Algebraic treatment of the hyper-Coulomb

problem. J Phys. (1998) A31:9041–54. doi: 10.1088/0305-4470/31/45/004

40. Giannini MM, Santopinto E, Vassallo A. Hypercentral constituent

quark model and isospin dependence. Eur Phys J. (2001) A12:447–52.

doi: 10.1007/s10050-001-8668-y

41. Glozman LY, Riska DO. The Spectrum of the nucleons and the

strange hyperons and chiral dynamics. Phys Rept. (1996) 268:263–303.

doi: 10.1016/0370-1573(95)00062-3

42. Glozman LY, Plessas W, Varga K, Wagenbrunn RF. Unified description

of light- and strange-baryon spectra. Phys Rev. (1998) D58:094030.

doi: 10.1103/PhysRevD.58.094030

43. Wagenbrunn RF, Boffi S, Klink W, Plessas W, Radici M. Covariant nucleon

electromagnetic form factors from the Goldstone-boson-exchange quark

model. Phys Lett. (2001) B511:33–9. doi: 10.1016/S0370-2693(01)00622-0

44. Boffi S, Glozman LY, Klink W, Plessas W, Radici M, Wagenbrunn RF.

Covariant electroweak nucleon form factors in a chiral constituent-quark

model. Eur Phys J. (2002) A14:17–22. doi: 10.1140/epja/iepja1403

45. De Sanctis M, Giannini MM, Santopinto E, Vassallo A. Electromagnetic

form factors and the hypercentral constituent quark model. Phys Rev. (2007)

C76:062201(R). doi: 10.1103/PhysRevC.76.062201

46. Richard JM. The nonrelativistic three-body problem for baryons Phys Rept.

(1992) 212:1–76. doi: 10.1016/0370-1573(92)90078-E

47. Ida M, Kobayashi R. Baryon resonances in a quark model. Prog Theor Phys.

(1966) 36:846–7. doi: 10.1143/PTP.36.846

48. Lichtenberg DB, Tassie LJ. Baryon mass splitting in a boson-fermion model.

Phys Rev. (1967) 155:1601–6. doi: 10.1103/PhysRev.155.1601

49. Anselmino M, Predazzi E, Ekelin S, Fredriksson S, Lichtenberg DB. Diquarks.

Rev Mod Phys. (1993) 65:1199–234. doi: 10.1103/RevModPhys.65.1199

50. Jaffe RL. Exotica. Phys Rept. (2005) 409:1–45.

doi: 10.1016/j.physrep.2004.11.005

51. Wilczek F. Diquarks as inspiration and as objects. In: Shifman M, Vainshtein

A, WheaterJ, editors. From Fields to Strings, Vol. 1. World Scientific Oxford:

Publishing Co. Pte. Ltd. (2005). p. 77–93. doi: 10.1142/9789812775344_0007

52. Selem A, Wilczek F. New trends in HERA physics. In: Grindhammer G,

Ochs W, Kniehl BA, Kramer G, editors. Proceedings, Ringberg Workshop.

Tegernsee: World Scientific Publishing Co. Pte. Ltd. (2006). p. 337–56.

53. Santopinto E. Interacting quark-diquark model of baryons. Phys Rev. (2005)

C72:022201(R). doi: 10.1103/PhysRevC.72.022201

54. Forkel H, Klempt E. Diquark correlations in baryon spectroscopy

and holographic QCD. Phys Lett. (2009) B679:77–80.

doi: 10.1016/j.physletb.2009.07.008

55. Anisovich AV, Anisovich VV, Matveev MA, Nikonov VA, Sarantsev AV,

Vulfs TO. Searching for the quark–diquark systematics of baryons composed

by light quarks q = u, d. Int J Mod Phys. (2010) A25:2965–95.

doi: 10.1142/S0217751X10049050

Frontiers in Physics | www.frontiersin.org 9 March 2019 | Volume 7 | Article 25

https://doi.org/10.1016/S0920-5632(03)02700-2
https://doi.org/10.1103/PhysRevD.70.016002
https://doi.org/10.1103/PhysRevD.73.034022
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.22.1198
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.10.2599
https://doi.org/10.1103/PhysRevD.17.3090
https://doi.org/10.1007/BF01558041
https://doi.org/10.1103/PhysRevD.29.110
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1103/PhysRevD.69.094019
https://doi.org/10.1103/PhysRevD.72.054026
https://doi.org/10.1016/j.physletb.2006.01.026
https://doi.org/10.1103/PhysRevD.75.074031
https://doi.org/10.1103/PhysRevD.76.077502
https://doi.org/10.1103/PhysRevC.77.055206
https://doi.org/10.1140/epja/i2010-11032-y
https://doi.org/10.1103/PhysRevC.86.015204
https://doi.org/10.1103/PhysRevC.88.015207
https://doi.org/10.1103/PhysRevD.90.114032
https://doi.org/10.1103/PhysRevD.90.054010
https://doi.org/10.1103/PhysRevD.90.094022
https://doi.org/10.1103/PhysRevD.94.034021
https://doi.org/10.1103/PhysRevD.95.094021
https://doi.org/10.1103/PhysRevD.18.4187
https://doi.org/10.1103/PhysRevD.19.2653
https://doi.org/10.1103/PhysRevD.20.1191
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1006/aphy.1994.1108
https://doi.org/10.1007/s100500050065
https://doi.org/10.1006/aphy.2000.6064
https://doi.org/10.1088/0305-4470/31/45/004
https://doi.org/10.1007/s10050-001-8668-y
https://doi.org/10.1016/0370-1573(95)00062-3
https://doi.org/10.1103/PhysRevD.58.094030
https://doi.org/10.1016/S0370-2693(01)00622-0
https://doi.org/10.1140/epja/iepja1403
https://doi.org/10.1103/PhysRevC.76.062201
https://doi.org/10.1016/0370-1573(92)90078-E
https://doi.org/10.1143/PTP.36.846
https://doi.org/10.1103/PhysRev.155.1601
https://doi.org/10.1103/RevModPhys.65.1199
https://doi.org/10.1016/j.physrep.2004.11.005
https://doi.org/10.1142/9789812775344_0007
https://doi.org/10.1103/PhysRevC.72.022201
https://doi.org/10.1016/j.physletb.2009.07.008
https://doi.org/10.1142/S0217751X10049050
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


De Sanctis Chromo-Electric Field Energy in Quark Models

56. Anisovich AV, Anisovich VV, Matveev MA, Nikonov VA, Sarantsev AV, Vulfs

TO. Quark–diquark systematics of baryons and the SU(6) symmetry for light

states. Int J Mod Phys. (2010)A25:3155–71. doi: 10.1142/S0217751X10049177

57. Ferretti J, Vassallo A, Santopinto E. Relativistic quark-diquark model

of baryons. Phys Rev. (2011) C83:065204. doi: 10.1103/PhysRevC.83.06

5204

58. Santopinto E, Ferretti J. Strange and nonstrange baryon spectra in

the relativistic interacting quark-diquark model with a Gürsey and

Radicati-inspired exchange interaction. Phys Rev. (2015) C92:025202.

doi: 10.1103/PhysRevC.92.025202

59. De Sanctis M, Ferretti J, Santopinto E, Vassallo A. Electromagnetic form

factors in the relativistic interacting quark-diquark model of baryons. Phys

Rev. (2011) C84:055201. doi: 10.1103/PhysRevC.84.055201

60. Galatà G, Santopinto E. Hybrid quark-diquark baryon model. Phys Rev.

(2012) C86:045202. doi: 10.1103/PhysRevC.86.045202

61. De Sanctis M, Ferretti J, Santopinto E, Vassallo A. Relativistic quark-diquark

model of baryons with a spin-isospin transition interaction: non-strange

baryon spectrum and nucleonmagnetic moments. Eur Phys J. (2016)A52:121.

doi: 10.1140/epja/i2016-16121-3

62. Aaij R, Adeva B, Adinolfi M, Affolder A, Ajaltouni Z, Akar S. Observation

of J/ψp Resonances Consistent with Pentaquark States in 30
b
→ J/ψK−p

Decays. Phys Rev Lett. (2015) 115:072001. doi: 10.1103/PhysRevLett.115.0

72001

63. Ferretti J, Santopinto E, NaemAnwarM, Bedolla MA. The baryo-quarkonium

picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and

Pc(4450) states. arXiv:1807.01207 (2018).

64. Dubynskiy S, VoloshinMB. Hadro-charmonium. Phys Lett. (2008)B666:344–

6. doi: 10.1016/j.physletb.2008.07.086

65. Voloshin MB. Charmonium. Prog Part Nucl Phys. (2008) 61:455–511.

doi: 10.1016/j.ppnp.2008.02.001

66. Eides MI, Petrov VY, Polyakov MV. Narrow nucleon-ψ(2S)

bound state and LHCb pentaquarks. Phys Rev. (2016) D93:054039.

doi: 10.1103/PhysRevD.93.054039

67. Eides MI, Petrov VY, Polyakov MV. Pentaquarks with

hidden charm as hadroquarkonia. Eur Phys J. (2018) C78:36.

doi: 10.1140/epjc/s10052-018-5530-9

68. Perevalova IA, Polyakov MV, Schweitzer P. LHCb pentaquarks as a

baryon-ψ(2S) bound state: Prediction of isospin-3/2 pentaquarks with

hidden charm. Phys Rev. (2016) D94:054024. doi: 10.1103/PhysRevD.94.

054024

69. Alberti M, Bali GS, Collins S, Knechtli F, Moir G, Söldner W.

Hadroquarkonium from lattice QCD. Phys Rev. (2017) D95:074501.

doi: 10.1103/PhysRevD.95.074501

70. Cleven M, Guo FK, Hanhart C, Wang Q, Zhao Q. Employing spin symmetry

to disentangle different models for the X Y Z states. Phys Rev. (2015)

D92:014005. doi: 10.1103/PhysRevD.92.014005

71. Brambilla N, Krein G, Tarrús Castellà J, Vairo A. Long-range

properties of 1S bottomonium states. Phys Rev. (2016) D93:054002

doi: 10.1103/PhysRevD.93.054002

72. Guo FK,Meißner UG,WangW, Yang Z. How to reveal the exotic nature of the

Pc(4450). Phys Rev. (2015)D92:071502(R). doi: 10.1103/PhysRevD.92.071502

73. Guo FK, Meißner UG, Nieves J, Yang Z. Remarks on the Pc

structures and triangle singularities Eur Phys J. (2016) A52:318.

doi: 10.1140/epja/i2016-16318-4

74. Liu XH, Wang Q, Zhao Q. Understanding the newly observed

heavy pentaquark candidates. Phys Lett. (2016) B757:231–6.

doi: 10.1016/j.physletb.2016.03.089

75. Mikhasenko M. A triangle singularity and the LHCb pentaquarks.

arXiv:1507.06552 (2015).

76. Ferretti J. ηc- and J/ψ-isoscalar meson bound states in the

hadro-charmonium picture. Phys Lett. (2018) B782:702–6.

doi: 10.1016/j.physletb.2018.06.032

77. Naeem Anwar M, Ferretti J, Santopinto E. Spectroscopy of the hidden-

charm [qc][q̄c̄] and [sc][s̄c̄] tetraquarks. Phys. Rev. D. (2018) 98:094015.

doi: 10.1103/PhysRevD.98.094015

78. Semay C, Silvestre-Brac B. Potential models and meson spectra. Nucl Phys.

(1997) A618:455–82. doi: 10.1016/S0375-9474(97)00060-2

79. Jackson JD. Classical Electrodynamics, 2nd Edn. New York, NY: John Wiley &

Sons (1975). p. 45–9.

80. Tanabashi M, Hagiwara K, Hikasa K, Nakamura K, Sumino Y,

Takahashi F. Particle data group. Phys Rev. (2018) D98:030001.

doi: 10.1103/PhysRevD.98.030001

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer JF declared a past co-authorship with the author to the handling

editor.

Copyright © 2019 De Sanctis. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 10 March 2019 | Volume 7 | Article 25

https://doi.org/10.1142/S0217751X10049177
https://doi.org/10.1103/PhysRevC.83.065204
https://doi.org/10.1103/PhysRevC.92.025202
https://doi.org/10.1103/PhysRevC.84.055201
https://doi.org/10.1103/PhysRevC.86.045202
https://doi.org/10.1140/epja/i2016-16121-3
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1016/j.physletb.2008.07.086
https://doi.org/10.1016/j.ppnp.2008.02.001
https://doi.org/10.1103/PhysRevD.93.054039
https://doi.org/10.1140/epjc/s10052-018-5530-9
https://doi.org/10.1103/PhysRevD.94.054024
https://doi.org/10.1103/PhysRevD.95.074501
https://doi.org/10.1103/PhysRevD.92.014005
https://doi.org/10.1103/PhysRevD.93.054002
https://doi.org/10.1103/PhysRevD.92.071502
https://doi.org/10.1140/epja/i2016-16318-4
https://doi.org/10.1016/j.physletb.2016.03.089
https://doi.org/10.1016/j.physletb.2018.06.032
https://doi.org/10.1103/PhysRevD.98.094015
https://doi.org/10.1016/S0375-9474(97)00060-2
https://doi.org/10.1103/PhysRevD.98.030001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


De Sanctis Chromo-Electric Field Energy in Quark Models

APPENDIX

A. Derivation of the Self-Energy and of the
Interaction Energy
Wederive here the self-energyWself of the quark distribution and
the interaction energyWint

i,j (r).

Starting from Equation (18), the self-energy of the quark i, is:

W
self
i = 1

8π

∫

d3x <

8
∑

a=1

[Eai (x− ri)]
2 >=

= 1

8π

∫

d3x <

8
∑

a=1

[Eai (x)]
2 > .

(A1)

Note that the expression of the first line does not really depend
on the position ri; in consequence, it has been easily rewritten
in the form shown in the second line. We can now express the
chromo-electric field by means of Equations (12a,12b) with the
charge Q(x) of Equation (10). Also, we make use of Equation (2)

FIGURE A1 | Value of d as a function of αs. The same conventions as in the

previous figures are used.

FIGURE A2 | Value of W as a function of αs. The same conventions as in the

previous figures are used.

for the color operators. In this way, we obtain:

W
self
i = αs

4

3
× 1

2

∫ ∞

0
dx

[Q(x)]2

x2
. (A2)

We introduce the following auxiliary functions:

u(x) = Q(x) , (A3a)

v(x) = −Q(x)

x
(A3b)

and their derivatives:

du

dx
= 4πx2ρ(x) , (A4a)

dv

dx
= −4πxρ(x)+ 1

x2
Q(x) (A4b)

where the definition ofQ(x) in Equation (10) has been used.With
the help of Equations (A3a) and (A4b), we write the self-enery in
the form:

W
self
i = αs

4

3
× 1

2

∫ ∞

0
dx

[

u(x)
dv

dx
+ 4πxQ(x)ρ(x)

]

. (A5)

We integrate by parts the first term, obtaining

W
self
i = αs

4

3
× 4π

∫ ∞

0
dxxQ(x)ρ(x)−

−αs
4

3
× 1

2

[Q(x)]2

x

∣

∣

∣

∣

∞

0

.

(A6)

The first term of Equation (A6) represents the result of the
calculation, that has been easily performed by using the spherical
symmetry of the color charge distribution. The second term of
Equation (A6) is vanishing.

At x → ∞, Q(x) → 1, as it can be easily verified in Equations
(14), (15) and (16) for the three cases studied in this work.
Physically, at infinity, where no free color charges are present,
one has only the total color charge of the quark.

At x → 0, for ρ(x) ∼ constant, as it is for the three cases
of this work, Q(x) ∼ x3 and also this contribution is vanishing.
If a singular distribution were considered, for example with the
behavior ρ(x) ∼ x−k, one can find with simple calculations that
the condition to obtain a vanishing contribution is: k ≤ 2.

For equal color distributions, one has W
self
i = W

self
j , so that

for a pair of quarks

Wself = 2×W
self
i = 2× αs

4

3
· 4π

∫ ∞

0
dxxQ(x)ρ(x) . (A7)

By means of the adimensional quantities introduced in the text:
Q(x) = Q̂(s), ρ̂(s) and substituting s = x/d, the final result of
Equations (21a) and (21b) is easily obtained.

The calculation of the interaction energy is performed
with standard techniques of electrostatics. Taking into account
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Equation (4), the chromo-electric field generated by a color
charge distribution can be written in the form:

Eai (x− ri) = −Fai
√
αs∇x

∫

d3y′ρ(y′ − ri)
1

|x− y′| . (A8)

By using the standard equation for the Dirac delta function

∇
2
x

1

|x− y′| = −4πδ(x− y′) , (A9)

one can immediately check that the field of Equation (A8)
satisfies the Maxwell Equation (1 ).

With the expression of the field given by Equation (A8), we
write the chromo-electric interaction energy:

Wint
i,j = 1

4π

∫

d3x <

8
∑

a=1

Eai (x− ri) · Eaj (x− rj) >=

= 1

4π
Ghαs

∫

d3x

(

∇x

∫

d3y′ρ(y′ − ri)
1

|x− y′|

)

×

×
(

∇x

∫

d3y ρ(y − rj)
1

|x− y|

)

(A10)

where we have used the color expectation value Gh introduced in
Equation (3a).

By using the first Green’s identity (with the hypothesis of
vanishing fields at infinity) and Equation (A9), we obtain:

Wint
i,j = Ghαs

∫

d3x

∫

d3y ρ(x− ri)ρ(y− rj)
1

|x− y| . (A11)

Then, with the substitutions

x → x− ri , y → y − rj (A12)

one finally has:

Wint
i,j = Ghαs

∫

d3x

∫

d3y ρ(x)ρ(y)
1

|x− y + r| . (A13)

By substituting s = x/d, s′ = y/d, replacing ξ = r/d and using
the adimensional color distribution ρ̂(s), one obtains the result of
Equations (23a) and (23b).
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