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Bernaise: A Flexible Framework for
Simulating Two-Phase
Electrohydrodynamic Flows in
Complex Domains
Gaute Linga*, Asger Bolet and Joachim Mathiesen
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Bernaise (Binary Electrohydrodynamic Solver) is a flexible high-level finite element solver

of two-phase electrohydrodynamic flow in complex geometries. Two-phase flow with

electrolytes is relevant across a broad range of systems and scales, from “lab-on-a-chip”

devices for medical diagnostics to enhanced oil recovery at the reservoir scale.

For the strongly coupled multi-physics problem, we employ a recently developed

thermodynamically consistent model which combines a generalized Nernst–Planck

equation for ion transport, the Poisson equation for electrostatics, the Cahn–Hilliard

equation for the phase field (describing the interface separating the phases), and the

Navier–Stokes equations for fluid flow.We present an efficient linear, decoupled numerical

scheme which sequentially solves the three sets of equations. The scheme is validated by

comparison to cases where analytical solutions are available, benchmark cases, and by

the method of manufactured solution. The solver operates on unstructured meshes and

is therefore well suited to handle arbitrarily shaped domains and problem set-ups where,

e.g., very different resolutions are required in different parts of the domain. Bernaise

is implemented in Python via the FEniCS framework, which effectively utilizes MPI and

domain decomposition. Further, new solvers and problem set-ups can be specified and

added with ease to the Bernaise framework by experienced Python users.

Keywords: electrokinectic, electrohydrodynamics (EHD), porous flow, phase field method, capillarity, numerical

simulation, finite element method (FEM)

1. INTRODUCTION

Two-phase flow with electrolytes is encountered in many natural and industrial settings. Although
Lippmann already in the nineteenth century [1, 2] made the observation that an applied electric
field changes the wetting behavior of electrolyte solutions, the phenomenon of electrowetting has
remained elusive. Recent decades have seen an increased theoretical and experimental interest
in understanding the basic mechanisms of electrokinetic or electrohydrodynamic flow [3, 4].
Progress in micro- and nanofluidics [5, 6] has enabled the use of electrowetting to control small
amounts of fluid with very high precision (see e.g., the comprehensive reviews by [2, 7, 8] and
references therein). This yields potential applications in, e.g., “lab-on-chip” biomedical devices
or microelectromechanical systems [9–11], membranes for harnessing blue energy [12], energy
storage in fluid capacitors, and electronic displays [13–16].
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It is known that electrohydrodynamic phenomena affects
transport properties and energy dissipation in geological systems,
as a fluid moving in a fluid-saturated porous medium sets
up an electric field that counteracts the fluid motion [17–19].
Electrowetting may also be an important factor in enhanced oil
recovery [20, 21]. Here, the injection of water of a particular
salinity, or “smart water” [22], is known to increase the recovery
of oil from reservoirs as compared to brine [23]. Further,
transport in sub-micrometer scale pores in low-permeability
rocks in the Earth’s crust may be driven by gradients in the
electrochemical potential [24], whichmay have consequences for,
e.g., transport of methane-water mixtures in dense rocks.

Hence, a deepened understanding of electrowetting and
two-phase electrohydrodynamics would be of both geological
and technological importance. While wetting phenomena
(or more generally, two-phase flow) on one hand, and
electrohydrodynamics on the other, remain in themselves two
mature and active areas of research which both encompass a
remarkably rich set of phenomena, this article is concerned
with the interface between these fields. For interested readers,
there are several reviews available regarding wetting phenomena
[25–27] and electrohydrodynamics [28–30]. Notably, the “leaky
dielectric” model originally proposed by Taylor [31] (and
revisited by [28]) to describe drop deformation, is arguably the
most popular description of electrohydrodynamics, but it does
not describe ionic transport and considers all dielectrics to be
weak conductors. In this work, we shall employ a model that
does not make such simplifications. Recently, Schnitzer and Yariv
[32] showed rigorously that models of the latter type reduce to
the Taylor–Melcher model in the double limit of small Debye
length and strong electric fields. The simplified model may
therefore have advantages in settings where those assumptions
are justified, e.g., in simulations on larger scales; while the class
of models considered here are more general and expected to be
valid down to the smallest scale where the continuum hypothesis
still holds.

Experimental and theoretical approaches [33–35] in two-
phase electrohydrodynamic flows need to be supplemented with
good numerical simulation tools. This is a challenging task,
however: the two phases have different densities, viscosities and
permittivities, the ions have different diffusivities and solubilites
in the two phases, and moreover, the interface between the
phases must be described in a consistent manner. Hence,
much due to the complex physics involved, simulation of two-
phase electrohydrodynamic phenomena with ionic transport
is still in its infancy. It has been carried out with success
e.g., in order to understand deformation of droplets due
to electric fields [36–38], or for the purpose of controlling
microfluidic devices (see e.g., [39]). Lu et al. [40] simulated
and performed experiments on droplet dynamics in a Hele-
Shaw cell. Notably, Walker et al. [41] simulated electrowetting
with contact line pinning, and compared to experiments. In
practical applications, such as in environmental remediation or
oil recovery, the complex pore geometry is essential and it is
therefore of interest to simulate and study electrowetting in such
configurations. However, to our knowledge, there have been few

numerical studies of these phenomena in the context of more
complex geometries.

In this article, we introduce and describe Bernaise
(Binary ElectRohydrodyNAmIc SolvEr), which is an open-
source software/framework for simulating two-phase
electrohydrodynamics. It is suitable for use in complex
domains, operating on arbitrary unstructured meshes. The
finite-element solver is written entirely in Python and built
on top of the FEniCS framework [42], which (among other
things) effectively uses the PETSc backend for scalability.
FEniCS has in recent years found success in related applications,
such as in high-performance simulation of turbulent flow
[43], and for single-phase, steady-state electrohydrodynamic
flow simulation in nanopores [44] and model fractures [45].
Since Bernaise was inspired by the Oasis solver for fluid
flow [43], it is similar to the latter in both implementation
and use.

In this work, we employ a phase-field model to propagate the
interface between the two phases. Such diffuse interface models,
as opposed to e.g., sharp interface models (see for instance [46]),
assume that the fluid-fluid interface has a finite size, and have the
advantage that no explicit tracking of the interface is necessary.
Hence, using a phase-field model has several advantages in our
setting: it takes on a natural formulation using the finite element
method; in sub-micrometer scale applications, the diffuse
interface and finite interface thickness present in these models
might correspond to the physical interface thickness (typically
nanometer scale [47]); and the diffuse interface may resolve the
moving contact line conundrum [27, 48]. Note that although ab
initio and molecular dynamics simulation methods are in rapid
growth due to the increase in computational power, and do not
require explicit tracking of the interface or phenomenological
boundary conditions, such methods are restricted to significantly
smaller scales than continuum models are. Nevertheless, they
serve as valuable tools for calibration of the continuum methods
[48–51]. We note also that sharp-interface methods such as level-
set [52, 53] and volume-of-fluid methods [38, 54, 55] are viable
options for simulating electrohydrodynamics, but such methods
shall not be considered here.

The use of phase field models to describe multiphase flow has
a long history in fluid mechanics [56]. Notably, the “Model H”
of Hohenberg and Halperin [57], for two incompressible fluids
with matched densities and viscosities, is based on the coupled
Navier–Stokes–Cahn–Hilliard system, and was introduced to
describe phase transitions of binary fluids or single-phase fluid
near the critical point. Lowengrub and Truskinovsky [58] later
derived a thermodynamically consistent generalization of Model
Hwhere densities and viscosities were different in the two phases,
however with the numerical difficulty that the velocity field was
not divergence free. To circumvent this issue, Abels et al. [59]
developed a thermodynamically consistent and frame invariant
phase-fieldmodel for two-phase flow, where the velocity field was
divergence free, allowing for the use of more efficient numerical
methods. Lu et al. [40] proposed a phase-field model to describe
electrohydrodynamics, but was restricted to flow in Hele-Shaw
cells, using a Darcy equation to describe the flow between the
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parallel plates1. A phase-field approach to the leaky-dielectric
model was presented by Lin et al. [60]. Using the Onsager
variational principle, Campillo-Funollet et al. [61] augmented the
model of Abels et al. [59] with electrodynamics, i.e., inclusion
of ions, electric fields and forces. This can be seen as a more
physically sound version of the model proposed by Eck et al. [62],
which only contained a single “net charge” electrolyte species.
A model for two-phase electrohydrodynamics was derived, with
emphasis on contact line pinning, by Nochetto et al. [63], but this
does not appear to be frame-invariant, as the chemical potential
depends quadratically on velocity [61]. In this work, we will
therefore focus on the model by Campillo-Funollet et al. [61].

There is a vast literature on the discretization and simulations
of immiscible two-phase flows including phase-field models
(see e.g., [46, 56]), but here we focus on research which
is immediately relevant concerning the discretization and
implementation of the model by Campillo-Funollet et al.
[61]. Grün and Klingbeil [64] discretized the model in Abels
et al. [59] (without electrohydrodynamics) with a dual mesh
formulation, using a finite volume method on the dual mesh
for advection terms, and a finite element method for the rest.
Based on the sharp-interface model benchmarks of Hysing et al.
[65], Aland and Voigt [66] provided benchmarks of bubble
dynamics comparing several formulations of phase-field models
(without electrodynamics). Energy-stable numerical schemes
for the same case were presented and analyzed in Guillén-
González and Tierra [67] and Grün et al. [68]. Campillo-
Funollet et al. [61] provided preliminary simulations of the
two-phase electrohydrodynamics model in their paper, however
with a simplified formulation of the chemical potential of
the solutes. A scheme for the model in Campillo-Funollet
et al. [61] which decouples the Navier–Stokes equations
from the Cahn–Hilliard–Poisson–Nernst–Planck problem, was
presented and demonstrated by Metzger [69, 70]. In the
particular case of equal phasic permittivities, the Cahn–Hilliard
problem could be decoupled from the Poisson–Nernst–Planck
problem. Recently, a stable finite element approximation of
two-phase EHD, with the simplifying assumptions of Stokes
flow and no electrolytes, was proposed by Nurnberg and
Tucker [71].

The main contributions of this article is to give a
straightforward description of Bernaise, including the necessary
background theory, an overview of the implementation, and
a demonstration of its ease of use. Solving the coupled set
of equations in a monolithic manner (as is done in [61]
using their in-house ECONDROP software) is a computationally
expensive task, and we therefore propose a new linear
splitting scheme which sequentially solves the phase-field,
chemical transport and the fluid flow subproblems at each
time step. A major point of this article is to demonstrate
the validity of the approach and numerical convergence of
the proposed scheme. We do this through comparing our
numerical solutions to limiting cases where analytical solutions
are available, benchmark solutions, and using the method of

1Instead of the full Navier–Stokes equations, which would be necessary in the
presence of boundaries in the two in-plane dimensions.

manufactured solution.We also demonstrate how the framework
can be extended by supplying user-specified problems and
solvers. We believe that due to its flexibility, scalability and
open-source licensing, this framework has advantages over
software which to our knowledge may have some of the same
functionality, such as ECONDROP (in-house code of Grün
and co-workers) and COMSOL (proprietary). Compared to
sharp-interface methods, the method employed in the current
framework is automatically capable of handling topological
changes and contact line motion, and the full three-dimensional
(3D) capabilities allows to study more general phenomena than
what can be achieved by axisymmetric formulations [38]. We
expect Bernaise to be a valuable tool that may facilitate the
development of microfluidic devices, as well as a deepened
understanding of electrohydrodynamic phenomena in many
natural or industrial settings.

The outline of this paper is as follows. In section 2, we
introduce the sharp-interface equations describing two-phase
electrohydrodynamics; then we present the thermodynamically
consistent model of electrohydrodynamics by Campillo-Funollet
et al. [61]. In section 3, we write down the variational form
of the model, present the monolithic scheme, and present a
linear splitting scheme for solving the full-fledged two-phase
electrohydrodynamics. section 4 gives a brief presentation of
Bernaise, and demonstrates its ease use through a minimal
example. Further, we describe how Bernaise can be extended
with user-specified problems and solvers. In section 5, we
validate the approach as described in the preceding paragraph.
In section 6, we apply the framework to a geologically
relevant setting where dynamic electrowetting effects enter,
and present full 3D simulations of droplet coalescence and
breakup. Finally, in section 7 we draw conclusions and point to
future work.

We expect the reader to have a basic familiarity with the finite
element method, the Python language, and the FEniCS package.
Otherwise, we refer to the tutorial by Langtangen and Logg [72].

2. MODEL

The governing equations of two-phase electrohydrodynamics
can be summarized as the coupled system of two-phase flow,
chemical transport (diffusion and migration), and electrostatics
[61]. We will now describe the sharp-interface equations that
the phase-field model should reproduce, and subsequently
the phase-field model for electrohydrodynamics. For the
purpose of keeping the notation short, we consider a general
electrokinetic scaling of the equations. The relations between
the dimensionless quantities and their physical quantities are
elaborated in Appendix A in Supplementary Material.

2.1. Sharp-Interface Equations
In the following, we present each equation of the physical
(sharp-interface) model. With validity down to the nanometer
scale, the fluid flow is described by the incompressible Navier–
Stokes equations, augmented by some additional force terms due
to electrochemistry:
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ρi
(

∂tv+ (v · ∇)v
)

− µi∇
2v+ ∇p = −

∑

j

cj∇gcj , (1)

∇ · v = 0. (2)

Here, ρi is the density of phase i, v is the velocity field, µi is the
dynamic viscosity of phase i, p(x, t) is the pressure field2, cj(x, t)
is the concentration of solute species j, and gcj is the associated
electrochemical potential. The form of the right hand side of
Equation (1) is somewhat unconventional (and relies on a specific
interpretation of the pressure), but has numerical advantages
over other formulations as it avoids, e.g., pressure build-up in the
electrical double layers [73].

The transport of the concentration field of species
i is governed by the conservative (advection–diffusion–
migration) equation:

∂tcj + v · ∇cj − ∇ · (Kijcj∇gcj ) = 0, (3)

where Kij is the diffusivity of species j in phase i. The
electrochemical potential is in general given by

gcj (cj,V) = α′(cj)+ βij + zjV , (4)

where α′(c) = ∂α/∂c(c), and α(c) is a convex function describing
the chemical free energy, βij is a parameter describing the
solubility of species j in phase i, zj is the charge if solute species
j, and V is the electric potential. Equation (3) can be seen as a
generalized Nernst–Planck equation. With an appropriate choice
of α(c), Equation (3) reduces to the phenomenological Nernst–
Planck equation, which has been established for the transport of
charged species in dilute solutions under influence of an electric
field. The latter amounts to a dilute solution, using the ideal
gas approximation,

α(cj) ∝ cj(ln cj − 1). (5)

With this choice of α, the solubility parameter βij can be

interpreted as related to a reference concentration cref,ij , through
the relation

βij = − ln cref,ij . (6)

This gives a chemical energy Gj = α(cj) + βijcj = cj(ln(cj/

cref,ij ) − 1) which has a minimum at cj = cref,ij (see also
Linga et al. (Submitted)).

Since the dynamics of the electric field is much faster than that
of charge transport, we can safely assume electrostatic conditions
(i.e., neglect magnetic fields). This amounts to solving the Poisson
problem (Gauss’ law):

∇ · (εi∇V) = −ρe, (7)

Here, εi is the electrical permittivity of phase i, and ρe =
∑

j zjcj
is the total charge density.

In the absence of advection, for the case of two symmetric
charges, and under certain boundary conditions, Equations (3–7)

2The interpretation of this pressure depends on the formulation of the force on the
right hand side of Equation (2).

lead to the simpler Poisson–Boltzmann equation (see
Appendix B in Supplementary Material).

2.1.1. Fluid-Fluid Interface Conditions
It is necessary to define jump conditions over the interface
between the two fluids.We denote the jump in a physical quantity
χ across the interface by [χ]+−, and the unit vector n̂int normal to
the interface.

Firstly, due to incompressibility, the velocity field must
be continuous:

[v]+− = 0. (8)

The electrochemical potential must be continuous across the
interface,

[

gcj
]+
− = 0. (9)

Due to conservation of the electrolytes, the flux of ion species j
into the interface must equal the flux out of the interface,

[

Kijcj∇gcj
]+
− · n̂int = 0, (10)

and the normal flux of the electric displacement field
D = −εi∇V , and the electric potential, should be continuous
(since by assumption, no free charge is located between the
fluids):

[εi∇V]+− · n̂int = 0, [V]+− = 0. (11)

Finally, interfacial stress balance yields the condition

[

p
]+
− n̂int − [2µiDv]+− · n̂int −

[

εiE⊗ E− 1

2
εi|E|2I

]+

−
· n̂int = σκn̂int,

(12)
where σ is the surface tension, κ is the curvature, and E = −∇V
is the electric field. Moreover, we have defined the shorthand
symmetric (vector) gradient,

Dv = sym (∇v) = 1

2

(

∇v+ ∇vT
)

. (13)

Further, all gradient terms have been absorbed into the pressure.
Note that Equation (12) leads to a modified Young–Laplace law
in equilibrium, which include Maxwell stresses.

2.1.2. Boundary Conditions
There are a range of applicable boundary conditions for two-
phase electrohydrodynamics. Here, we briefly discuss a few
viable options. In the following, we let n̂ be a unit normal
vector pointing out of the domain, and t̂ be a tangent vector to
the boundary.

For the velocity, it is customary to use the no-slip condition
u = 0 at the solid boundary. Alternatively, the Navier slip
condition, which is useful for modeling moving contact lines
[50], could be used:

n̂ · v = 0, (γ v− 2µDv n̂)× n̂ = 0, (14)

where γ is a slip parameter. The slip length µ/γ is typically of
nanometer scale and dependent on the materials in question.
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However, since the implementation of such conditions may
become slightly involved, we omit it in the following.

With regards to the electrolytes, it is natural to specify either
a prescribed concentration at the boundary, ci = c0, or a no-flux
condition out of the domain,

n̂ ·
(

−vcj + Kijcj∇gcj
)

= 0. (15)

For the electric potential, it is natural to prescribe either the
Dirichlet condition V = V̄ , or a prescribed surface charge σe(x),

n̂ · ∇V = σe

ǫi
. (16)

2.2. Phase-Field Formulation
In order to track the interface between the phases, we introduce
an order parameter field φ which attains the values ±1,
respectively, in the two phases, and interpolates between the two
across a diffuse interface of thickness ǫ. In the sharp-interface
limit ǫ → 0, the equations should reproduce the correct
physics, and reduce to the model above, including the interface
conditions. A thermodynamically consistent phase-field model
which reduces to this formulation was proposed by Campillo-
Funollet et al. [61]:

∂t(ρ(φ)v)+ ∇ ·
(

ρ(φ)v⊗ v
)

− ∇ ·
[

2µ(φ)Dv (17)

+v⊗ ρ′(φ)M(φ)∇gφ
]

+ ∇p = −φ∇gφ −
∑

i

ci∇gci ,

∇ · v = 0, (18)

∂tφ + v · ∇φ − ∇ · (M(φ)∇gφ) = 0, (19)

∂tcj + v · ∇cj − ∇ · (Kj(φ)cj∇gcj ) = 0, (20)

∇ · (ε(φ)∇V) = −ρe. (21)

Here, φ is the phase field, and it takes the value φ = −1 in phase
i = 1, and the value φ = 1 in phase i = 2. Equation (19)
governs the conservative evolution of the phase field, wherein
the diffusion term is controlled by the phase field mobilityM(φ).
Here, ρ, µ, ε, Kj depend on which phase they are in, and
are considered slave variables of the phase field φ. Across the
interface these quantities interpolate between the values in the
two phases:

ρ(φ) = ρ1 + ρ2
2

+ ρ1 − ρ2
2

φ, (22)

µ(φ) = µ1 + µ2

2
+ µ1 − µ2

2
φ, (23)

ε(φ) = ε1 + ε2
2

+ ε1 − ε2
2

φ, (24)

Kj(φ) =
K1,j + K2,j

2
+

K1,j − K2,j

2
φ. (25)

These averages are all weighted arithmetically, although other
options are available. For example, Tomar et al. [54] found that,
in the case of a level-set method with smoothly interpolated

phase properties, using a weighted harmonic mean gave more
accurate computation of the electric field. However, Lopez-
Herrera et al. [55] found no indication that the harmonic mean
was superior when free charges were present, and hence we adopt
for simplicity and computational performance the arithmetic
mean, although it remains unsettled which mean would yield the
most accurate result.

Further, the chemical potential of species cj is given by

gcj (cj,φ) = α′(cj)+ βj(φ)+ zjV , (26)

where we, for dilute solutions, may model α(c) = c(log c − 1)
to obtain consistency with the standard Nernst–Planck equation.
Further, we use a weighted arithmetic mean for the solubility
parameters βj:

βj(φ) =
β1,j + β2,j

2
+
β1,j − β2,j

2
φ, (27)

which, under the assumption of dilute solutions and with the
interpretation (6), corresponds to a weighted geometric mean for
the reference concentrations:

crefj (φ) =
(

cref,1j

)
1+φ
2 ·

(

cref,2j

)
1−φ
2

. (28)

In analogy with gcj being the chemical potential of species cj, we
denote gφ as the chemical potential of the phase field φ. It is given
by:

gφ = ∂f

∂φ
− ∇ · ∂f

∂∇φ
+
∑

j

β ′j (φ)cj −
1

2
ε′(φ)|∇V|2. (29)

The free energy functional f of the phase field is defined by

f (φ,∇φ) = 3σ

2
√
2

[ ǫ

2
|∇φ|2 + ǫ−1W(φ)

]

= σ̃

[ ǫ

2
|∇φ|2 + ǫ−1W(φ)

]

,

(30)
where σ is the surface tension, ǫ is the interface thickness,
and W(φ) is a double well potential. Here, we use W(φ) =
(1 − φ2)2/4. We have also implicitly defined the scaled surface
tension σ̃ for convenience of notation. With this free energy,
we obtain

gφ = σ̃ ǫ−1W′(φ)− σ̃ ǫ∇2φ+
∑

j

β ′j (φ)cj−
1

2
ε′(φ)|∇V|2. (31)

We will assume this form throughout.
After some rewriting, exploiting Equation (18) and the fact

that ρ′(φ) is constant due to Equation (22), Equation (18) can
be expressed as

ρ(φ)∂tv+
((

ρ(φ)v− ρ′(φ)M(φ)∇gφ
)

· ∇
)

v− ∇ ·
[

2µ(φ)Dv
]

+ ∇p

= −φ∇gφ −
∑

j

cj∇gcj .

(32)
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2.2.1. Phase Field Mobility
Given a proper definition of the phase-field mobility M(φ), the
phase-field model should reduce to the sharp-interface model
given in the previous section. As discussed at length in Campillo-
Funollet et al. [61], the two following ways are viable options:

M(φ) = ǫM0, (33a)

M(φ) = M0(1− φ2)+. (33b)

HereM0 is a constant, and (·)+ = max(·, 0). Other formulations
of M are possible; some of these will in the limit of vanishing
interface width reduce to a sharp-interface model where the
interface velocity does not equal the fluid velocity [59, 61].

2.2.2. Boundary Conditions
Some of the interface conditions from the sharp-interface model
carry over to the phase field model, but in addition, some new
conditions must be specified for the phase field. Here we give a
brief summary. We assume that the boundary of the domain �,
∂�, can be divided into an inlet part ∂�in, an outlet part ∂�out,
and a wall part ∂�wall. We shall primarily discuss the latter here.

For the velocity field, we assume the no-slip condition

v(x, t) = 0 for x ∈ ∂�wall. (34)

Alternatively, a no-flux condition and a slip law could have
been used; in particular, a generalized Navier boundary condition
(GNBC) has been shown to hold yield a consistent description of
the contact line motion [48, 49]. However, to limit the scope, the
moving contact line paradox will in this work be overcome by
interface diffusion.

With regards to the flow problem, the pressure gauge needs to
be fixed. To this end, the pressure could be fixed somewhere on
the boundary, or the pressure nullspace could be removed.

For the concentrations cj, we may use a prescribed
concentration, or the no-flux condition

n̂ ·
(

Kj(φ)cj∇gcj
)

= 0 on ∂�wall. (35)

For the electric potential, we use either the Dirichlet condition
V = V̄ (which is reasonable at either inlet or outlet), or in the
presence of charged (or neutral) boundaries, the condition

n̂ · ∇V = σe

ε(φ)
on ∂�wall, (36)

similar to the sharp-interface condition. Note that σe(x) is
prescribed and can vary over the boundary.

We assume that the no-flux conditons hold on the phase field
chemical potential,

n̂ · ∇gφ = 0 on ∂�wall. (37)

For the phase field itself, a general dynamic wetting boundary
condition can be expressed as [74]:

ǫτw∂tφ = −σ̃ ǫn̂ · ∇φ + σ cos(θe)f
′
w(φ), (38)

where θe is the equilibrium contact angle, τw is a relaxation
parameter, and fw(φ) = (2 + 3φ − φ3)/4 interpolates smoothly
between 0 (at φ = −1) and 1 (at φ = 1). In this work, we
limit ourselves to studying fixed contact angles, i.e., considering
Equation (38) with τw = 0. For a GNBC, the phase-field
boundary condition (38) must be modeled consistently with the
slip condition on the velocity [48].

3. DISCRETIZATION

For solving the equations of two-phase EHD, i.e., the model
consisting of Equations (18)–(21), there are four operations that
must be performed:

1. Propagate the phase field φ.
2. Propagate the chemical species concentrations ci.
3. Update the electric potential V
4. Propagate the velocity v and pressure p.

The whole system of equations could in principle be solved
simultaneously using implicit Euler discretization in time and
e.g., Newton’s method to solve the nonlinear system. However,
in order to simulate larger systems faster, it is preferable to
use a splitting scheme to solve for each field sequentially. One
such splitting scheme was outlined in Metzger [69], based on
the energy-stable scheme without electrochemistry as developed
by Guillen-Gonzalez F and Tierra [67], Grün et al. [68].
However, that scheme did not take into account that the electric
permittivities in the two fluids may differ, and when they do,
the phase field and the electrochemistry computations become
coupled through the electric field [70]. We will here discuss
two strategies for solving the coupled problem of two-phase
electrohydrodynamics. First, we present the fully monolithic,
non-linear scheme, and secondly, we propose a new, fully
practical linear operator splitting scheme. As we are not aware of
any splitting schemes that are second-order accurate in time for
the case of unmatched densities, we shall constrain our discussion
to first-order in time schemes.

In the forthcoming, we will denote the inner product of any
two scalar, vector, or tensor fields A,B by (A,B). Further, we
consider a discrete time step τ , and denote the (first-order)
discrete time derivative by

∂−τ A
k = Ak −Ak−1

τ
. (39)

The equations are discretized on the domain � ⊂ R
d, d = 2, 3,

with the no-slip boundary Ŵ. Since we do not consider explicitly
in- and outlet boundary conditions in this work, we will omit this
possible part of the domain for the sake of brevity.

We define the following finite element subspaces:

Vh = (Vh)
d where Vh =

{

v ∈ H1(�)
}

for velocity, (40)

Ph =
{

p ∈ L20(�)
}

for pressure, (41)

8h =
{

φ ∈ H1(�)
}

for phase field, (42)

Gh =
{

g ∈ H1(�)
}

for phase field chemical potential, (43)

Frontiers in Physics | www.frontiersin.org 6 March 2019 | Volume 7 | Article 21

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Linga et al. Two-Phase Electrohydrodynamic Flows

Ch =
{

c ∈ H1(�)
}

for concentrations, (44)

Uh =
{

V ∈ H1(�)
}

for the electrostatic potential. (45)

3.1. Monolithic Scheme
Here we give the fully implicit scheme that follows from a
naïve implicit Euler discretizion of the model (18)–(21), and
supplemented by Equation (31).

Assume that (vk−1, pk−1,φk−1, gk−1
φ , ck−1

1 , . . . , ck−1
M ,Vk−1) is

given. The scheme can then be summarized by the following.
Find (vk, pk,φk, gkφ , c

k
1, . . . , c

k
N ,V

k) ∈ Vh×Ph×8h×Gh×(Ch)N×
Uh such that

(

ρk∂−τ v
k, u
)

+
((

mk · ∇
)

vk, u
)

+
(

2µk
Dvk,Du

)

−
(

pk,∇ · u
)

= −
(

φk∇gkφ , u
)

−
∑

j

(

ckj ∇gkcj , u
)

, (46a)

(

∇ · vk, q
)

= 0, (46b)

(

∂−τ φ
k,ψ

)

−
(

vkφk,∇ψ
)

+
(

Mk
∇gkφ ,∇ψ

)

= 0, (46c)

(

gkφ , gψ
)

=
(

σ̃ ǫ−1W′(φk), gψ
)

− σ cos(θe)
∫

Ŵ

f ′w(φ
k)gψ dŴ

+
(

σ̃ ǫ∇φk,∇gψ
)

+
∑

j

(

β ′j c
k
j , gψ

)

−
(

1

2
ε′|∇Vk|2, gψ

)

, (46d)

(

∂−τ c
k
j , bj

)

−
(

vkckj ,∇bj
)

+
(

Kk
j c

k
j ∇gkcj ,∇bj

)

= 0, (46e)

(

εk∇Vk,∇U
)

=
(

ρke ,U
)

+
∫

Ŵ

σeU dŴ, (46f)

for all test functions (u, q,ψ , gψ , b1, . . . , bN ,U) ∈ Vh×Ph×8h×
Gh × (Ch)N × Uh. Here we have used

mk = ρkvk − ρ′Mk
∇gkφ (47)

and the shorthands

ρk = ρ(φk), µk = µ(φk), Mk = M(φk), εk = ε(φk),

Kk
j = Kj(φ

k), and ρke = ρe({ckj }).

Note that Equations (46) constitute a fully coupled non-linear
system and the equations must thus be solved simultaneously,
preferably using a Newton method. This results in a large
system matrix which must be assembled and solved iteratively,
and for which there are in general no suitable preconditioners
available. On the other hand, the scheme is fully implicit and
hence expected to be fairly robust with regards to e.g., time step
size. There are in general several options for constructing the
linearized variational form to be used in a Newton scheme.

3.2. A Linear Splitting Scheme
Now, we introduce a linear operator splitting scheme. This
scheme splits between the processes of phase-field transport,
chemical transport under an electric field, and hydrodynamic
flow, such that the equations governing each of these processes
are solved separately.

3.2.1. Phase Field Step
Find (φk, gkφ) ∈ 8h × Gh such that

(

∂−τ φ
k,ψ

)

−
(

vk−1φk,∇ψ
)

+
(

Mk−1
∇gkφ ,∇ψ

)

= 0 (48a)

(

gkφ , gψ
)

= σ̃ ǫ−1
(

W′(φk,φk−1), gψ
)

+ σ̃ ǫ
(

∇φk,∇gψ
)

− σ cos(θe)
∫

Ŵ

f ′w(φ
k,φk−1) gψ dŴ +

∑

j

β ′j
(

ck−1
j , gψ

)

− 1

2
ε′
(

|∇Vk−1|2, gψ
)

, (48b)

for all test functions (ψ , gψ ) ∈ 8h × Gh. Here,W′(φk,φk−1) is a
linearization ofW′(φk) around φk−1:

W′(φk,φk−1) = W′(φk−1)+W′′(φk−1)(φk − φk−1). (49)

We have also used the discretization of Equation (38)

σ̃ ǫn · ∇φk = σ cos(θe)f ′w(φ
k,φk−1), (50)

where we have used the linearization

f ′w(φ
k,φk−1) = f ′w(φ

k−1)+ f ′′w (φ
k−1)(φk − φk−1). (51)

3.2.2. Electrochemistry Step
Find (c1, . . . , cN ,V) ∈ (Ch)N × Uh such that

(

∂−τ c
k
j , bj

)

−
(

vk−1ckj ,∇bj
)

+
(

J̄kcj ,∇bi
)

= 0 (52a)

(

εk∇Vk,∇U
)

+
∫

Ŵ

σeU dŴ +
(

ρke ,U
)

= 0 (52b)

for all test functions (b1, . . . , bN ,U) ∈ (Ch)N × Uh. Here J̄kcj
is a linear approximation of the diffusive chemical flux Jcj =
Kj(φ)cj∇gcj . For conciseness, we here constrain our analysis to
ideal chemical solutions, i.e., we assume a common chemical
energy function on the form α(c) = c(ln c − 1). To this end, we
approximate the flux by:

J̄kcj = Kk
j (∇cki + cki β

′
i∇φ

k + zic
k−1
i ∇Vk). (53)
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3.2.3. Fluid Flow Step
Find (vk, pk) ∈ Vh × Ph such that

(

ρk−1∂−τ v
k, u
)

+
((

m̄k−1 · ∇
)

vk, u
)

+ 1

2

(

vk∂−τ ρ
k, u
)

− 1

2

(

m̄k−1,∇(vk · u)
)

+
(

2µk
Dvk,Du

)

−
(

pk,∇ · u
)

= −
(

φk∇gkφ , u
)

−
∑

j

(

ckj ∇gkcj , u
)

(54a)

(

q,∇ · vk
)

= 0 (54b)

for all test functions (u, q) ∈ Vh × Ph. Here, we have used the
following approximation of the advective momentum:

m̄k−1 = ρk−1vk−1 − ρ′Mk
∇gkφ . (55)

Note that the terms in (54a) involving ∂−τ ρ
k + ∇ · m̄k−1, which

is a discrete approximation of ∂tρ + ∇ · m = 0, is included
to satisfy a discrete energy dissipation law [75] (i.e., to improve
stability). This step requires solving for the velocity and pressure
in a coupled manner. This has the advantage that it yields
accurate computation of the pressure, but the drawback that it is
computationally challenging to precondition and solve, related to
the Babuska–Brezzi (BB) condition (see e.g., [76]). Alternatively,
it might be worthwhile to further split the fluid flow step into the
following three substeps, at the cost of some lost accuracy [77].

• Tentative velocity step: Find ṽk ∈ Vh such that for all u ∈ Vh,

(

ρk−1 ṽ
k − vk−1

τ
, u

)

+
(

(m̄k−1 · ∇)ṽk, u
)

+
(

2µk
Dṽk,Du

)

−
(

pk−1,∇ · u
)

+ 1

2

(

ṽk∂−τ ρ
k, u
)

− 1

2

(

m̄k−1,∇(ṽk · u)
)

= −
(

φk∇gkφ , u
)

−
∑

i

(

ck−1
i ∇gki , u

)

, (56a)

with the Dirichlet boundary condition ṽk = 0 on Ŵ.
• Pressure correction step: Find pk ∈ Ph such that for all q ∈ Ph,

we have
(

1

ρ0
∇(pk − pk−1),∇q

)

= − 1

τ

(

∇ · ṽk, q
)

. (56b)

• Velocity correction step: Then, find vk ∈ Vh such that for all
u ∈ Vh,

(

ρk
vk − ṽk

τ
, u

)

=
(

pk − pk−1,∇ · u
)

, (56c)

which we solve by explicitly imposing the Dirichlet boundary
condition uk = 0 on Ŵ.

Equations (56a), (56b), and (56c) should be solved sequentially,
and constitutes a variant of a projection scheme, i.e., a fractional-
step approach to the fluid flow equations [75, 77–80]. We will in
this paper refer to the coupled solution of the fluid flow equations,
unless stated otherwise. Specifically, the fractional-step fluid flow
scheme will only be demonstrated in the full 3D simulations
in section 6.2.

The scheme presented above consists in sequentially solving
three decoupled subproblems (or five decoupled subproblems
for the fractional-step fluid flow alternative). The subproblems
are all linear, and hence attainable for specialized linear solvers
which could improve the efficiency. We note that the splitting
introduces an error of order τ , i.e., the same as the scheme
itself. Moreover, our scheme does not preserve the same energy
dissipation law on the discrete level, that the original model
does on the continuous level. We are currently not aware
of any scheme for two-phase electrohydrodynamics with this
property, apart from the fully implicit scheme presented in the
previous section.

4. BERNAISE

We have now introduced the governing equations and two
strategies for solving them. Now, we will introduce the Bernaise
package, and describe an implementation of a generic simulation
problem and a generic solver in this framework. For a
complete description of the software, we refer to the online Git
repository [81].

The work presented herein refers to version 1.0 of Bernaise.
It is compatible with version 2017.2.0 of FEniCS [42] running
in Python 2.7, and version 2018.1.0 of FEniCS, which is the
latest stable version available for Python 3.6 at the time of
writing. The simulations presented herein were carried out
using the 2017.2.0 version of FEniCS (installed from the
standard PPA) in combination with Python 2.7 on a Ubuntu
16.04 system. Future releases of Bernaise will (as FEniCS)
primarily be compatible with Python 3.6 and follow the update
cycle of FEniCS.

4.1. Python Package
Bernaise is designed as a Python package, and the main
structure of the package is shown in Figure 1. The package
contains two main submodules, problems and solvers.
As suggested by the name, the problems submodule
contains scripts where problem-specific geometries (or
meshes), physical parameters, boundary conditions, initial
states, etc., are specified. We will in section 4.2 dive
into the constituents of a problem script. The solvers

submodule, on the other hand, contains scripts that are
implementations of the numerical schemes required to
solve the governing equations. Two notable examples that
are implemented in Bernaise are the monolithic scheme
(implemented as basicnewton) and the linear splitting
scheme (implemented as basic). We shall in section 4.3
describe the building blocks of such a solver. Further, a
default solver compatible with a given problem is specified
in the problem, but this setting can—along with most other
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FIGURE 1 | Part of the directory structure of Bernaise.

settings specified in a problem—be overridden by providing
an additional keyword to the main script call (see below).
Note that not all solvers are compatible with all problems,
and vice versa.

A simulation is typically run from a terminal, pointing to the
Bernaise directory, using the command

>> python sauce.py problem=charged_droplet

where charged_droplet may be exchanged with another
problem script of choice; albeit we will use charged_droplet
as a pedagogical example in the forthcoming. The main script
sauce.py fetches a problem and connects it with the
solver. It sets up the finite element problem with all the given
parameters, initializes the finite element fields with the specified
initial state, and solves it with the specified boundary condition
at each time step, until the specified (physical) simulation time
T is exceeded. Any parameter in the problem can be overridden
by specifying an additional keyword from the command line;
for example, the simulation time can be set to 1,000 by running
the command:

>> python sauce.py problem=charged_droplet T=1000

After every given interval of steps, specified by the
parameter checkpoint_interval, a checkpoint is
stored, including all fields, and all problem parameters
at the time of writing to file. The checkpoint can be
loaded, and the simulation can be continued, by running
the command:

>> python sauce.py problem=charged_droplet

restart_folder=results_charged_droplet/1/

Checkpoint/

where the restart_folder points to an appropriate
checkpoint folder. Here, the problem parameters stored within
the checkpoint have precedence over the default parameters
given in the problem script. Further, any parameters specified
by command line keywords have precedence over the checkpoint
parameters.

The role of the main module sauce.py is to allocate the
required variables to run a simulation, to import routines from
the specified problem and solver, to iterate the solver in time,
and to output and store data at appropriate times. Hence, the
main module works as a general interface to problems and
solvers. This is enabled by overloading a series of functions,
such that problem- and solver-specific functions are defined
within the problem and solver, respectively. The structure of
sauce.py is by choice similar to the NSfracStep.py

script in the Oasis solver [43]; both in order to appeal to
overlapping user bases, and to keep the code readable and
consistent with and similar to common FEniCS examples.
However, an additional layer of abstraction in e.g., setting
up functions and function spaces is necessary in order to
handle a flexible number of subproblems and subspaces,
depending on e.g., whether phase field, electrochemistry or
flow is disabled, or whether we are running with a monolithic
or operator splitting scheme. To keep the Bernaise code
as readable and easily maintainable as possible, we have
consciously avoided uneccessary abstraction. Only the boundary
conditions (found in common/bcs.py) are implemented
as classes.

4.2. The Problems Submodule
The basic user typically interacts with Bernaise by implementing
a problem to be solved. This is accessible to Bernaise when put
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in the subfolder problems. The implementation consists in
overloading a certain set of functions; all of which are listed
in the problems/__init__.py file in the problems folder.
The mandatory functions that must be overloaded for each
problem are:

• mesh: defines the geometry. Equivalent to the mesh function
in Oasis [43].

• problem: sets up all parameters to be overloaded, including
defining solutes and types of finite elements. The default
parameters are defined in the problems/__init__.py
file.

• initialize: initializes all fields.
• create_bcs: sets all subdomains, and defines boundary

conditions (including pointwise boundary condtions, such
as pressure pinning). The boundary conditions are more
thoroughly explained below.

Further, there are functions thatmay be overloaded.

• constrained_domain: set if the boundary is to be
considered periodic.

• pf_mobility: phase field mobility function; cf. (33a) and
(33b).

• start_hook: hook called before the temporal loop.
• tstep_hook: hook called at each time step in the loop.
• end_hook: hook called at the end of the program.

• rhs_source: explicit source terms to be added to the
right hand side of given fields; used e.g., in the method of
manufactured solution.

Note here the use of three hooks that are called during the
course of a simulation. These are useful for outputting certain
quantities during a simulation, e.g., the flux through a cross
section, or total charge in the domain. The start_hook

could also be used to call a steady-state solver to initialize
the system closer to equilibrium, e.g., a solver that solves
only the electrochemistry subproblem such that we do not
have to resolve the very fast time scale of the initial
charge equilibration.

In Listing 1, we show an implementation of the problems
function, which sets the necessary parameters that are required
for the charged_droplet case to run. Here, the solutes
array (which defines the solutes), contains only one species, but it
can in principle contain arbitrarily many.

In Listing 2, we show the code for the initialization stage. Here,
initial_pf and initial_c are functions defined locally
inside the charged_droplet.py problem script, that set
the initial distributions of the phase field and the concentration
field, respectively. Here, it should be noted how the (boolean)
parameters enable_PF, enable_EC and enable_NS allow
to switch on or off either the phase field, the electrochemistry or
the hydrodynamics, respectively.

Listing 1 | The problems function for the charged_droplet case.

def problem():

info_cyan("Charged droplet in an electric field.")

# Define solutes

# Format: name, valency, diffusivity in phase 1, diffusivity in phase 2,

# solubility energy in phase 1, solubility energy in phase 2

solutes = [["c_p", 1, 1e-5, 1e-3, 4., 1.]]

# Default parameters to be loaded unless starting from checkpoint.

parameters = dict(

solver="basic", # Solver to be used.

folder="results_charged_droplet", # Folder to store results in.

dt=0.08, # Timestep

t_0=0., # Starting time

T=8., # Total simulation time

grid_spacing=1./32, # Mesh size

interface_thickness=0.03, # Extent of diffuse interface

solutes=solutes, # Array of solutes defined above

Lx=2., # Length of domain along x

Ly=1., # Length of domain along y

rad_init=0.25, # Initial droplet radius

V_left=10., # Potential at left side

V_right=0., # Potential at right side

surface_tension=5., # Surface tension

concentration_init=10., # Initial (total) concentration

pf_mobility_coeff=0.00002, # Phase field mobility coeff. (M_0)

density=[200., 100.], # Density in phase 1, phase 2

viscosity=[10., 1.], # Viscosity in phase 1, phase 2

permittivity=[1., 1.] # Permittivity in phase 1, phase 2

)

return parameters
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Listing 2 | The initialize function for the charged_droplet case.

def initialize(Lx, Ly, rad_init, interface_thickness, solutes,

concentration_init, restart_folder, field_to_subspace,

enable_NS, enable_PF, enable_EC, **namespace):

""" Create the initial state. """

w_init_field = dict()

if not restart_folder:

x0, y0, rad0, c0 = Lx/4, Ly/2, rad_init, concentration_init

# Initialize phase field

if enable_PF:

w_init_field["phi"] = initial_pf(

x0, y0, rad0, interface_thickness,

field_to_subspace["phi"].collapse())

# Initialize electrochemistry

if enable_EC:

w_init_field[solutes[0][0]] = initial_c(

x0, y0, rad0/3., c0, interface_thickness,

field_to_subspace[solutes[0][0]].collapse())

return w_init_field

Listing 3 | The get_subproblems subroutine of the basic solver.

def get_subproblems(solutes, enable_NS, enable_PF, enable_EC, **namespace):

""" Returns dict of subproblems the solver splits the problem into. """

subproblems = dict()

if enable_NS:

subproblems["NS"] = [dict(name="u", element="u"),

dict(name="p", element="p")]

if enable_PF:

subproblems["PF"] = [dict(name="phi", element="phi"),

dict(name="g", element="g")]

if enable_EC:

subproblems["EC"] = ([dict(name=solute[0], element="c")

for solute in solutes]

+ [dict(name="V", element="V")])

return subproblems

4.3. The Solvers Submodule
Advanced users may develop solvers that can be placed
in the solvers subdirectory. In the same way as with
the problems submodule, a solver implementation constists
of overloading a range of functions which are defined in
solvers/__init__.py.

• get_subproblems: Returns a dictionary (dict) of the
subproblems which the solver splits the problem into. This
dictionary has points to the name of the fields and the elements
(specified in problem) which the subspace is made up of.

• setup: Sets up the FEniCS solvers for each subproblem.
• solve: Defines the routines for solving the finite element

problems, which are called at every time step.
• update: Defines the routines for assigning updated values to

fields, which are called at the end of every time step.

The module solvers/basicnewton.py implements the
monolithic scheme, while the module solvers/basic.py
implements the segregated solver3. The problem is split up into

3The latter also contains an equilibrium solver for the quiescent electrochemistry
problem, mainly to be used for initialization purposes.

the subproblems corresponding to whether we have amonolothic
or segragated solver in the function get_subproblems.
Within the setup function, the variational forms are defined,
and the solver routines are initialized. The latter are eventually
called in the solve routine at every time step. Note
that the element types are defined within the problem,
and that the solvers in general can be applied for higher-
order spatial accuracy without further ado. The task of
get_subproblems is simply to link the subproblem to the
element specification.

In Listing 3, we show how the get_subproblems function
is implemented in the basic solver. As can be readily seen, the
function formally splits the problem into the three subproblems
NS, PF, and EC.

The other functions (such as setup) are somewhat more
involved, but can be found at the Git repository [81].

Note that the implementations of the solvers presented above
are sought to be short and humanly readable, and therefore
quite straightforwardly implemented. There are several ways to
improve the efficiency (and hence scalability) of a solver, at the
cost of lost intuitiveness [43].
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Listing 4 | The create_bcs function within the charged_droplet case.

def create_bcs(field_to_subspace, Lx, Ly, solutes, V_left, V_right,

enable_NS, enable_PF, enable_EC,

**namespace):

""" The boundary conditions are defined in terms of field. """

boundaries = dict(

wall=[Wall(Lx)],

left=[Left()],

right=[Right(Lx)]

)

noslip = Fixed((0., 0.))

bcs = dict()

bcs_pointwise = dict()

bcs["wall"] = dict()

bcs["left"] = dict()

bcs["right"] = dict()

if enable_NS:

bcs["wall"]["u"] = noslip

bcs["left"]["u"] = noslip

bcs["right"]["u"] = noslip

bcs_pointwise["p"] = (0., "x[0] < DOLFIN_EPS && x[1] < DOLFIN_EPS")

if enable_EC:

bcs["left"]["V"] = Fixed(V_left)

bcs["right"]["V"] = Fixed(V_right)

return boundaries, bcs, bcs_pointwise

4.4. Boundary Conditions
Boundary conditions are among the few components of Bernaise
which are implemented as classes. Physical boundary conditons
may consist of a combination of Dirichlet and Neumann (or
Robin) conditions, and the latter must be incorporated into
the variational form. The boundary conditions are specified in
the specific problem script, while the variational form is set
up in the solver. To promote code reuse, keeping the physical
boundary conditions accessible from the problems side, and
simultaneously independent of the solver, the various boundary
conditions are stored as classes in a separate module. The
boundaries themselves should be set by the user within the
problem. By importing various boundary condition classes
from common/bcs.py, the boundary conditions can be
inferred at user-specified boundaries.

Within the bcs module, the base class GenericBC is
defined. The boolean member functions is_dbc and is_nbc
specifies, respectively, whether the concrete boundary conditions
impose a Dirichlet and Neumann condition, and both return
false by default. The base class is inherited by various concrete
boundary conditon classes, and by overloading these two
member functions, the member functions dbc or nbc are,
respectively called at appropriate times in the code. There is
a hierarchy of boundary conditions which inherit from each
other. Some of the boundary conditions currently implemented
in Bernaise are:

• GenericBC: Base class for all boundary conditions.

– Fixed: Dirichlet condition, applicable for all fields.

∗ NoSlip: The no-slip condition—a pure Dirichlet
condition with the value 0, applicable for velocity.

∗ Pressure: Constant pressure boundary condition—
adds a Neumann condition to the velocity, i.e., a
boundary term in the variational form.

– Charged: A charged boundary—a Neumann conditon
intended for use with the electric potential V .

– Open: An open boundary—a Neumann condition
is applied.

We note that when a no-flux condition is to be applied, no
specific boundary condition class needs to be supplied, since
the boundary term in the variational form then disappears (in
particular when considering conservative PDEs).

As an example, we show in Listing 4 the create_bcs

function within the charged_droplet case. Here, the
boundaries Wall, Left, etc., are defined in the standard
FEniCS/DOLFIN way as instances of a SubDomain class.

4.5. Post-processing
An additional module provided in Bernaise is the post-processing
module. It operates with methods analogously to how the
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main Bernaise script operates with problems. The base script
postprocess.py pulls in the required method and analyses
or operates on a specified folder. The methods are located in
the folder analysis_scripts/ and new methods can be
implemented by users by adding scripts to this folder.

To exemplify its usage, we consider a method to analyse the
temporal development of the energy. This is done by navigating
to the root folder and calling

>> python postprocess.py method=energy_in_time

folder=results_charged_droplet/1/

where we assume that the output of the simulation,
we want to analyse, is found in the folder
results_charged_droplet/1/. The analysis method
energy_in_time above can, of course, be exchanged with
another method of choice. A list of available methods can be
produced by supplying the help argument from a terminal call:

>> python postprocess.py -h

Similar to the problems submodule, the methods are
implemented by overloading a set of routines, where default
routines are found in analysis_scripts/__init__.py.
The routines required to implement an analysis method are
the following:

• description: routine called when a questionmark is added
to the end of the method name during a call from the terminal,
meant to obtain a description of the method without having to
inspect the code.

• method: the routine that performs the desired analysis.

The implementation hinges on the TimeSeries class (located
in utilities/TimeSeries.py), which efficiently imports
the XDMF/HDF5 data files and the parameter files produced by
a Bernaise simulation. Several plotting routines are implemented
in utilities/plot.py, and these are extensively used in
various analysis methods.

5. VALIDATION

With the aim of using Bernaise for quantitative purposes, it is
essential to establish that the schemes presented in the above
converges to the correct solution—in two senses:

• The numerical schemes should converge to the correct
solution of the phase-field model.

• The solution of the phase-field model should converge to the
correct sharp-interface equations4.

Unless otherwise stated, we mean by convergence that the error
in all fields χ should behave like,

‖χ − χe‖h ∼ Chh
kh + Cτ τ

kτ (57)

where ‖·‖h is an L2 norm, χ is the simulated field, χe is the exact
solution, h is the mesh size, τ is the time step, kh is the order

4Obviously, when the physical interface thickness may be resolved by the phase
field, the sharp-interface assumptionmight be less sensible than the diffuse. Hence,
in such cases this point might be too crude.

FIGURE 2 | Schematic set-up of the stable bulk flow intrusion test case. Here,

the “water” (subscript w) displaces the “oil” (subscript o). At the left and right

boundaries, a constant velocity is prescribed.

of spatial convergence, kτ is the order of temporal convergence
(kτ = 1 in this work), and Ch and Cτ are constants.

In the following, we present convergence test in three
cases. Firstly, in the limiting case of a stable bulk intrusion
without electrochemistry, an analytical solution is available to test
against. Secondly, using the method of manufactured solution,
convergence of the full two-phase EHDproblem to an augmented
Taylor–Green vortex is shown. Thirdly, we show convergence
toward a highly resolved reference solution for an electrically
driven charged droplet.

We note that the aim of Bernaise is to solve coupled multi-
physics problems, and while the solvers may contain subtle
errors, they may be negligible for many applications, and
dominant only in limiting cases. In addition to testing the
whole, coupled multi-physics problem of two-phase EHD, a
proper testing should also consider simplified settings where
fewer physical mechanisms are involved simultaneously. A brief
discussion of testing and such reduced models is given in
Appendix C in Supplementary Material. In this section, we show
the convergence of the schemes in a few relevant cases, which we
believe represent the efficacy of our approach. Tests of simplified-
physics problems are found in the Git repository [81].

5.1. Stable Bulk Intrusion
A case where an analytic solution is available, is the stable
intrusion of one fluid into another, in the absence of electrolytes
and electric fields. A schematic view of the initial set-up is shown
in Figure 2. A constant velocity v = v0x̂ (x̂ is the unit vector
along the x axis) is applied at both the left and right sides of the
reservoir, and periodic boundary conditions are imposed at the
perpendicular direction. We shall here consider the convergence
to the solution of the phase-field equation, i.e., retaining a finite
interface thickness ǫ. This effectively one-dimensional problem is
implemented in problems/intrusion_bulk.py.

Due to the Galilean invariance, we expect the velocity field to
be uniformly equal to the inlet and outlet velocities, i.e., v(x, t) =
v0x̂. The exact analytical solution for the phase field is
given by

φ(x, t) = tanh

(

x− x0 − v0t√
2ǫ

)

, (58)
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FIGURE 3 | Convergence in time for the case of stable intrusion. The mesh size is held fixed at h = 0.0039. (Left) We show the phase field interpolated at equidistant

points along the centerline for increasing temporal resolution. The solid black line is the analytical solution. (Right) The integrated L2 norm of the phase field plotted

against time step. The solid black line shows the theoretical convergence order of the scheme (∼ τ ). As can be seen from the figure, it displays close to ideal scaling.

FIGURE 4 | Convergence in space for the case of stable intrusion. The time step is held fixed at τ = 0.0025. (Left) Phase field interpolated at equidistant points along

the centerline for increasing spatial resolution. (Right) The L2 norm of the phase field is plotted against mesh resolution. The solid black line shows the theoretical

convergence order (∼ h2).

for which we shall consider the error norm. Note that the only
parameters this analytical solution depends on are the initial
position of the interface x0, the injection velocity v0, and the
interface width ǫ. We consider the parameters ρ1 = ρ2 = 1000,
µ1 = 100, µ2 = 1, σ = 2.45, ǫ = 0.03,M(φ) = M0 = 2 · 10−5,
x0 = 1, Lx = 5, Ly = 1 and v0 = 0.1.

Figure 3 shows the convergence to the analytical
solution with regards to temporal resolution. The order of
convergence is consistent with the order of the scheme,
indicating that the scheme is appreciable at least in the lack of
electrostatic interactions.

Figure 4 shows the convergence of the phase field with regards
to the spatial resolution. The scheme is seen to converge at the
theoretical rate,∼ h2.

5.2. Method of Manufactured Solution: A
Two-Phase Electrohydrodynamic
Taylor–Green Vortex
Having established convergence in the practically one-
dimensional case, we now consider a slightly more involved

setting where we use the method of manufactured solution to
obtain a quasi-analytical test case.

The Taylor–Green vortex is a standard benchmark problem
in computational fluid dynamics because it stands out as one
of the few cases where exact analytical solutions to the Navier–
Stokes equations are available. However, in the case of two-phase
electrohydrodynamics, the Navier–Stokes equations couple to
both the electrochemical and the phase field subproblems. In
Linga et al. (Submitted) the authors augmented the Taylor–
Green vortex with electrohydrodynamics, and in this work we
supplement the latter with a phase field and non-matching
densities of the two phases.

We consider the full set of equations on the domain � =
[0, 2π]×[0, 2π], where all quantities may differ in the two phases.
The two ionic species have opposite valency ±z. The fields are
given by

u = U(t)(x̂ cos x sin y− ŷ sin x cos y), (59a)

p = −
∑

mn

Pmn(t) cos(2mx) cos(2ny), (59b)
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φ = 8(t) cos x cos y, (59c)

c± = c0(1± cos x cos y C(t)), (59d)

V = zc0C(t)

ε
cos x cos y. (59e)

Here, the time-dependent coefficients are given by

U(t) = U0 exp

(

−2µ̄

ρ̄
t

)

, (60)

C(t) = C0 exp
(

−2D̄
(

1+ c0
ε̄

)

t
)

, (61)

8(t) = 80 exp

(

−2Mσ̃

(

2ǫ − 1

ǫ

)

t

)

, (62)

where U0,C0 and80 are scalars, and

Pmn =











Q1(t)+Q2(t) for (m, n) ∈ {(0, 1), (1, 0)},
Q2(t) for (m, n) ∈ {(1, 1)},
0 otherwise.

(63)

where

Q1 =
1

4
ρU2

0 (t), and Q2 =
z2c20C

2(t)

4ǫ
. (64)

Further, a bar indicates the arithmetic average over the value in
the two phases, i.e., χ̄ = (χ1+χ2)/2 for any quantity χ , and D̄ =
(D̄++ D̄−)/2 = (D+,1+D+,2+D−,1+D−,2)/4 is the arithmetic
average over all diffusivities. The time-dependent boundary
conditions are set by prescribing the reference solutions at the
boundary of � for all fields given in (59a)–(59e), except the
pressure p, which is set (to the reference value) only at the corner
point (x, y) = (0, 0). The method of manufactured solution
now consists in augmenting the conservation Equations (18),
(19), (20) and (21) by appropriate source terms, such that the
reference solution (59a)–(59e) solves the system exactly. These
source terms were computed in Python using the Sympy package,
and are rather involved algebraic expressions. The expressions
are therefore omitted here, but can be found as a utility script in
the Bernaise package. Note that in the special case of single-phase
flow without electrodynamics, i.e., φ ≡ 1 and z = 0, we retrieve
the classic Taylor–Green flow (with a passive tracer concentration
field), where all artificial source terms vanish.

We consider now the convergence toward the manufactured
solution. We let the grid size h ∈ [2π/256, 2π/16] and the
time step τ ∈ [0.0001, 0.01], and evaluate the solution at the
final time T = 0.1. The parameters for two phases used the
simulation are given in Table 1, while the non-phase specific
parameters are given in Table 2. Note that in order to test all
parts of the implementation, all parameters are kept roughly in
the same order of magnitude. When all the physical processes
are included, the manufactured solution becomes an increasingly
bad approximation and thus the resulting source terms become
large. Thus, in order to avoid numerical instabilities, it was
necessary to evaluate the error at a relatively short final time T.
However, it should be enough to locate errors in most parts of
the code.

TABLE 1 | Phasic parameters used in the Taylor–Green simulations.

Parameter Symbol Value in

phase 1

Value in

phase 2

Density ρ 3 1

Viscosity µ 3 5

Permittivity ε 3 4

Cation diffusivity D+ 3 1

Anion diffusivity D− 4 2

Cation solubility β+ 2 −2

Anion solubility β− 1 −1

TABLE 2 | Non-phase-specific parameters used in the Taylor–Green simulations.

Parameter Symbol Value

Surface tension σ 0.1

Interface thickness ǫ 1/
√
2

Phase field mobility M 1

Initial velocity U0 1

Initial concentration c0 1

Initial phase field 80 1

Initial conc. deviation C0 0.5

We plot the L2 errors of all the fields as a function of the
grid size h in Figure 5. In these simulations, we used a small
time step τ = 0.0001 to rule out the contribution of time
discretization to the error, cf. Equation (57). It is clear that
the spatial convergence is close to ideal for all fields, indicating
that the scheme approaches the correct solution. The pressure
p displays slightly worse convergence and higher error norm
than the other fields, which may be due to the pointwise way of
enforcing the pressure boundary condition (all other fields have
Dirichlet conditions on the entire boundary).

In Figure 6, we plot the L2 errors of the same fields as in
Figure 5, but as a function of the time step τ . In the simulations
plotted here, we used a fine grid resolution with h = 2π/256
to rule out the contribution of spatial discretization to the error,
cf. Equation (57). Clearly, first order convergence is achieved for
sufficient refinement, for all fields including the pressure.

5.3. Droplet Motion Driven by an Electric
Field
We now consider a charged droplet moving due to an imposed
electric field; a problem for which there is no analytical
solution available. However, by comparing to a highly resolved
numerical solution, convergence for the fully coupled two-phase
electrohydrodynamic problem can be verified. This problem has
already been partly presented in the above, and is implemented in
problems/charged_droplet.py. A sketch showing the
initial state is shown in Figure 7. We consider an initially circular
droplet, where a positive charge concentration is initiated as a
Gaussian distribution, with variance δ2c , in the middle of the
droplet. In this set-up, we consider only a single, positive species.
The total amount of solute, i.e., integrated concentration, is
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FIGURE 5 | Convergence in space for the two-phase electrohydrodynamic

Taylor–Green manufactured solution. The solid black line shows the theoretical

convergence rate based on the order of the finite elements chosen (∼ h2). All

fields display close to ideal convergence.

FIGURE 6 | Convergence in time for the two-phase electrohydrodynamic

Taylor–Green manufactured solution. The solid black line shows the theoretical

convergence rate of the scheme (∼ τ1). All fields display close to ideal

convergence.

C0 =
∫

�
c0 dA. The left wall of the reservoir is kept at a positive

potential, V = 1V , while the right wall is grounded, V = 0. The
top and bottomwalls are assumed to be perfectly insulating, i.e., a
no-flux condition is applied on concentration fields and electric
fields, and a no-slip condition is applied on the velocity. The fluid
surrounding the droplet is neutral, and its parameters are chosen
such that the solute is only very weakly soluble in the surrounding
fluid, and the diffusivity here is very low here to prevent leakage.
The droplet is accelerated by the electric field toward the right,
before it is slowed down due to viscous effects upon approaching
the wall.

FIGURE 7 | Schematic set-up of the test case of droplet motion driven by an

electric field. The “water” droplet contains positive ions and is driven by the

electric field set up between the high potential on the left wall and the

grounded right wall.

TABLE 3 | Numerical parameters that vary with resolution in the charged droplet

simulations: Mesh size h, time step τ , and interface thickness ǫ.

h τ ǫ

0.04 0.04 0.06

0.02 0.02 0.03

0.01 0.01 0.015

0.005 0.005 0.0075

0.0025 0.0025 0.00375

With regard to reproducing the sharp-interface equations,
we consider now the case of reducing the interface thickness
ǫ → 0. To this end, we keep the ratio h/τ between
mesh size and time step fixed, and further we keep the
interface thickness ǫ proportional to h. The latter spans
roughly 3–4 elements. Since the interface thickness ǫ changes,
an important parameter in the phase-field model changes,
which couples back to the equations, and thus the L2
norm does not necessarily constitute a proper convergence
measure. We therefore resort to using the picture norm or
contour of the droplet as a measure, i.e., the zero-level
set of the phase field φ = 0. In particular, we will
consider two observables: circumference and the center of
mass (along x) of the droplet, as a function of resolution.
A similar approach was taken for the case of phase-field
models without electrodynamics by Aland and Voigt [66]
who compared their benchmarks to sharp interface results by
Hysing et al. [65].

The resolutions used in our simulations are given in
Table 3. In order not to have to adjust the phase field
mobility when refining, whilst still expecting to retrieve the
sharp-interface model in the limit ǫ → 0, we choose
the phase field mobility given by (33b). All parameters
for the phasic quantities are given in Table 4, while the
remaining parameters are given in Table 5. From these
parameters, using the unit scaling adopted in this paper, we
find an approximate Debye length λD =

√

ε/(2z2cR) ≃
√

1/(2 · 10) ≃ 0.2 (see section B2 in the Appendix for
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TABLE 4 | Numerical parameters for the phases that are common for all charged

droplet simulations.

Parameter Symbol Value, phase 1 Value, phase 2

Density ρ 200.0 100.0

Permittivity ε 1.0 1.0

Diffusivity D 1 · 10−5 (≃ 0) 0.001

Solubility β 4.0 1.0

Viscosity µ 10.0 1.0

TABLE 5 | Numerical parameters not specific to phase for the charged droplet

simulations.

Parameter Symbol Value

Potential difference 1V 10.0

Integrated concentration C0 10.0

Phase field mobility coeff. M0 1.5 · 10−5

Initial droplet radius R 0.25

Initial conc. std. dev. δc 0.0833

Surface tension σ 5.0

Length in x-direction Lx 2.0

Length in y-direction Ly 1.0

FIGURE 8 | Shape comparison of electrically driven charged droplet at two

time instances. The effect of the four resolutions given in Table 3 is shown. The

legend shown in the figure refers to both spatial (h) and temporal resolution (τ ).

this expression), since we can approximate the order of
magnitude of cR < C/(πR2) = 10/(π · 0.252) for a
moderate screening.

In Figure 8, we show the contour of the driven droplet
at two time instances t = 4 and t = 8, and compare
increasing resolution (simultaneously in space, time and interface
thickness). Qualitatively inspecting the contours by eye, the
droplet shapes seem to converge to a well defined shape with
increasing resolution at both time instances.

However, qualitive comparison is clearly not enough to assess
the convergence. As in Hysing et al. [66] and Aland and Voigt
[65], we define three observables:

• Center of mass: We consider the center of mass of the
dispersed phase (phase 2, i.e., φ < 0),

xCM =
∫

φ<0 x dA
∫

φ<0 dA
, (65)

where we approximate the integral over the droplet (phase 2)
by
∫

φ<0(·) dA =
∫

�
(1− φ)(·)/2 dA.

• Drift velocity: Similarly as above, the velocity at which the
droplet is driven is measured by

V =
∫

φ<0 u · x̂ dA
∫

φ<0 dA
. (66)

• Circularity: Defined as the ratio of the circumference of the
area-equivalent circle to the droplet circumference,

C =
2
√

π
∫

φ<0 dA

ℓ
. (67)

The circumference ℓ and the integrals are computed by the
post-processing method geometry_in_time which is built
into Bernaise.

Figure 9 shows the three quantities as a function of time
for increasing resolution. (Here we have omitted the coarsest
resolution h = 0.04 for visual clarity.) The curves seem to
converge toward well-defined trajectories with resolution.

For a more quantitative comparison, we define the time-
integrated error norm,

‖e‖p =
(

∫ T
0 |qref(t)− q(t)|p dt
∫ T
0 |qref(t)|p dt

)1/p

(68)

for a given quantity q. We can compute an empirical convergence
rate of this norm,

kp,i =
log

(

‖e‖p (hi+1)/‖e‖p (hi)
)

log
(

hi+1/hi
) (69)

for two successive resolutions (hi+1 > hi). Here we shall
consider the L2 error norm in time, i.e., p = 2, and in practice
we compute the integrals in time by cubic spline interpolation
of measurement points saved at every 5 time steps. There is
no exact solution, or reference high-resolution sharp-interface
solution available for this set-up. However, if we now assume
that the finest resolution is the exact solution, and use this as the
reference field in Equation (68), we can compute error norms and
convergence rates. These values are reported in Table 6.

The computed convergence rates increase for all three
observables and reach 1.6–1.7 with increasing resolution,
indicating also quantitatively a convergence that is in
agreement with the anticipated convergence rate. Considering
Equation (57), from the temporal discretization, we expect
k2 ≃ 1, and from the spatial k2 ≃ 2. Depending on which
term contributes most to the error, we will measure either of
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FIGURE 9 | Observable quantities as a function of time. Increasing resolutions

(spatial and temporal) are compared.

TABLE 6 | Mesh size h, error norm ‖e‖2, and empirical convergence rate k2 for

increasing grid refinement, assuming the solution for the finest resolution to be

exact.

h ‖e‖2 k2

CENTER OF MASS

0.04 0.1798

0.02 0.0955 0.9129

0.01 0.0410 1.2186

0.005 0.0126 1.7033

DRIFT VELOCITY

0.04 0.3427

0.02 0.2067 0.7293

0.01 0.1032 1.0025

0.005 0.0341 1.5932

CIRCULARITY

0.04 0.0891

0.02 0.0423 1.0757

0.01 0.0205 1.0467

0.005 0.0060 1.7612

these rates. The values measured here indicate that both terms
may be comparable in magnitude; however if we instead of
using directly the finest solution as reference, extrapolated the
trajectories further, we would presumptively have achieved lower
convergence rates. This might indicate that the convergence
error is eventually dominated by the temporal discretization, cf.
Equation (57).

6. APPLICATIONS

6.1. Oil Expulsion From a Dead-End Pore
Here, we present a demonstration of the method in a potential
geophysical application. We consider a shear flow of one phase
(“water”) over a dead-end pore which is initially filled with a
second phase (“oil”). The water phase contains initially a uniform
concentration of positive and negative ions, c±|t=0 = c0, and the
water–oil interface is modeled to be impermeable. The simulation
of the dead-end pore is carried out to preliminarily assess
the hypothesis that electrowetting could be responsible for the
increased expelling of oil in low-salinity enhanced oil recovery.
The problem set-up is schematically shown in Figure 10. The
phasic parameters used in the simulations are given in Table 7,
and the remaining parameters are given in Table 8. This problem
is implemented in the file problems/snoevsen.py.

To investigate the effect of including electrostatic interactions,
we show in Figure 11 instantaneous snapshots of simulations
with and without surface charge at different times. The left
column, Figures 11A,C,E, shows the results for vanishing surface
charge, and the right column, Figures 11B,D,F, shows the results
for a surface charge of σe = −10.

For the uncharged case, the frames that are shown are almost
indistinguishable. In fact, the main difference is the numerical
noise of the total charge, which is due to roundoff errors of
machine precision. The initial dynamics of the oil plug interface,
which is to equilibrate with the neutral contact angle and the
shear flow, mainly happens before the first frame presented;
compare Figure 10 and Figure 11A.

A markedly different behavior is displayed in the right
column, Figures 11B,D,F, where a uniform surface charge
density is enforced at the walls at the simulation start, t = 0. Here,
we see first that two tongues are intruding on both sides of the
droplet, which push the droplet out into the center of the dead-
end pore. The process is continued, as shown in the second frame,
and finalized, as shown in the third frame, with the complete
release of the droplet as the two tongues meet at the bottom of
the dead-end pore, cutting the final contact point.

With these simulations, we have demonstrated the effects
when a surface charge couples to hydrodynamics. This has lead
to the observation that oil phase, on a larger scale than the Debye
length, behaves like it is completely dewetting even when we
locally enforce a neutral contact angle.

6.2. 3D Simulations of Droplet Coalescence
and Breakup in an Electric Field
Finally, to demonstrate the ability of Bernaise to simulate 3D
configurations, we present simulations of two oppositely charged
droplets that coalesce. In order to achieve this efficiently, a
fully iterative solver was implemented. The solver consists of a
fractional step version of the basic solver, in the sense that
within the fluid flow step, it splits between the velocity and
pressure computations, as shown in Equations (56a), (56b), and
(56c). The splitting introduces a weak compressibility which
suffices to stabilize the problem [77] (with respect to the BB
condition) and thus we can use P1 finite elements also for the
velocity. The combination of fewer degrees of freedom and
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FIGURE 10 | A schematic depiction of the “dead-end pore” geometry, with the appropriate boundary conditions for the problem and specified initial conditions for the

phase field. The geometry is specified by the two lengths Lx , Ly , and the radius R used to define the dead-end pore in the center of the channel by a circle and a

circular smoothed inlet. The roman numerals indicate the phase, along with the tone of gray. The darker phase is the oil-like phase (I), and the lighter one is the

water-like phase (II).

TABLE 7 | Phasic parameters for the simulations of shear flow over a dead-end

pore.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 1.0

Density ρ 10.0 10.0

Permittivity ε 1.0 1.0

Solution energy β± 4 1

Ion mobility D± 0.0001 0.01

The subscript ± indicates the value for both the positive and negative ions.

the applicability of iterative linear solvers imparts significant
speed-up compared to coupled solvers, which is of paramount
importance for 3D simulations. This yields advantages over
solvers which rely on a mixed-element formulation of the
hydrodynamic subproblem [70]. The detailed analysis of the
fractional step solver will be published in a separate paper, but
the implementation can be found in
solvers/fracstep.py. For solving the linear systems
iteratively, we use an algebraic multigrid (AMG) preconditioner
and a generalized minimal residual (GMRES) linear solver for
the electrochemical and the pressure correction step; Jacobi
preconditioner (Jacobi) and a stabilized bi-conjugate gradient
method (BiCGStab) for the velocity prediction, and Jacobi and
GMRES for the velocity correction. For the phase field we use
Jacobi and a conjugate gradient method.

To prevent leakage of ions out of the two coalescing droplets,
a weighted geometric mean was used for the diffusivities:

TABLE 8 | Simulation parameters for the simulations of shear flow over a

dead-end pore.

Parameter Symbol Value

Length Lx 3.0

Height Ly 1.0

Total simulation time T 20

Radius R 0.3

Time step τ 0.01

Resolution h 1/120

Interface thickness ǫ 0.02

Phase field mobility M0 2.5 · 10−6

Surface tension σ 2.45

Surface charge σe {−10, 0}
Reference concentration c0 2

Shear velocity utop 0.2

Kj(φ) = K
1+φ
2

j,1 · K
1−φ
2

j,2 , (70)

instead of the arithmetic mean (25) used in most of the article.
We consider a setup of two initially spherical droplets in a

domain� = [0, Lx]× [0, Ly]× [0, Lz]. The droplets are centered
at (Lx/2, Ly/2, (Lz±Lx)/2) and have a radius R. The lower droplet
(along the z-axis) is initialized with a Gaussian concentration
distribution of negative ions (z− = −1), whereas the upper
droplet is initialized with positive ions (z+ = 1). The average
concentration of the respective ion species within each droplet is
c0, such that the total charge in the system is zero, and the initial
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FIGURE 11 | Oil released from a dead-end pore. We show instantaneous snapshots from the simulations of the dead-end pore under a shear flow. The black phase

is the oil phase, which does not contain solutes, and the other phase is the water phase, which contains monovalent positive and negative ions. The color in the lighter

phase indicates the local net charge, red meaning positive charge, blue negative charge, and gray neutral charge. The color scale is relative to the maximum deviation

from neutral charge for an entire simulation; therefore the neutral simulations display numerical noise (which is of the order of machine precision). In the left column the

surface charge is zero, and in the right column, a uniform surface charge density σe = −10 is set. The rows show snapshots at different times t. (A) t = 3.0, σe = 0.

(B) t = 3.0, σe = -10. (C) t = 6.0, σe = 0. (D) t = 3.0, σe = -10. (E) t = 9.0, σe = 0. (F) t = 9.0, σe = -10.

spread (standard deviation) of the Gaussian distribution is R/3. A
potentialV0 is set on the top plane at z = Lz and the bottom plane
at z = 0 is taken to be grounded. We assume no-slip and no-flux
conditions on all boundaries, except for the electrostatic potential
V at the top and bottom planes, and the fluid is taken to be in a
quiescent state at the initial time t = 0. The phasic parameters
used in the simulations are given in Table 9, and the remaining
parameters are given in Table 10. The problem is implemented
in the file problems/charged_droplets_3D.py.

Figure 12 shows snapshots from the simulations at several
instances of time. As seen from the figure, the droplets are set

in motion toward each other by the electric field and collide with
each other. Subsequently, the unified droplet is stretched, until
it touches both electrodes. The middle part then breaks off, and
as it is unstable, it further emits droplets that are released to
two two sides. Finally, two spherical caps form at each electrode,
and a neutral drop is left in the middle, due to the initial
symmetry. Similar behavior has been observed in axisymmetric
simulations (e.g., [82]).

We finally carry out a strong scaling test of the linear iterative
solver on a single in-house server with 80 dedicated cores. The
results of average computational time per time step (averaged
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TABLE 9 | Phasic parameters for the simulations of droplet coalescence and

breakup in an electric field.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 0.5

Density ρ 500.0 50.0

Permittivity ε 1.0 2.0

Solution energy β± 2 0

Ion mobility D± 0.0001 0.1

The subscript ± indicates the value for both the positive and negative ions.

TABLE 10 | Simulation parameters for the simulations of droplet coalescence and

breakup in an electric field.

Parameter Symbol Value

Length along x Lx 1.0

Length along y Ly 1.0

Height Lz 2.0

Total simulation time T 20

Initial radius R 0.2

Time step τ 0.005

Resolution h 1/64

Interface thickness ǫ 0.01

Phase field mobility M0 1 · 10−5

Surface tension σ 2.0

Initial avg.

concentration

c0 20.0

over 10 time steps) vs. number of cores are shown in Figure 13.
We show here the amount of time spent per time step for all
substeps in order to illuminate where most of the computational
resources are spent. As can be seen, a significant portion of
the computational time is spent on the electrochemical substep.
Overall, the solver displays sublinear scaling with the number of
cores, but the results are promising given that neither the solver
nor the FEniCS install (a standard PPA install of FEniCS 2017.2.0
on Ubuntu 16.04 server) are fully optimized. Much could be
gained by improving the two steps where solving a Poisson
equation is involved; in particular it seems possible that more
specifically tailored preconditioners than the straightforward
AMG preconditioning could impart speedup. However, we stress
that the division of labor between the steps is highly problem-
dependent, and in particular, the electrochemical subproblem
is susceptible to how far into the non-linear regime we are
(see e.g., [45]).

7. DISCUSSION AND CONCLUSION

We have in this work presented Bernaise, a flexible open-source
framework for simulating two-phase electrohydrodynamics in
complex geometries using a phase-field model. The solver is
written in its entirety in Python, and is built on top of
the FEniCS/DOLFIN framework [42, 83] for solving partial
differential equations using the finite element method on
unstructured meshes. FEniCS in turn interfaces to, e.g.,

scalable state-of-the art linear solvers through its PETSc
backend [84]. We have proposed a linear operator-splitting
scheme to solve the coupled non-linear equations of two-
phase electrohydrodynamics. In contrast to solving the equations
directly in a monolithic manner, the scheme sequentially solves
the Cahn–Hilliard equation for the phase field describing
the interface, the Poisson–Nernst–Planck equations for the
electrochemistry (solute transport and electrostatics), and the
Navier–Stokes equations for the hydrodynamics, at each time
step. Implementation of new solvers and problems has been
demonstrated through representative examples. Validation of
the implementation was carried out by three means: (1) By
comparison to analytic solutions in limiting cases where such
are available, (2) by the method of manufactured solution
through an augmented Taylor–Green vortex, and (3) through
convergence to a highly resolved solution of a new two-phase
electrohydrodynamics benchmark problem of an electrically
driven droplet. Finally, we have presented applications of the
framework in non-trivial settings. Firstly, to test the applicability
of the code in a complicated geometry, and to illuminate the
effects of dynamic electrowetting, we simulated a shear flow of
water containing an electrolyte over a dead-end pore initially
filled with oil. This problem is relevant from a geophysical
standpoint, and exemplifies the potential of the method to
simulate the dynamics of the interaction between two-phase flow
and electric double layers. Secondly, the ability of the framework
to simulate three-dimensional configurations was demonstrated
using a fully iterative version of the operator-splitting scheme,
by simulating the coalescence and subsequent breakup of two
oppositely charged droplets in an electric field. The parallel
scalability of the latter solver was tested on in-house computing
facilities. The results presented herein underpin our aim that
Bernaise can become a valuable tool both within the micro- and
nanofluidics community and within geophysical simulation.

We have in this article not considered situations with multiple
interacting droplets, complicated background flows, or complex
mesh topologies. While the numerical procedure is capable of
handling this, the main purpose of this article (in addition to
presenting the software) has been to establish the validity of the
approach, and to demonstrate its use through fairly rudimentary
examples. Hence, we plan to use the present work as a basis for
studying more complicated systems in the future.

There are several possible avenues for further development
and use of Bernaise. With regard to computational effort,
the linear operator-splitting scheme constitutes a major
computational improvement over a corresponding monolithic
scheme. For the resulting smaller and simpler subproblems,
more specialized linear solvers and preconditioners can be
used. However, the implementation of the schemes are still not
fully optimized, as in many cases it is not strictly necessary to
reassemble entire system matrices (multiple times) at every time
step. Using ideas e.g., from Mortensen and Valen-Sendstad [43]
on how to effectively preassemble system matrices in FEniCS,
one could achieve an implementation that is to a larger extent
dominated by the backend linear solvers. However, as the phase
field is updated at every time step, there may be less to gain in
performance than what was the case in the latter reference.
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FIGURE 12 | Snapshots from the simulations of droplet coalescence and subsequent breakup in an electric field. The phase boundary shows the φ = 0 isosurface of

the phase field. The coloring indicates charge: red is positive and blue is negative. The color bar goes from -20 (deep blue) to 20 (deep red). The quivers show the

velocity field in the x = 0.5 plane (color indicates intensity). (A) t = 0.0. (B) t = 0.25. (C) t = 0.5. (D) t = 0.75. (E) t = 1.0. (F) t = 1.25. (G) t = 1.5. (H) t = 1.75. (I) t = 2.0.

(J) t = 2.25. (K) t = 2.5. (L) t = 2.75. (M) t = 3.0. (N) t = 4.0.

With regard to solving the Navier–Stokes equations, the
solvers considered herein either rely on a coupled approach
(the basic and basicnewton solvers) or a fractional step
approach that splits between the computations of velocity and
pressure (the fracstep solver that was considered in section
6.2). Using direct linear solvers, the coupled solvers yield accurate
prediction of the pressure and can be expected to be more robust.
However, direct solvers have numerical disadvantages when
it comes to scalability, and Krylov solvers require specifically
tailored preconditioners to achieve robust convergence. An
avenue for further research is to refine the fracstep solver
and develop decoupled energy-stable schemes for this problem,
which seems possible by building on literature on similar systems
[67–70, 75], Linga et al. (Submitted). The implementation of such
enhanced schemes in Bernaise is straighforward, as demonstrated
in this paper. On the other hand, in problems where interface
forces and electric fields become sufficiently strong, and the
equations become strongly nonlinearly coupled, it may be

necessary to use a fully-implicit approach (along the lines of
basicnewton), combined with direct linear solvers, to obtain
a converged solution. In the future we aim to compare the
ranges of applicability of various fully-implicit, semi-implicit,
and splitting-based schemes for practical settings.

A clear enhancement of Bernaise would be adaptivity, both
in time and space. Adaptivity in time should be implemented
such that time step is variable and controlled by the globally
largest propagation velocity (in any field), and a Courant
number of choice. Adaptivity in space is presently only
supported as a one-way operation. Adaptive mesh refinement
is already used in the mesh initialization phase in many of
the implemented problems. However, mesh coarsening has
currently limited support in FEniCS and to the authors’
knowledge there are no concrete plans of adding support for
this. Hence, Bernaise lacks an adaptive mesh functionality, but
this could be implemented in an ad hoc manner with some
code restructuring.
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FIGURE 13 | Strong scaling test. We show computational time per timestep

vs. number of processor cores for the coalescence and breakup of droplets in

3D. The results are averaged over the 10 first timesteps for simulations with

128× 128× 256 = 4,194,304 degrees of freedom, with a time step τ = 0.02.

In this article, we have not considered any direct dependence
of the contact angle (i.e., the surface energies) on an applied
electric field. However, the contact angle on scales below the
Debye length is generally thought to be unaffected, albeit
on scales larger than the insulator thickness, an apparent
contact angle forms [85, 86]. Using the full two-phase
electrohydrodynamic model presented herein, effective contact
angle dependencies upon the zeta potential could be measured
and used in simulations of moremacroscopic models; i.e., models
admissible on scales where the electrical double layers are not
fully resolved [86]. This would result in a modified contact angle
energy that would be enforced as a boundary condition in a phase
field model [87].

Physically, several extensions of the model could be included
in the simulation framework. Surfactants may influence the
dynamics of droplets and interfaces, and could be included as in
e.g., the model by Teigen et al. [88]. Themodel in its current form
further assumes that we are concerned with dilute solutions (i.e.,
ideal gas law for the concentration), and hence more complicated
electrochemistry could to some extent be incorporated into the
chemical free energy α(c).

Finally, the requirement of the electrical double layer to
be well-resolved constitutes the main constraint for upscaling
of the current method. Thus, for simulation of two-phase
electrohydrodynamic flow on larger scales, if ionic transport need
not be accounted for, it would only require minor modifications
of the code to run the somewhat simpler Taylor–Melcher leaky
dielectric model, e.g., in the formulation by Lin et al. [60], within
the current framework.
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