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Bridging the gap between traditional immunology and nanoscale biophysics has

proved more difficult than originally thought. For cell biology applications however,

super-resolution microscopy has already facilitated considerable advances. From

neuronal segmentation to nuclear pores and 3D focal adhesion structure—nanoscopy

has begun to illuminate links between nanoscale organization and function. With

immunology, the explanation must go further, relating nanoscale biophysical phenomena

to the manifestation of specific diseases, or the altered activity of specific immune

cell types in a bodily compartment. What follows is a summary of how nanoscopy

has elucidated single cell immunological function, and what might be achieved in the

future to link quantifiable, nanoscale, biophysical phenomena with cell and whole tissue

functionality. We explore where the gaps in our understanding occur, and how they might

be addressed.
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The so called immunological synapse has proved fertile ground for the intersection of nanoscopy
with immunology [1]. The word synapse originates from Greek sun–together and hapsis–joining.
Like a neuronal synapse, the immune synapse (IS) describes a communication zone at the interface
between two cells. In the case of the T cell synapse, a T lymphocyte and an antigen presenting
cell (APC) communicate through an intricately arranged array of receptors. Archetypal immune
synapses can be recapitulated through use of supported lipid bilayers (SLBs) loaded with peptide
bound major histocompatibility complex (p-MHC) [2], or more simply through the use of
activating antibodies bound to glass, directed at the T cell receptor [3, 4]. In the past few years,
several proteins in the T cell membrane have been found to be organized on nano-length scales,
and links to cell function have begun to emerge.

In the fields of super-resolution and biophysics, the IS has had a dual function–as an area for cell
biological insight in itself, and as a proving ground for super-resolution technique development.
Cell biology has benefitted from the system as headway has been made in understanding the role of
nanoscale molecular organization of the TCR [5–7], LFA-1 [8, 9], LAT [10, 11] and the nanoscale
meshworks formed fromfibers like actin [12]. Elsewhere, super-resolution imaging has been used to
study nanoscale structures such as the nuclear pore complex, mechanisms of segmentation within
organelles such as the mitochondria, or the axon and dendrites of neurons [13, 14]. In these cases,
the use of diverse nanoscopic methodologies helped independent researchers report and verify the
same structures.

The organization of the TCR has been subject to rather intense investigation over the last few
years, in part because of controversy over its nanoscale organization, and in part due to artifacts
emanating from the imaging. It therefore provides a useful case study of many researchers being
involved in the elucidation of a phenomenon using new technology.

Bjorn Lillemeier’s group were among the first to show that T cell receptor forms nanoclusters
in activated cells, which group together into islands to amplify a signal, allowing T cells to
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surpass a threshold for activation [6]. In a noisy, live
environment, resolution was reduced, but new information
afforded by this technique showed that the TCR and LAT indeed
organize into nanoscale islands upon activation by a single
pMHC-TCR interaction in vivo.This, the authors posit, is a
nanoscale spatial mechanism for signal amplification—one that
negates the need for 10 or more antigen peptides to be presented
for full T cell activation [15].

However, the existence of TCR clusters in antigen experienced
“resting” cells is less clear, and new analysis suggests that pre-
clustered TCR may be an artifactual symptom of molecular
overcounting [8, 16]. Alternatively, such clusters may represent
ligand-independent triggering of the TCR that happens when
T cells come into contact with various surfaces commonly
used for in vitro assays, including poly-l-lysine [17]. Molecular
overcounting occurs when multi-blinking fluorescent emitters
are detected more than once, in slightly different places, resulting
in a single molecule looking like a cluster in the output data.
Varying the label density is a possible way to rule out false clusters
in super resolution localization data [8].When this technique was
used, no TCR clusters were found in resting T cells. Biologically,
new data suggests that the T cell receptor would seem to benefit
from being a single entity in that this would speed the scanning
phase in resting T cells: if TCRs are non-clustering, they have
a higher probability of coming into contact with pMHC [18].
Recent work by Cai et al. supports this. Here, high resolution
lattice lightsheet microscopy, along with quantification using the
displacement of quantum dots showed howmicrovilli are used by
T cells to speed the scanning process [19]. Jung et al. used variable
angle TIRF and localization of fluorescently labeled TCR and
Zap70 (Syk family kinase involved in TCR activation) to observe
nano-clustering at the tips of the microvilli [20]. The precise
characteristics of TCR and Zap70 clusters, and the function of the
clustering observed at the dwell sites of microvilli requires further
investigation. The Zap70 catch and release model [21] appears
to match well with microvillar scanning, which might provide
the amplification needed for further signaling and full activation
in the presence of a strong, albeit rare signal. Together, these
works provide evidence that the nanoscale spatial localization of
multiple signaling molecules like this are likely to be involved in
the regulation and amplification of an initial TCR-pMHC signal.

NANOSCALE T CELL MIGRATION

Intrinsically coupled to their function of antigen recognition, T
cells are necessarily highly migratory. The precisely orchestrated
timing of targeted T lymphocyte migration is also called
“homing,” and describes a voyage through peripheral tissues,
lymphoid vessels and organs, and along vasculature, during
which a process of differentiation into many different T cell
subtypes occurs—themselves with intrinsic migratory capacities
[22]. In the lymph node, naïve T cells undertake the scanning
of dendritic cells—interactions which can total 500 to 5,000 cell
contacts per hour per T cell [23]. Integrin based adhesions have
long been known to be important for these events, but only
recently have we been able to observe their machinations on the

nanoscale. Molecular clustering is necessary for the structured
formation of adhesions in T cells [24], and new nanoscopy
techniques have allowed us to show that there are levels of
organization beyond microscale adhesion clusters. The dynamics
of such clusters likely occur across many timescales, and while
live cell PALM in the T cell synapse has provided important
insights into nanocluster dynamics with temporal resolution of
1–2 s [10, 11, 25–27], fast dynamics will rely on the development
of much faster localization imaging.

Nanoscale T cell adhesions are short lived, small and distinct
from conventional focal adhesions observed in other cell types.
Recent super-resolution microscopy work has shown that T
cell adhesions based around LFA-1 integrin are very small
throughout the cell—on the length scale of nascent adhesions
at around 100 nm in diameter [9]. Those adhesions that are
anchored to ligand on the outside of the cell, and to actin on the
inside remain engaged from the leading edge through the lamella,
but have a total lifespan of<1min. As the field progresses, further
nanoscopic investigation may help us to answer questions about
the precise composition and compartmentalization of nanoscale
T cell adhesions. One possibility is that actin and the membrane
work together to compartmentalize nano-adhesions, a concept
pioneered by Kusumi [28, 29] and suggested for T cells by
Lillemeier [6].

Recent work has linked the modulation of such nanoscale
adhesions with altered migration due to the loss of function
mutation of a phosphatase associated with autoimmune disease:
PTPN22 [9]. Upon loss of this phosphatase, effector CD8+
and CD4+ cells migrate considerably faster and alter their
nano-adhesion structure as well as their link to the actin
cytoskeleton. In humans suffering from rheumatoid arthritis,
PTPN22 mutation or deficiency is linked to an accumulation
of such effector T cells in the joints [30]. Therefore, it is
possible that phosphatases like PTPN22 act as nanoscale control
switches for integrin based adhesions, and that the lack of this
control causes a default fast migration phenotype, contributing
to the mis-localization of cells and development of autoimmune
disease conditions. The effects on the base migration phenotype
and accompanying nano-adhesion architecture caused by this
mutation warrant more investigation. This might be done in
other fast moving cell types affected by phosphatase mutation
[31], as well as in specific T cell subtypes such as T effector
memory cells that migrate in the periphery or central memory
T cells that migrate mainly in the secondary lymph nodes [32].

MIGRATION PLASTICITY AND
NANO-ADHESION MEMORY

The base structure of nanoscale adhesions may be
immunologically important in the case of memory T cells
which commit themselves to special patterns of migration.
Individual T cells must dynamically alter their style of migration
as they move through different environments in the periphery
and in the lymph nodes [33]. When inside the lymph nodes,
cells use actin to push and squeeze through their surroundings
[34], and LFA-1 integrin to enhance DC scanning and migration
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speed [35]. Along blood vessels, migration and diapedesis relies
on actin “treadmilling” and integrin based adhesions to anchor
themselves and translate actin flow into cell movement [35].
In the diverse environment of the periphery, it is likely that
these modes of migration are mixed and complimentary and are
probably true for other exploratory immune cells. Interestingly,
it is also clear that subtypes of T cells develop and maintain set
migratory patterns as they differentiate. Some predominantly
move around the peripheral tissues (e.g., stem memory T cells),
or remain resident there (T resident memory), while others
reside largely in the secondary lymph nodes, such as the central
memory T cells [32, 36].

Insight into the nanoscale behavior of adhesion receptors
and effectors may provide immunological understanding as to
why these cells maintain such behaviors. One question might be
whether cells coded for certain kinds of migration also maintain
“cluster memory,” where adhesion clusters adopt specific
clustering formations in the membrane based on preformed
intracellular clusters. Such preformed clusters of integrins and
associated intermediates/effectors have been observed in vesicles
in other cells [37]. If such vesicles are preformed and stored
in pools, they could be used to quickly enact specific kinds
of prepackaged migration, by using spatial platforms for fast
signaling in a migratory niche. The precise arrangement of
molecules within vesicles, and their mechanism of formation is
unknown, but may soon be accessible with the combination of
new optical and analytical tools. This hypothesis of nanoscale
spatial memory might extend to vesicular adhesion receptors
and effectors—importantly, integrins can be pre-activated within
such vesicles [37].

The optical tools to analyze such phenomena exist. Lattice
light sheet microscopy (LLSM) already allows for high
spatiotemporal resolution at low laser power. Whole 3D
volumes can be acquired very quickly, enabling imaging of single
cell dynamics with high temporal resolution. Low phototoxicity
and fast 3D imaging with high signal to noise has allowed the
confirmation and measurement of dynamics of the well-studied
immunological synapse in a 3D matrix between a T cell and a
dendritic cell [38], as well as microvilli [19]. Recent advances
in adaptive optics for microscopes has increased the reach of
the lattice light-sheet technique, achieving sub 100 nm lateral
and axial resolution even in highly scattering tissues [39]. The
technique has also been used to get single molecule localization
information, and has provided impressive PAINT images in
fixed cells, where the narrow and homogenous Bessel beam
lightsheet allowed for superior optical sectioning [38].

While LLSM has the advantage of high speed and low
dose, allowing access to fast processes that occur in immune
cells, it has not yet been used for quantification of single
molecules in live cells. Extending this technique to identify
single molecule involved in nanoclusters in live cells might be
achievable through its combination with new live cell cluster
quantification techniques [40]. Instead of focusing on optics or
fluorescent protein development, the algorithm relies on statistics
to increase the temporal resolution, by calculating the fewest
points required to reliably state the relative size and density of
an under-sampled nanocluster. The algorithm works with low

molecule numbers, such that enough information is collected in
only a few raw frames to extract statistically relevant nanoscale
information about cluster dynamics. Through advances in such
quantitation techniques, live cell microscopy techniques and
reversibly switchable or replenishable fluorophore engineering
[41–43], it is likely that the dynamics of individual protein
clusters of signaling molecules will be investigable in live T cells.
Point pattern analysis at physiologically relevant spatio-temporal
resolution will provide highly quantifiable data, potentially
allowing sensitive processes to be statistically analyzed.

INCREASING THE SUPER-RESOLUTION
SAMPLE SIZE

One concern within circles of immunologists is the relevance of
tiny changes in the properties of nanoscale signaling domains
to immune system function. That changes within nanoscale
signaling domains are very small might seem like truism, but
there is a valid point here. While researchers might use T
cells sourced from several different people and observe high
replicability across many samples, the nanoscale change may be
tiny: cluster size changes of a few nanometers for example. Several
functional changes have been linked to nanoscale alterations: the
increased clustering of LAT derived from sub-cellular vesicles
that correlates with T cell receptor activation and synapse
formation [10], the co-clustering of Zap70 and TCR with LAT
[25]as well as Lck [7, 8, 27] upon T cell activation. Recently, links
to mechanism have been posited during the activation of B cells,
where actin and tetraspanin reorganizes B cell receptors [44], in
macrophages, where Src family kinases cause actin to rearrange
FcγR1 nanoclusters [45], and in the regulation and formation of
the natural killer cell lytic synapse [46].

Such studies provide important insight into phenomena in
single cells. However, the low n-numbers lend themselves to
study of the average changes within a heterogeneous dataset
composed of diverse clusters, and do not allow access to
population data when looking at multiple cell types in the same
experiment as is common in immunology labs. This denies
researchers access to possible minority phenomena–nanoscale
machinations that start small, residing at the tail ends of data
distributions, and result in whole cell change, as well as the effect
of the change on the rest of the immune cell population in a given
niche.

HIGH THROUGHPUT TRANS-SCALE
MICROSCOPY

While the average super-resolution experiment relies on data
from a few tens of cells, the jewel in the crown of immunology,
flow cytometry, is able to analyze tens of thousands of cells
in a matter of minutes. This allows for imaging and analysis
of a diverse population, often giving a snapshot of immune
cell populations in a given bodily niche. If super-resolution
microscopy is to be used for population based imaging,
the number of cells imaged, and their diversity must be
increased. To achieve this, researchers have been making efforts
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FIGURE 1 | Nanoscale imaging with multiple metrics and high throughput microscopy. Nanoscale readouts, combined with high throughput analysis may link single

cell, multi cell and in vivo behavior to separate T cell subtypes and disease phenotypes. Combining 3D nanoscale live-cell imaging of many targets with other

nanoscale measures such as tension, temperature, conformation will help us to make causal links to single cell behavior. The use of machine learning and automation

to image 1,000 s of cells and billions of molecules will help us to create true trans-scale experiments. Diagram created using biorender.io.

toward increasing the throughput of an average super-resolution
experiment by automating the process [47, 48], and by using flat
field illumination to increase the number of cells collectable in
each image [49, 50].

Flat field super-resolution microscopy attempts to increase
the illumination area to match the capabilities of scientific
complementary metal oxide semiconductor (sCMOS) cameras,
which offer a huge field of view [49]. sCMOS cameras used
for localization microscopy also have lower readout noise and
rapid readout rates, but are not as sensitive as EMCCD cameras.
The latter have been the equipment of choice for most single
molecule localization microscopy applications. However, while
EM amplifies the signal it also amplifies the camera noise. sCMOS
cameras do not use electron multiplication but have extremely
low camera noise. Together, this means that contrast is higher
and therefore single molecules can be localized more precisely
by the latest sCMOS cameras than by EMCCD [38]. Combined
with the faster readout rate and large field of view, as well as
potential for better quantum yields in the future, sCMOS will
likely supersede EMCCD cameras for localization microscopy.

Most super-resolution microscopes illuminate the sample
such that there is a relatively narrow Gaussian distribution of
intensity from the center of the field of view, which is made
narrower in some cases by the use of a condenser lens to
increase excitation intensity. Fluorophores near the edge of this
illumination zone are less strongly excited than those in the
center, and as a result are less precisely localized. To address this,
Suliana Manley’s group set up a flat field microscope, which relies
on an inexpensive microlens array to image 100 µm2 regions
with super-resolution, more than quadrupling the current limits
[49]. This could well be applied to immunology where samples

of a mixed population of T cells must be imaged all at once,
identified separately and characterized on the nanoscale by super-
resolution.

Automated super-resolution imaging and single particle
tracking has been performed by Masato Yasui of the Ueda lab in
Osaka [47]. His system uses fast focusing based on pixel intensity
at the iris to select the correct focal plane, then machine learning
to find and image cells with a given morphology and fluorescent
signal. Combined with automated addition of chemicals or
desired treatments using robotics, the system has the capacity to
image several 100 cells per day. Single particle tracking or super-
resolution localization microscopy can then be carried out in
multiple conditions, resulting in hundreds of cells per condition,
and millions of analyzable molecules. In conjunction are servers
that can handle the localization of huge numbers of molecules,
and localization and analysis algorithms that make most efficient
use of the CPU or GPU of the systems involved. As an automated
process, new ways to validate the quality of super-resolution data
[51, 52], could be built into the process of screening before image
processing.

MINORITY BIOLOGY

Increasing the n number from an average of 10 cells to
1,000 cells may also allow us access to new biological
phenomena, undetectable when comparing the means of two
conditions. Heterogeneity of clustering in cells is clear—
usually the distributions display a wide range of cluster
shapes, densities and colocalizations with other clustered/non-
clustered molecules. Data comprised of many cells and many
thousands more single molecule detections has the potential to
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be mined in various ways to reveal minority or rare nanoscale
phenomena.

Minority phenomena represent putative events that have a lot
of power for change, but occur at the fringes of distributions. One
might imagine a molecular cluster exhibiting divergent behavior.
Such a cluster might be made of precisely organized layers of
kinases, phosphatases and mechanical intermediates [such as
a focal adhesion [53]] which at a given quorum of molecular
participants [molecular conformations and phosphorylation
states considered] initiates a signal cascade affecting neighboring
clusters. This seed cluster could build up a level of signaling that
then reorganizes actin [through the local action of Rho-GTPases
for example [54]] or the strength of an adhesion [through
modulation of vinculin binding proteins [55]] to change the
direction of cell migration or to initiate the formation of a full
synapse after initial microvillus based scanning.

Such a cluster would certainly be overlooked by conventional
comparison of mean values between two separate distributions
representing the characteristics of thousands of clusters. The
kind of N-numbers available by increasing the throughput of
super-resolution microscopy may allow for statistical analysis of
segregated minority events at the tail ends of the population
distribution on the nanoscale but also at single cell or cell
population level. The transition from “scanning” to “swarming”
mode of neutrophils in the lymph node is a good example of a
single cell instigating a change in the behavior of the population
[56]. High throughput, trans-scale type experiments may aid us
to investigate such phenomena, allowing elucidation of the link
between initial nanoscale behavior and cell to population wide
functional outcomes.

FUNCTIONAL SUPER-RESOLUTION
IMAGING

Nanoscale colocalization of transmembrane proteins with
intracellular signaling intermediates with well-characterized
functions can provide some level of insight into functional
output. Such “proxy” measures are likely to lead to important
discoveries, and with sub 10 nm resolution can complement
FRET techniques. However, clear links between nanoscale
molecular arrangements and their mechanisms will require
the combination of super-resolution microscopy with direct
functional readouts, which together might provide clearer
answers about the importance of nanoscale events and how they
relate to cell function, cell population function and immune
system function (Figure 1).

One example of linking function to super resolved coordinate
data is Travis Moore’s work linking LFA-1 integrin conformation
with its affinity for ligand [57]. By labeling the head group of the
integrin and the inner leaflet of the plasma membrane, Moore
and the AIC at Janelia research institute used interferometric
PALM to directly detect conformational change in the protein by
measuring the distance between the two [57]. The structure of
LFA-1 integrin relates to its affinity, therefore it is important that
the researchers confirmed that the integrin structures predicted
from x ray crystallography matched those in cells.

DNA tension sensors represent another way single molecule
data could be enriched, and have successfully been used
to investigate the force applied by TCR when it binds to
pMHC [58]. Here, the authors describe a positive relationship
between the pulling force of TCR upon peptide-MHC and
full T cell activation. LFA-1 binding to its ligand ICAM-1
augmented TCR/pMHC tension, implying crosstalk between
the two pathways. Such an interaction represents a catch
bond—one that becomes stronger as the force across it is
increased. Other molecules that undergo catch bond behavior
have been investigated by optical traps, such as vinculin
[59]: an intracellular actin/integrin linker that reveals cryptic
binding sites as it is stretched. Many techniques can now
be utilized on a single cell or single molecule level to map
forces in cells [59]. If such techniques can be multiplexed
with super resolution microscopy, this may allow for matching
tension with the spatio-temporal arrangement of molecules on
the nanoscale. Adding layers of information to localization
data could provide a route to discover whether specific
structures or cluster types (with regards molecular content,
density, size, and location) link to the mechanical tension
they exert on their surroundings. This might also be used
to find out whether clusters of molecules such as integrins
are homogenous in their mechanical tension within single
clusters. By imaging cells live, we may be able to discern
whether these characteristics play a role in the basis of many
immune cell functions, such as the formation of microvilli, of
migration in response to chemokine, or of immune synapse
formation. Temperature sensors represent another avenue of
development which may be combined with super-resolution
imaging. Recently, it was reported that mitochondria are
maintained at a temperature of 50 degrees celcius, far above that
of the cytoplasm [60] using a mito-targeted organic probe [61].
ERthermAC, a thermosensitive organic dye, has been used to
detect large temperature changes in the endoplasmic reticulum
of adipocytes [62]. It should not be discounted therefore that
these temperature changes and others might occur in immune
cells.

Finally, the imaging of ions at super-resolution would be
useful for many areas related to immune cell behavior. Changes
in ion flow through single channels are good candidates for
minority events that may cause cell wide nanoscale changes that
translate to function. Calcium ions are highly relevant to T cell
activation, delivered through store operated calcium channels
(SOC) [63] but also T-type channels [64] upon activation of the
T cell receptor. Potassium ions are shown to be inhibitory to T
cells, particular in the tumormicroenvironment [65]. In addition,
potassium efflux may be involved in chronic maintenance
of TEM cells, but several different potassium channels have
compensatory roles, and the dynamics of ion flow at the level
of single receptors is unknown [65]. The investigation of ion
flux at super-resolution is therefore an area ripe for study in
the context of peripheral T cell migration, interaction with
target cells and during a failed response to cancer. Imaging
ions, their respective channels/pumps and intermediates on
the nanoscale has the potential to reveal more about how T
cells respond quickly to different environments, and may be
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achievable soon through the development of a raft of ion sensing
probes [61].

CONCLUSION

Through the combination of cell friendly single molecule
imaging, artifact controls, high throughput microscopy and
multiple metrics on single molecules, trans-scale experiments
can be undertaken. Such techniques may hold the key to
many immunological phenomena that start on the nanoscale,
representing the natural next step for immune function basic
research. They may help us to understand how immune cells
can be used for cancer immunotherapy [66], how the immune
system co-develops with the body’s bacterial population [67], and
how immune cells malfunction and attack our own cells, causing
autoimmune disease. The nano-scale is now truly accessible

to immunologists, and the right combinations of techniques
will soon help us link that nanoscale world to holistic, causal
outcomes.
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