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Thinking Non Locally: The Atemporal
Roots of Particle Physics
Leonardo Chiatti*

ASL VT Medical Physics Laboratory, Viterbo, Italy

Developing an approach defined in previous papers a correspondence between

elementary particles and elements of a particular set of directed graphs said “glyphs”

is made explicit. These can, in turn, be put in correspondence with a particular set

of biquaternions. Charge conjugation and weak isospin inversion then become both

topological (on glyphs) and algebraic (on biquaternions) symmetries. The formalism

describes leptons and quarks, the latter successfully combined into mesons and

baryons. The introduction is possible of both a de Sitter interior spacetime of particles

and the usual external Minkowski spacetime. The biquaternions can be related to creation

and annihilation operators of the corresponding fermionic fields in Quantum Field Theory

(QFT). The base states of QFT and their mutual interactions are thus constrained by their

common emergence from logically antecedent structures. This result appears relevant

for the understanding of the elementary particles spectrum.

Keywords: elementary particles, quantum field theory, origin of time, emerging matter, foundations of quantum

physics

INTRODUCTION

The Quantum Field Theory (QFT) is currently the most successful theory in the description of
the fundamental interactions between elementary particles. Nevertheless, it still presents several
open problems. The most formidable of these is, in our opinion, the following: the QFT formalism
does not constraints the base states (that is, the spectrum of “elementary particles”) nor the form
of their mutual interactions. The fields and their Hamiltonians (or Lagrangian), both free and
of interaction, are introduced by incorporating data or principles borrowed from experience,
so to account for the observed phenomena. As a result of this state of affairs there is not a
well definite QFT, but different QFT descriptions of fundamental interactions (standard model,
supersymmetric models and so on). In this work, which develops results already shown in previous
articles [1, 2], is considered a scenario in which the QFT level of description is emerging frommore
fundamental structures, which determine both base states and their interactions. This attempt of
QFT “logicization” builds on the basic concepts of microevent and “elementary particle.”

In this perspective, the physical world consists of events (the so called interaction vertices)
where some elementary particles are annihilated and new sets of particles are created. So, let us
define an elementary particle (lepton, meson or baryon) as a connection between two interaction
vertices where it is created and successively annihilated.We recall here that only leptons seem really
elementary, while mesons and baryons contain two and three quarks respectively. Gauge bosons
can be considered as operators exchanging leptons or quarks in a given vertex, as will be shown later.
The interaction vertices considered in this work are those that connect real (asymptotic) incoming
and outgoing, leptonic, mesonic or baryonic states, while the quarks exchanged among hadrons
within the interaction vertex do not appear as asymptotic states. The idea examined in preceding
works [1, 2] and that we intend to develop further here is that the causation of such events is of a
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Chiatti Thinking Non Locally

formative, rather than efficient, type. In other words, we
assume that the time evolution of particle states is described
by the conventional QFT formalism based on unitary evolution
operators, which thus constitute the formal representation
of a diachronic efficient causality. We interpret instead the
appearance or disappearance of such states in an interaction
vertex as a non-unitary process (connected with the reduction of
the wave packet [3]) through which certain physical observables
emerge from an unobservable background breaking into time, or
are reabsorbed in it disappearing from time. Such a process is
necessarily synchronic and adynamic, as it connects an atemporal
background with the time domain; this connection manifests
itself in the interaction vertices.

The exposition will proceed as follows. In section
Fragmentation of the void we present the fundamental
assumptions regarding this process, attempting to elucidate the
relations with well-known notions of particle physics such as
color, generation, weak isospin. In section Directed glyphs and
hypercomplex numbers we describe a particular representation
of the process by means of graphs which we shall call glyphs;
we also suggest a correspondence between glyphs associated
with the various particles and certain specific hypercomplex
numbers. We introduce the key concept of “universal oscillator,”
a graph from which all the glyphs can be obtained by means of
operations of distinction or identification of the various edges.
In section Field operators we argue that a correspondence exists
between these operations and QFT creation and annihilation
operators. In section Classification of elementary interactions the
fundamental interactions are re-interpreted in this perspective.
section Connection to the Standard Model elucidates some
connections with the Lagrangian formulation of the Standard
Model of elementary particles and their interactions. Section
Some reflections on the nature of the Higgs field is devoted
to some reflections about the nature of the Higgs field from
the perspective presented in this article. Comparison with
works available in current literature is discussed in section Are
elementary interactions a form of computation? The conclusions
are reported in section Conclusions.

FRAGMENTATION OF THE VOID

In [1, 2] we have characterized the background as the set of

algebraic operators Â, B̂, Ĉ which satisfy the conditions:

Â−1 = ĈB̂; B̂−1 = ÂĈ; Ĉ−1 = B̂Â; (1)

ÂÂ−1 = Â−1Â = Î; B̂B̂−1 = B̂−1B̂ = Î; ĈĈ−1 = Ĉ−1Ĉ = Î (2a)

ŶŶX̂X̂ = Î ∀X̂, Ŷ ∈
{

Â, B̂, Ĉ, Â−1, B̂−1, Ĉ−1
}

(2b)

where Î denotes the identity operator. It is possible to put
these operators in correspondence with the sides of the oriented
triangleABC in Figure 1.The operator Â represents the sideC→
B, while its inverse Â−1represents the side B→ C of the triangle
obtained by inverting the directions of sides in Figure 1. The
operators B̂ and Ĉ can be put in an analogous correspondence
with the other two sides of the triangle, by means of a cyclic
permutation of the letters A, B, C in the previous definition.

FIGURE 1 | Self-duality.

It is possible to obtain a simple geometric representation of
these operators and their product by imagining the points A, B, C
of Figure 1 as the vertices of a spherical triangle (on an ordinary
two-dimensional spherical surface of center O) whose inner
angles and sides are all right angles. Let us consider the rotation
of a straight (flat) angle of the spherical surface around an axis
perpendicular to the plane containing B, C and the center of the
sphere and passing through the latter. This rotation transforms
the sphere into itself by bringing each point to coincide with its
previous symmetric respect to the axis OA, while the point of the
sphere initially coinciding with C is moved in the direction of
B. We associate the operator Â to the quaternion representing
this rotation. The operator Â−1 is then associated with the
quaternion representing the inverse rotation. The other operators
are represented in a similar way.

The product of two operators in a certain order is then
represented by the quaternion associated with the product of the
corresponding spherical rotations executed in the same order.
This representation makes clear the meaning of the relationships
(1) and (2a): the relations (1) state that the execution of the
rotations corresponding to the three operators considered in
anticyclic order sends each point of the spherical surface into
itself; the relations (2a) state that the same effect is obtained by
subsequently performing a rotation and its inverse.

The equation (2b) implies ŶŶX̂ = X̂ŶŶ = X̂−1for each
pair of operators X̂,Ŷ . The product ŶŶcommutes with each
operator X̂ converting it into its own inverse. It is not possible to
interpret this product as the identity, because this identification
would involve X̂ = X̂−1, against the geometrical interpretation
of operators X̂ illustrated in Figure 1. We denote the universal
action of ŶŶ through the symbol − Î = ŶŶ , thus obtaining
− X̂ = X̂−1 .

Based on what we said we can represent the operators Â, B̂; Ĉ
and their inverses as quaternionic units, by letting Â ⇒ i, B̂ ⇒
j, Ĉ ⇒ k, Â−1 ⇒ −i, B̂−1 ⇒ −j, Ĉ−1 ⇒ −k, Î ⇒ 1. The
product between operators is mapped on the product between
quaternionic units. In this way, we obtain the usual relations
occurring between quaternionic units:

ÂÂ−1 = Î ⇒ (i)(−i) = 1 ⇒ ii = 1

Â = B̂−1 Ĉ−1 ⇒ i = (−j)(−k) ⇒ i = jk etc.
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Chiatti Thinking Non Locally

We remark that ŶŶ = −Î ⇒ −1, so that the symbol
minus in operators algebra is mapped on the symbol minus
of quaternionic units. This mapping reveals the meaning of
Equation (2b): the inverse can be also interpreted as the opposite
(rotating of two flat angles in the same direction is different from
rotate of a flat angle in one direction and then in the opposite
direction; in the first case, the total arc is 2π , in the second case it
is 0).

The relevance of the structure made up of the quaternionic
units and their product is justified by the self-duality of
the graph in Figure 1. This is the only self-dual graph in
which every possible connection between vertices is a graph
edge and corresponds to vertex under a duality operation
(mutual conversion of vertices and sides). It constitutes the
only set of objects that coincide with all and only their mutual
transformations, a property that we postulate as essential to
describe something that is self-generated, spontaneous [1, 2]. The
relation XY = Z, where (X,Y,Z) is a cyclic permutation of (i, j, k)
[or, alternatively, an anticyclic permutation of (–i, –j, –k)], means
“Z emerges as the result of the action of X on Y”; we are therefore
dealing with the co-emergence of the elements i,j,k (or –i, –j, –k)
or their mutual co-creation.

This motivation can also be read in systemic terms. In the
graph of a system we have knots and arrows. Nodes represent
events or “individual” objects, arrows or edges represent their
relations. The laws of formation of the nodes can be distinguished
from those of the edges; we can say, using a reductionist
language, that the fundamental laws can be distinguished from
the boundary conditions. All this is very clear, for example,
in molecular structures, whose representative graphs are the
structural formulas. As is well known, much chemistry can be
done simply by reasoning on connection laws and completely
ignoring the laws of node formation (i.e., focusing on chemical
bonds and ignoring the underlying quantum mechanics).

In the case of the timeless background constituted by the
quaternionic units, the latter form the only set of objects
that coincide with their relations (by virtue of self-duality).
In this sense we can say that at the level of the background
the structural laws and those of relationship coincide and
cannot be distinguished. It is no longer possible to distinguish
between “laws” and “conditions” (both represented by the
algebraic rules described above) and we are faced with a level of
irreducible complexity, which cannot be further analyzed. This
level corresponds to the maximum possible “elementarity” and it
is from this that the “elementary particles” emerge. The timeless
background level thus represents the (unreachable) limit of the
reductionist analysis of matter, corresponding to a stage in which
the bottom-up description (from nodes to edges) coincides with
the top-down one (from edges to nodes). This is the lowest
possible level of processes in the physical world.

In the geometric representation described above, the vertices
A, B, C of the spherical triangle can be chosen arbitrarily on the
spherical surface. In other words, the triad of orthogonal axesOA,
OB, OC (where O is the center of the sphere) can be arbitrarily
chosen provided that these axes are orthogonal, have the same
length as the radius of the sphere and the chirality of the system
remains unchanged (we say right-hand). This means that this

triad is defined unless of a rotation in three-dimensional space
(∞3 possibilities) and a homotetia that multiplies the sphere
radius for a factor exp(t) ∈ (0,∞). This homotetia generates
additional ∞1 possibilities, each associated with a point t ∈ (–
∞, +∞) of the real axis. The arbitrary rotation can be described
by a unitary quaternion, and by multiplying this quaternion for
exp(t) we obtain a general quaternion O. In this sense we can say
that ∞4 distinct instances of the representation we introduced
are possible, each associated with a value of O. The instantiation
operation consists therefore of the passage from a single abstract
set V = {1, i, j, k, –1, –i, –j, –k} to one of ∞4 distinct sets
V(O) = {1(O), i(O), j(O), k(O), –1(O), –i(O), –j(O), –k(O)},
where O is a real quaternion. The algebras of the elements of
V(O), V(O’) are different if O and O’ are different.

As we’ll see, the elements of V(O) define physical quantities
that are localized, following an interaction between elementary
particles, in the point-event O. Each element of V(O) appears
together with its opposite, so we are at a stage where O is still
empty. The set of V(O) sets, where O runs on the set of real
quaternions, represents therefore, in this description, the empty
spacetime.

It is possible, at this level, to introduce the concept of
the possibility of causal connection between two possible
instantiations.We will say that two instantiations may be causally
connected if there is, on the space of real quaternions {O}, a
sequence of N+

1 steps (+1,+i), N−
1 steps (+1, –i), N+

2 steps
(+1,+j), N−

2 steps (+1, –j), N+
3 steps (+1,+k), N−

3 steps (+1,
–k), taken in any possible order, leading from one to another.
Each step consists of a “spatial” translation represented by the
imaginary unity ± i, ±j, ± k accomplished in an unitary “time”
interval +1. Since the ratio between the modulus of the spatial
translation and this time interval is 1, each single step is in effect
a jump to the limit speed c = 1. Posing N = (N+

1 + N−
1 ) + (N+

2
+ N−

2 )+ (N+
3 + N−

3 ); Ni = (Ni
+-Ni

−) with i= 1,2,3 one has:

N2 − N2
1 − N2

2 − N2
3 ≥ 0

In general, we can consider jumps of arbitrary duration T and use
arbitrary units for c. Then, posingNcT = ct,N1cT = x,N2cT = y,
N3cT = z:

c2t2 − x2 − y2 − z2 ≥ 0 (3)

The inequality (3) represents the interior of the light cone in
a Minkowski space {(ct, x, y, z)}, whose vertex corresponds
to the start or end point of the succession of steps. In the
following we will use the coordinates of the Minkowski space,
instead of the real quaternions, to distinguish the various possible
instantiations.

Let us now examine what we think takes place during the
actual instantiation of a particle in an interaction vertex, bearing
in mind that two different levels of explication are involved in
this process: one that corresponds to the creation or annihilation
of the particle state outgoing from the vertex or ingoing to the
vertex, respectively; the other relating to the definition of the
properties of the individual centers of charge within the vertex.
Leptons contain only one center of charge, hadrons two or three
(quarks).
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It is therefore necessary to introduce a distinction between
the internal spacetime of the particle, that is the spacetime
“perceived” by the centers of charge in their mutual interactions
without relation to the outside world, and the external spacetime
where the particle propagates as a whole; interactions with other
particles or external probes “perceive” this external spacetime.
While the external spacetime is a Minkowski space, the internal
spacetime must correspond to a portion of Minkowski space
whose geometry is perceived by the centers of charge in a different
way. This different “perception” mode must correspond to the
confinement of the internal processes of the particle and thus to
the presence of a horizon. In this paper, we consider elementary
particles not as objects in the sense of the ontology of classical
physics, but as events or instances. The horizon we are talking
about must therefore be a time horizon.

Let us redefine the point in four-dimensional
Minkowski space that corresponds to the actual instantiation of
the particle (that we assume corresponding to an eigenvector
of particle position, thus neglecting the spatial delocalization of
the particle over its de Broglie scale) as the origin (0,0,0,0) and
consider the region made of up the points (λ0, λ1, λ2, λ3) with:

λ20 − λ21 − λ22 − λ23 ≤ c2θ2 ≤ c2θ20 (4a)

where θ is dependent on the type of instantiated particle, while θ0
is a universal constant that we shall call “chronon.” This constant
establishes the scale of the temporal localization of the particle
in the interaction vertex, and elsewhere we have considered the
identification of cθ0 with the classical radius of the electron [3].

From the outside, the (4a) is only a region of Minkowski
spacetime. We postulate that the dynamics of internal particle
processes sees instead (4a) as an invariant. To give a formal
expression to this postulate, we reinterpret the Minkowski
spacetime to which (4a) belongs as tangent to the five-
dimensional quadrics:

(λ0)
2 − (λ1)

2 − (λ2)
2 − (λ3)

2 − (λ4)
2 = −c2(θ)2 (4b)

in the point (λ0, λ1, λ2, λ3, λ4) = (0,0,0,0,cθ). In the five-
dimensional space, this point belongs to the subspace λ4 = cθ
which is precisely the Minkowski space. The five-dimensional
light cone (λ0)

2 − (λ1)
2 − (λ2)

2 − (λ3)
2 − (λ4)

2 = 0 intersects
this space in two sheets forming the edge of (4a). On the other
hand, it does not intersect the (4b) of which it constitutes
an asymptote. Therefore, the straight segment having the five-
dimensional origin (0,0,0,0,0) and a generic point of (4b) as its
ends will intersect Minkowski tangent space at a point within
(4a). The (4b) can therefore be projected onto (4a). We will
assume that the internal space of the particle is the de Sitter
space (4b), whose bounded projection on theMinkowski external
space is given by (4a). The edges of (4a) are three-dimensional
hyperbolic spaces.

The set of coordinates transformations leaving the (4b)
unchanged is the de Sitter group [4], so our request translates
into assuming that geometry “perceived” by internal processes
is the geometry of a de Sitter space of radius cθ . To understand
the difference with the usual geometry, let us consider the very

simple case of a temporal translation from the point O= (0,0,0,0)
to the point (cT,0,0,0) with θ > T > 0. In Minkowski geometry
(perceived by external processes that link the particle to the
outside) this translation approaches the observer to the future
sheet of the hyperboloid that forms the boundary of (4a). At
the same time, the observer moves away from the past sheet
of the same hyperboloid. In de Sitter’s geometry (perceived by
internal processes), the observer’s chronological distance from
the two sheets of the hyperboloid remains unchanged and
equal to θ , whatever the value of T. This is possible because
in the kinematics of de Sitter space a rule of composition
of durations holds that has the same form as that of speeds
in Special Relativity. As the speed of light is unattainable by
composition of sub-c speeds, so it is impossible to exceed the
duration θ by composing durations smaller than θ [5]. In
other words, the two sheets of the hyperboloid appear to the
observer as a horizon: the de Sitter horizon. The parameter
θ measures the (chronological, in Beltrami time) distance of
each internal observer from the horizon. It is called “de Sitter
time.” The unattainability of the horizon becomes, from an
external point of view, a limit on the maximum duration of
every internal process related to the particle instantiation, that
does not exceed θ . For this reason, the constant θ0, which
sets an upper limit on the de Sitter time, fixes the scale of
the extension of a particle on the time domain, when it is
“instantiated” on Minkowski space by interaction with other
particles.

Let us thus consider three vectors (cθ , vl1θ , vl2θ , vl3θ),
with l = 1,2,3, in the internal space (4a) and two of which
(or even all three) can be coincident. Let us also consider
their temporal conjugates (–cθ , vl1θ , vl2θ , vl3θ), which will
have the same projections Ol = (0, vl1θ , vl2θ , vl3θ) onto the
contemporaneousness space of O = (0,0,0,0). We shall identify
these projections with the spatial positions of the centers of
charge at the time of the instantiation in O. Such positions are
defined by the velocity vectors (vl1, vl2, vl3) applied in O.

We postulate that the first step of the instantiation of the
particle in O actually consists of the separation of the elements
of V(O) = {1(O), i(O), j(O), k(O), −1(O), −i(O), −j(O),
−k(O)} (we denote these particular elements in bold font) in
two different sets V+(O) = {1(O), +i(O), +j(O), +k(O)} and
V−(O) = {−1(O), −i(O), −j(O), −k(O)} or, alternatively,
V+(O) = {1(O), −i(O), −j(O), −k(O)} and V−(O) = {−1(O),
+i(O), +j(O), +k(O)}. The first possibility is related to the
creation of a particle, while the second one is related to the
creation of an antiparticle. In the following we only consider the
set V+(O), because the set V−(O) undergoes the same process.

The second step consists in the separation of the elements
of V+(O)−{1(O)} = {i(O), j(O), k(O)} or (in a disjunctive
sense) {−i(O), −j(O), −k(O)} in one, two or three partitions
according to the number of centers of charge (respectively one,
two or three). Each partition becomes a center of charge, so that
the correspondence between partitions and centers of charge is
biunivocal. The elements of the same partition Ai (i= 1,. . . , imax;
imax ≤ 3) are mapped on one and the same element of V(Ol)-
{−1(Ol), +1(Ol)} where Ol (l = 1,2,3) denotes the position of
l-th center of charge, defined by one of the three velocity vectors
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applied in O. The image of a given partition Ai is assumed to be
independent on the value of Ol (l = 1,2,3).

These postulates are equivalent to stating that from the set
V, which contains any element and its inverse, an unbalanced
situation is reached in which: (1) a temporal localization occurs
with the separation of the “retarded” version V+(O) of V(O)
from the “advanced” one V−(O); this separation admits an
obvious interpretation in transactional approach to quantum
mechanics, as we will see in a successive section; (2) each partition
of the triad {i(O), j(O), k(O)} (or alternatively of the antitriad {–
i(O), –j(O), –k(O)}) is transformed in a single element of {i(Ol),
j(Ol), k(Ol), –i(Ol), –j(Ol), –k(Ol)} and the mutual co-creation
of its elements is then halted. The result is a single, “fixed,”
center of charge whose “internal” properties are represented by
that element. This is equivalent to the exit from a state of self-
regenerating “balanced” vacuum and to the genesis of a particle
state or to the inverse process of reabsorption of this state in the
vacuum.

The elements of {i(O), j(O), k(O), –i(O), –j(O), –k(O)},
multiplied by the ordinary imaginary unit i, correspond to what
in the standard model is the color degree of freedom through the
following correspondences (unless cyclic permutations):

ii = R, ij = G, ik = B, −ii = R̄, −ij = Ḡ, −ik = B̄; (5)

where R= red,G= green, B= blue. The color of a specific center
of charge is defined as the product of the colors of the elements
of the partition mapped on that center, according to the rules: RG
= B̄, GB= R̄, BR= Ḡ, R̄Ḡ = B, ḠB̄ = R, B̄R̄ = G, GBR= ḠB̄R̄ =
white. These relations can be seen as derived by the product
of terms (5), associated with colors (anticolors), taken in cyclic
(anti-cyclic) order with an additional i factor. The symbol ±i
represents the white color. We remark that, as a consequence of
these rules, the global color of a given particle (lepton-antilepton,
meson, baryon-antibaryon) is ever white.

As we shall see, the selected element of {i(Ol), j(Ol), k(Ol),
–i(Ol), –j(Ol), –k(Ol)} instead represents the generation of the
elementary fermion (quark or lepton) associated with the center
of charge in Ol, while its sign corresponds to the electric charge
of the fermion.

DIRECTED GLYPHS AND HYPERCOMPLEX
NUMBERS

Glyphs have been introduced in Chiatti [2] as graphs that
represent the second and third level of explication of the process
described in the preceding section. Here, however, we shall
consider directed glyphs while in Chiatti [2] the direction was
not taken into consideration. A glyph is a tree graph with a root
called “major vertex,” first-level branches called “internal edges”
each of which connects the major vertex to a “minor vertex” and
second-level branches that start from the minor vertices, called
“external edges.” The major vertex represents an instantiation
in O while each minor vertex represents the instantiation of a
center of charge. The internal edge which connects the major
vertex O to the minor vertex Ol represents the mapping of a
partition Ai of {i(O), j(O), k(O)} (or alternatively {–i(O), –j(O),

–k(O)}) on a single element of {i(Ol), j(Ol), k(Ol), –i(Ol), –j(Ol),
–k(Ol)}. The product of the colors associated with the elements
of Ai defines the color of the center of charge placed in Ol.
Equation (5) associates this color (or anticolor) with a single
element of {ii(O), ij(O), ik(O), –ii(O), –ij(O), –ik(O)}, which thus
becomes a property of the internal edge. Since we start from a
triad {ii(O), ij(O), ik(O)}= (R,G, B) or from an antitriad {–ii(O),
–ij(O), –ik(O)}= (R̄,Ḡ ,B̄) and successively two or three elements
can be substituted by their product, the only possibilities are:
three colors (baryon), one color, and one anticolor (meson),
white (lepton, antilepton), three anticolors (antibaryon). Only
one major vertex and one, two or three minor vertices exist,
therefore, according to whether one is considering a lepton
(antilepton), a meson or a baryon (antibaryon), respectively. We
represent colored internal edge as coming in themajor vertex and
anticolored internal edge as coming out from the major vertex.
The center of charge represented by the minor vertex at the other
end of the internal edge is a quark in the first case, an antiquark
in the second case. We assume coherently internal edges coming
in the major vertex for leptons, coming out the major vertex for
antileptons.

In conclusion, we have three possible configurations of
internal edges, represented in Figure 2.

The incoming edges are elementary fermions (electron, u
quark, d quark, neutrino and their analogs of the second and
third generation); outgoing edges represent the corresponding
antifermions. It is rather singular that graphs of Figure 2 relating
to hadrons are the same as those obtained in a completely

FIGURE 2 | Directed glyphs. Only internal edges (elementary fermions) are

here represented.
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different context (that of the so-called S matrix topological
expansion) by Capra in 1979 [6], apart from the opposite
direction of the edges.

Let us now consider the external edges associated with the
minor vertex Ol. They represent the image of the partition Ai,
which is an element of {i(Ol), j(Ol), k(Ol), –i(Ol), –j(Ol), –
k(Ol)}. We represent this element by means of one, two or
three external edges having the same direction. The number of
external edges defines the generation of the elementary fermion
corresponding to the minor vertex (one edge = first generation,
two edges= second generation, three edges= third generation).
The direction of the external edges (which is the same for all
the external edges connected to the same minor vertex) instead
defines the fermion charge. A minor vertex with incoming
external edges will be associated with a charged lepton (or
antilepton) or with an u, c, t type quark (or antiquark). Instead,
outgoing edges will denote a neutrino (or antineutrino) or a d, s,
b type quark (or antiquark).

In other words, in order to reproduce a single element
of {i(Ol), j(Ol), k(Ol), –i(Ol), –j(Ol), –k(Ol)} the external
edges connected to Ol can all be distinct (third generation
fermion), two identified and one distinct (second generation
fermion) or all three identified (first generation fermion). Their
common direction, as we have said, determines the charge of
the fermion. The identification rules are therefore as follows
(incoming/outgoing direction has been distinguished through
the sign):

(1 = 2 = 3) = i; (1 = 2 6= 3) = j;
(−1 = −2 = −3) = −i; (−1 = −2 6= − 3) = −j;

(1 6= 2 6= 3) = k;
(−1 6= − 2 6= − 3) = −k. (6)

Obviously, if the glyph contains a single internal edge and
therefore only one minor vertex, the fermion associated with this
latter will be a lepton or an antilepton depending on the direction
of the internal edge. Otherwise it will be a quark or antiquark,
depending on the direction of its internal edge. Let us consider
two examples.

There is only one internal edge entering the major vertex of
glyph reported in Figure 3; then this glyph represents a lepton.
Moreover, there is only one external edge entering the minor
vertex; therefore this vertex is associated with a first generation
charged lepton. The glyph illustrated in Figure 3 represents
therefore the electron.

The glyph reported in Figure 4 contains two internal edges,
one coming in the major vertex, the other coming out from it.
We therefore have a meson made of two quarks. The first quark
has only one external edge entering its minor vertex; it is a first
generation u-type quark. Its internal edge enters themajor vertex;
this quark is then actually a u quark.

FIGURE 3 | Electron glyph.

The internal edge of the second quark comes out from the
major vertex; it is therefore related to an anti-quark in the strict
sense. The minor vertex has two outgoing external edges; it is
therefore an anti-s quark. The represented particle is thus an
(anti-s, u) meson of unspecified spin and parity; some dynamical
state of the positive kaon.

The directed glyph of a single center of charge Ol can be
represented by means of a suitable biquaternion (a, b), where
a = ± i(Ol), ± j(Ol), ± k(Ol) represents its external edges and
b = ± i1(O), ± ii(O), ± ij(O), ± ik(O) its color. We define
the following correspondence between elementary fermions of
the standard model and the ordered pairs (a, b) (below we
omit the imaginary unit i in b, because implicit in the pair order,
and the dependence on O, Ol; internal parentheses mean the
alternative “... or...”):

Ist generation:
(i, –1)= ν1; (i, (i, j, k))= d(R,G,B);
(i,+1) = anti-ν1; (i, (–i, –j, –k))= anti-d(anti−R,anti−G,anti−B);

(–i, (–i, –j, –k))= anti-u(anti−R,anti−G,anti−B); (–i, –1)= e−;
(–i, (i, j, k))= u(R,G,B); (–i,+1)= e+;

IInd generation:
(j, –1)= ν2; (j, (i, j, k))= s(R,G,B);
(j,+1)= anti-ν2; (j, (–i, –j, –k))= anti-s(anti−R,anti−G,anti−B);

(–j, (–i, –j, –k))= anti-c(anti−R,anti−G,anti−B); (–j, –1)= µ
−;

(–j, (i, j, k))= c(R,G,B); (–j,+1)= µ
+;

IIIrd generation:
(k, –1)= ν3; (k, (i, j, k))= b(R,G,B);
(k,+1)= anti-ν3; (k, (–i, –j, –k))= anti-b(anti−R,anti−G,anti−B);

(–k, (–i, –j, –k))= anti-t(anti−R,anti−G,anti−B); (–k, –1)= τ−;
(–k, (i, j, k))= t(R,G,B); (–k,+1)= τ+;

We observe immediately that:

1) The inversion of the “real” part of (a, b), that is the operation
a→ –a, corresponds to the weak isospin inversion;

2) The inversion of the “imaginary” part of (a, b), that is the
operation b → –b, corresponds to the passage to the
corresponding antiparticle;

3) Moving from left to right along each row of the diagram, the
electric charge changes from 0 to ± 1, respectively in equal
steps of± 1/3;

4) There may be only three states of color (or anti-color) and
only three generations of fermions.

5) A “natural” chirality exists: that of the right-handed triad (i, j,
k). The weak isospin inversion reverses this chirality.

6) The set of axes (i, j, k, ii, ij, ik) admits two physically relevant
subsets: that of flavors (i, j, k) and that of colors (ii, ij, ik).

FIGURE 4 | Positive kaon.
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We note that the here considered correspondence is similar
(but different) to that discussed by Rowlands in its “two spaces”
formalism [7]. The further correspondence between this set of
biquaternions and directed glyphs is very natural. For quarks, an
internal edge will be represented by the element b of the pair,
regarded with a plus sign if the edge enters the major vertex, with
the minus sign if it comes out. It may be ii, ij, ik depending on
its color (or anticolor) state. For leptons we have b = –i1; for
antileptons b = +i1; the internal edge is respectively coming
in and out the major vertex. The configuration of the external
edges will be represented, for both leptons and quarks, from the
element a of the pair. The first, second and third generation
(respectively one, two or three external edges connected to the
minor vertex) will correspond respectively to i, j, k, considered
with a minus sign if the edges enter the minor vertex, with a plus
sign if they come out.

Let us consider, for example, the only elementary fermion in
Figure 3. Its internal edge enters the major vertex so that b = –
i1; the only external edge enters the minor vertex, it is therefore
a = –i. The fermion is thus represented by the pair (a, b) = (–i,
–1); it is therefore an electron.

Let us pass now to consider the two elementary fermions
represented in the glyph of Figure 4. We have two internal
edges, the one incoming and the other outgoing; b is therefore
respectively equal to (i, j, k) and (–i, –j, –k). We have in addition
a single external edge coming in the minor vertex in the first case,
and two external edges coming out from it in the second case;
then a is respectively –i and j. The fermions will therefore be
represented respectively by the pairs (a, b) = (–i, (i, j, k)) and
(a, b)= (j, (–i, –j, –k)). They are then identified respectively with
an ordinary u quark and a strange (s) antiquark.

All possible glyphs are generated, through certain operations,
from the graph illustrated in Figure 5.

It is necessary to select the direction of each edge, internal as
well as external. For an internal edge this selection determines
whether the corresponding center of charge is a fermion or an
antifermion. For an external edge it defines the electric charge of
the fermion (antifermion). All external edges connected to the
same vertex have the same direction, thus it has to be selected

FIGURE 5 | The universal oscillator.

for only one of them. Furthermore, two or three internal edges
can be mutually identified (in which case they all have the same
direction) and the same holds for the concurrent external edges
in the same minor vertex.

When the edges (respectively internal and external) are
all identified and their directions are not fixed we have a
configuration which is equivalent to the vacuum. As an effect
of the action of certain distinction/identification operators the
various particles (glyphs) emerge from the vacuum or come
back to it. In a sense, the graph that we are considering
is a kind of “universal oscillator” whose ground state is the
vacuum, and whose “excitations” are the known elementary
particles (leptons, mesons, baryons). It is therefore natural to
ask whether the distinction/identification operators expressed in
the language of the universal oscillator do not correspond to the
different operators of creation/annihilation of the various fields
of QFT. The answer is affirmative, as we will check in the next
section.More precisely: the structure represented by the universal
oscillator selects the possible field operators of QFT. We will see
later that it also constrains the interactions.

FIELD OPERATORS

Several algebraic formalisms can be proposed to represent the
states of the universal oscillator and the transition from one
of these states to the vacuum or vice versa. For the internal
edges (or the external edges associated with a given minor
vertex) we have three different degrees of distinction: all three
edges are distinct, one is distinct and the other two are not,
no edges are distinguished. Even with regard to their direction,
we have three different degrees of distinction: the edge enters
the vertex (the major vertex for an internal edge, the minor
vertex for an external edge), the edge leaves the vertex, the
edge has no defined direction. Both of these situations can be
described by two-element column vectors, respectively v1i = δi1,
v2i = δi2, v3i = 1; i = 1,2. According to this convention, the
projectors Mik = δil δkl (l = 1,2) transform v3i in vli while
δlk transform vli in v3i. In addition we have the rising operator
δi1δj2 that transforms v2i in v1i and the lowering operator δi2δj1
that transforms v1i in v2i. It is therefore possible to describe
algebraically the operations of distinguishing the elements of the
oscillator, as well as removing such distinctions and returning
to the vacuum, through the successive action of suitably defined
operators. In the following, however, we will not explicitly use
such representations for distinctions. Instead, we will consider
the transition from vacuum to a specific elementary fermion
(center of charge) and the inverse passage as terms of a binary
logic.

Let us consider the set Ŵ = (∅, M) whose elements are
projection operators respectively on the vacuum (ground state
of the universal oscillator) denoted with ∅ and the elementary
fermion represented by biquaternion M. We consider the
structure (Ŵ, ·, ()) where · is a binary operation on the elements
of Ŵ defined by the composition law:

M ·M = M, ∅ · ∅ = ∅, M · ∅ = ∅, ∅ ·M = ∅, (7)
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which is the same of the conjunction “and” in conventional
logic, if the Ŵ elements are taken as “true” and “false.” There
is in addition the unary operation () defined by the law of
composition:

(∅) = M, (M) = ∅, (8)

which corresponds to negative. Naturally:

((M)) = M, ((∅)) = ∅, (9)

and these results can be summarized in the abstract expression
(())=, the so called Law of Crossing. Furthermore:

(M) · (M) = ∅ ·∅ = ∅ = (M), (∅) · (∅) = M ·M = M = (∅),
(10)

and these results can be summarized in the abstract expression
()·() = (), the so called Law of Calling. The structure (Ŵ, ·, ())
thus satisfies the Laws of Calling and Crossing as indicated by
Spencer-Brown in his “Laws of Form” [8, 9]. In the language
proposed by this author, the operator () is both the act of
“distinguish” the element of Ŵ on which the operator acts
(which appears inside the parenthesis) on the other (which is
left “out,” as a result) and the result of such action. Physically,
(∅) = M represents the creation of elementary fermion M from
the vacuum, through all the acts of distinction of edges and their
orientations that define it with respect to this background. The
reverse operation (M) = ∅ represents the annihilation of that
elementary fermion in the vacuum, which coincides with the
removal of such distinctions.

The algebra of distinctions can be immediately connected to
that of the (fermionic) operators which create/annihilate M on
QFT states represented by the kets | 0>, | 1> or their conjugate
bras, through a suitable definition scheme. We pose:

[X] = λ | λ′ >, (11)

where λ is the number of elementary fermions created by
operation (X), X ǫ Ŵ and λ′ is the final number of fermions after
that operation. We obtain:

[∅] = 1 | 1 >= | 1 >; [M] = 0 | 0 >= 0. (12)

Let us define the operator A+ through the rather intuitive
relations:

[∅] = A+ | 0 >; [M] = A+ | 1 > . (13)

These definitions connect the concept of vacuum in the sense of
ground state of universal oscillator with that of “vacuum” in the
sense of QFT field associated with the elementary fermion M. It
results:

A+ | 0 >= | 1 >; A+ | 1 >= 0. (14)

Now let:

[X]+ = λ | λ′ >, (15)

where λ is the number of elementary fermions annihilated by
operation (X), X ǫ Ŵ and λ’ is the final number of fermions after
that operation. We obtain:

[∅]+ = 0 | 1 >= 0; [M]+ = 1 | 0 >= | 0 > . (16)

Let us define the operator B through the relations:

[∅]+ = B | 0 >; [M]+ = B | 1 > . (17)

It results:

B | 0 >= 0; B | 1 >= | 0 > . (18)

These relationships are exactly the same fulfilled from A+, when
states | 0 >, | 1 > are exchanged. This is equivalent to say
that B is the transpose of A+ or, in other words, that B = A. The
obtained relationships can then be rewritten as:

[∅]+ = A | 0 >; [M]+ = A | 1 > . (19)

And:

A | 0 >= 0; A | 1 >= | 0 > . (20)

The operators A, A+ are not yet the creation/annihilation
operators of QFT, although they are connected to them. The
difference lies in the fact that the common QFT operators
create and annihilate the centers of charge associated with the
elementary fermions, while the operators introduced here create
and annihilate only the biquaternion M associated with a center
of charge. It is therefore necessary to integrate the insofar
neglected dependence of the fermionic state on the spacetime
coordinates. This can be done by introducing in the definition
of A, A+ suitable factors depending on these coordinates.

First of all, we will have a multiplicity of dynamical states that,
under reasonable conditions, will be labeled by an appropriate
state index i= 0, 1, 2..., to which an occupation number (number
ofM fermions in that state) ni = 0, 1 will be related. Posing:

νs =
s − 1
∑

i = 1

ni , (21)

and:

As = (−1)νsA,As
+ = (−1)νsA+, (22)

The correct anticommutation rules between different states will
be guaranteed:

{As,Al} = {As
+,Al

+} = 0; {As,Al
+} = δsl. (23)

Secondly, it is necessary to decompose the dependence
of the state on the spacetime coordinates (that is, the
wavefunction) in its Fourier components. With this choice,
the creation/annihilation operators become operators acting on
dynamical states represented by these components. If we redefine
the operators simply multiplying them by these components:

Ap ,E = exp[−i(Et−p · x)/h̄]A; Ap
+
,E = exp[i(Et−p · x)/h̄]A+

(24)
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then the square modulus of the integral on the coordinates of the
scalar product of states coming in and out from an interaction
vertex gives the probability of that vertex, as prescribed by the
Born rule. According to the transactional reading of quantum
formalism, this is the fraction of “quanta” of energy E, pulse
p and spin s that mediate the causal relationship between that
vertex and the vertex corresponding to the preparation of the
initial state [10]. The operators redefined in this way are the QFT
creation/annihilation operators of the center of charge associated
with the elementary fermionM.

We remark that each Fourier component is an eigenfunction
of both the energy operator ih̄∂ t with eigenvalue E, and three
momentum operators –ih̄∂x, –ih̄∂y, –ih̄∂z . On the quaternionic
version {O} of the Minkowski spacetime the quadrimpulse is
defined as (we denote here the quaternionic elements in bold font
to avoid confusion with the ordinary imaginary unit i):

P = (i1)(ih̄∂ ict)+ (ii)(−ih̄∂x)+ (ij)(−ih̄∂y)+ (ik)(−ih̄∂z). (25)

This operator is relevant in Dirac theory of ½ spin particles. For
centers of charge which freely propagate on spacetime (leptons),
the operator γ 0P∗c, with

γ 0 =
(

12 0
0 −12

)

, (26)

P∗ = (i1)(ih̄∂ ict)− (ii)(−ih̄∂x)− (ij)(−ih̄∂y)− (ik)(−ih̄∂z).

(27)

represents the particle rest energy (this statement is the Dirac
equation). For quarks within the de Sitter micro-space (4) the
situation is more complex and we remand the discussion to other
works [11].

CLASSIFICATION OF ELEMENTARY
INTERACTIONS

The content of the previous sections can be summarized by
saying that the systematics of “particles” (base states of QFT) is
constrained by the rules of “distinction” with which they emerge
from a structured vacuum. It is therefore not surprising that, for
the same reasons, in this scheme also the systematics of particle
couplings is determined unambiguously. We will not develop
a detailed theory of elementary interactions, determining their
structure, calculating masses and mixing constant and so on;
these more technical aspects will be presented in subsequent
works. Instead, we want to expose the basic logic of the
emergence of interactions, as before we have explained that of
matter and spacetime.

In classifying the possible interactions, we must first
distinguish those involving individual elementary fermions by
those involving physical particles as a whole. As regards the
former, these will be represented by interaction vertices of the
type:

(a, b) → (a′, b′)+ (r, q)

where this writing means that the elementary fermion
represented by the biquaternion (a, b) is transformed into

elementary fermion represented by biquaternion (a′, b′), with
emission of the interaction quantum (r, q). Is a = a′ + r; b = b′

+ q. All “crossed” versions of this process are also eligible, for
example the absorption of quantum (r, q) by the fermion (a′,
b′) with production of fermion (a, b); or the creation of the
pair formed by fermions (a, b), (–a′, –b′) with annihilation of
quantum (r, q); or the annihilation of (a, b), (–a′, –b′) with
production of (r, q). The classification of interactions of this kind
thus coincides with that of interaction quanta (r, q).

We can represent (r, q) as the union of (a′, b′) and (–a, –
b), this latter canceling (a, b). This quantum will act or only
on the external edges of the fermion glyph (weak isospin and
generation), or only on its internal edges (color). The sets of
distinctions which are relevant in these two cases are indeed
disjoint; the relative interactional domains are therefore also
disconnected.

In the first case the total color of the elements (a′, b′) and (–a,
–b) must be white, and this implies b′ = b. The quantum can
be represented by the not ordered pair [a′, –a] of the real parts
of (a′, b′) and (–a, –b). The operation which converts a′ in –
a can only be one of the two elementary trasformations acting
on the external edges. The first one consists in reversing the
direction of the edges, keeping their identifications as fixed. In
this case a′ and –a represent the same axis taken with opposite
signs and we have the three possibilities [–i, +i], [–j, +j], [–
k, +k]. The second operation consists of the reconfiguration of
identifications between external edges, keeping their direction as
fixed. In this case a′ and –a represent two axes not necessarily
equal, taken with the same sign. We have the possibilities [–i, –j],
[+k,+j], and so on.

Let us consider a fermion of any color (including then leptons)
whose real part, summed to an element of a pair of the first type
gives a null result. The survival of the other element is equivalent
to the creation of an outgoing fermion of same color and same
real part. For example:

(−i,−1) + [−i, + i] = (−i,−1)

which transforms an electron into an electron. It is easily
recognized in this scheme the mode of action of quanta γ

(photon) and Z0. When the sum of the real part of the same
fermion and an element of a pair of the second type gives a
null result, the survival of the other element is equivalent to the
creation of an outgoing fermion of same color and the real part
of opposite sign. For example:

(−i,−1) + [+i,+i] = (+i,−1)

which converts an electron into a neutrino ν1, or:

(−i,−1) + [+j,+i] = (+j,−1)

which converts an electron into a neutrino ν2. It is recognized
in this scheme the mode of action of quanta W+, W− and the
mixing of flavors of the electroweak interaction. The electron
is converted into an electronic neutrino which consists of an
oscillating superposition of neutrinos of different generation
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and mass; an u quark is converted into a d′ quark which is a
superposition of d, s, b quarks and so on.

The photon is distinct from the boson Z0 by virtue of its
coupling with the electrical charge. The meaning of this physical
quantity will be discussed in section Are elementary interactions
a form of computation? For now we limit ourselves to remark
that the electric charge Q of a given elementary fermion can be
defined in terms of its biquaternion (a, b). If n is the number of
color states of the internal edge associated with that fermion (1
for leptons, 3 for quarks), then the following relation holds:

Q = ± sign(b)

2

[

1 − sign(a)

n

]

, (28)

where the sign plus holds for values of the expression in square
parenthesis exceeding 1, otherwise the sign minus holds.

Coming back to the quantum (r, q), if it instead acts only
on the internal edges of the elementary fermion glyph, then it
must be r = 0 that is a′ = a. The quantum is represented by
the not ordered pair [b′, –b] of the imaginary parts of (a′, b′)
and (–a, –b). The only possible action on internal edges leaving
glyph topology and spatiotemporal explication of its elementary
fermions unchanged is the permutation of the i, j, k axes. This
permutation must be cyclic if the chirality of the triad has to be
preserved.

The operation which sends b′ in –b can therefore only consist
of the cyclic permutation of two axes. This means that b′ and –b
must be the same or different axes with opposite sign. We have
then the possibilities [–i, +j], [–k, +j], and so on. The leptons
are changed in themselves by the transformation [1, –1], while
the colors of the quarks inside a hadron will be exchanged while
maintaining the total color white. For example the process:

(i, i)+ [−i,+j] = (i, j)

describes the conversion of a down red quark in a down green
quark. The interaction quanta are in this case the gluons,
mediators of the color interaction. As can be seen, they are very
special quanta because unlike (for example) photons they do not
propagate on spacetime between different interaction vertices.
Instead, they are directly exchanged between two quarks within
a single vertex of strong interaction. These quarks can belong to
the same hadron or to different hadrons with superposed de Sitter
micro-spaces.

Summarizing: the charge centers localized within a leptonic
or hadronic microcosm, projected onto ordinary spacetime,
are delocalized within this microcosm, more precisely within
de Sitter’s horizon of the tangent point-event O. In the case
of leptons, such delocalization can be assumed homogeneous
given the absence of interactions with other centers of charge.
Basically, a homogeneous phase plane wave can be assumed
in the particle rest frame, which decays to null values beyond
the horizon of O. In the hadron case there are several centers
of charge that can interact with each other (quarks) and their
spatial delocalization must therefore be described by appropriate
internal orbitals of the particle. Two centers of charge can interact
electromagnetically or through weak interaction, whether they

belong to the same particle or to different particles. These
interactions consist in the exchange of gauge quanta γ , Z0,
W+,W− that can be real or virtual. If one of these quanta is
exchanged in a virtual process, then the uncertainty about the
distance of its propagation is in the order of h̄/mc, where m is
the mass of the quantum.

In the hadronic case we must also consider the exchange of
color between the quarks belonging to the same hadron or to
different hadrons whose microuniverses have at least partially
overlapping space-time projections. In this second case the
interaction takes place in the overlapping region. The exchange
of gluons is always virtual.

The spatial localization of a quantum in an interaction event is
that of the charge centers coupled with the quantum in that event.

So far we have talked of interactions involving individual
elementary fermions. There are also interactions involving the
physical particle (lepton, hadron) associated with the full glyph,
seen as a whole. The first of these will be the merging of several
hadrons and their subsequent dissociation in other hadrons.
This “hadrodynamical” interaction is the second level of what
is commonly called “strong interaction,” while the first level is
the color interaction inside each hadron. The more relevant
distinction between the picture of hadronic processes presented
in this paper and the current one is related to the relationship
between a quark and the hadron it belongs to, which never is
given up (although the hadron itself can change), in any stage
of interaction. In fact, the glyph of a quark can only appear
as a portion of a hadron glyph. The exchange of color (color
permutations) between the quarks belonging to the same hadron
can be described by introducing gauge quanta called gluons, but
wemust keep inmind that this exchange is always virtual: a gluon
is emitted by a quark and absorbed by another quark of the same
hadron. The gluons, therefore, never come out of the hadron
microcosm in which they are exchanged (they cannot be freely
emitted or absorbed). It is possible to have a gluonic exchange
between quarks of different hadrons only if the projections, on
ordinary spacetime, of their de Sitter microspaces admit a region
of intersection; in this case the exchange can take place within
this region. Naturally, even an exchange of this kind is virtual.
The gluons therefore never appear as real particles (asymptotic
states).

For example, the vertex np∗π−∗ (where n, p e π fields are
those of neutron, proton and pion respectively) can be seen
as the emission of a gluon by a quark up inside the neutron,
accompanied by the gluon decay in a up and anti-up quark
pair within the neutron microspace. The newly generated pair
belongs to a neutral pion with its own de Sitter microspace, at
least partially superposed to that of neutron. Subsequently, the
neutral pion exchanges its own up quark with a down quark of the
neutron turning into a negative pion. The neutron thus becomes
a proton. The hadrodynamical interaction is thus intertwined
with the color interaction in a way that preserves, at each instant,
the belonging of a quark to a specific hadron.

The second interaction of this category is that gravitational,
linked to the gauging of the four-momentum of the global
physical particle (lepton, hadron). We must note that the
quadruplet [1, i, j, k] precedes, from a logical point of view,
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the emergence of spacetime and therefore cannot depend on the
spacetime coordinates. In this sense there is a global frame of
reference and “absolute” accelerations measured in it. However,
Einstein taught us that it is possible to describe the gravitational
field through an accessory metric. This metric defines a geometry
in which the motion of an object in free fall in a gravitational field
is described as free motion. From our point of view this means
that it is necessary to generalize the Minkowski metric through
the introduction of a connection, according to the criteria of
general relativity.

CONNECTION TO THE STANDARD MODEL

The reasoning outlined in the previous section leads to a
description of weak and strong interactions very similar to that
offered by the Standard Model (SM). In this section we expose
in particular the connection to the electroweak sector of the SM
Lagrangian.

We must first consider the situation in which the internal
edges of the universal oscillator are defined in number and
direction but its external edges are not. At this stage, the type
of center of charge (lepton, anti-lepton, quark, anti-quark) is
perfectly defined, but not its electric charge and weak isospin
or the generation to which it belongs. Let us now forget this
latter (we will address the problem of flavors mixing later in this
section) and focus on a doublet of centers of charge connected by
weak interaction within a single generation, for example (e−,ν1).
Of course, the conclusions we come up to will be applicable to
any other similar doublet, for example (u,d).

It is necessary to keep in mind that the single center of charge
does not have a mass, because the mass is a feature of the particle
understood as a whole (de Sitter space with centers of charge
inside it), not of the single center. However, as we have seen in
section Fragmentation of the void, the single center is located in
the spacetime and therefore it is possible to define for it a wave
function (in effect, a second quantization operator) depending
on the spacetime coordinates. This topic has been dealt with in
section Field operators, where field operators of centers of charge
are shown to be fermionic. One can assume, based on the topics
at the end of that section, that all the centers of charge have spin½
and this assumption is consistent with the experience. Fermions
of spin ½ without mass are described by the equation:

γ µ∂µΦ(x) = 0, (29)

whereΦ is the fermionic field operator. This equation admits two
distinct solutions, corresponding to two separate helicity states
associated with the particle and the antiparticle respectively [12].
Since the type of center of charge (quark or anti-quark, lepton
or anti-lepton) is defined, the helicity is also defined. It cannot
be mutated by the electroweak interaction in itself, because this
latter acts on the number and direction of the external edges of
the universal oscillator, while the type of center of charge (and
hence the fermion helicity) is defined by the direction of the
internal edges. Thus, we have two possibilities for the operator
Φ : (1) it is an iso-doublet consisting of two fermionic fields of the

same helicity and weak isospin opposite, or their respective anti-
fields of equal helicity, opposite to the former; (2) it is a singlet
of weak isospin consisting of one of the fermionic fields with
helicity opposite to that of the first doublet or the anti-fermionic
fields with helicity opposite to that of the second doublet. The
components of each doublet are coupled by an inversion of weak
isospin, while singlets are coupled by neutral currents.

We decide to call “electron” (with charge −1) and “neutrino”
the fermions that in weak processes are coupled as the
components of the doublet with left-hand helicity, respectively
corresponding to an external edge entering or exiting the minor
vertex. The possible values ofΦ are therefore:

(

ν1L
e−L

)

;
(

ν1R
e+R

)

; (ν1R) ;
(

e−R
)

; (ν1L) ;
(

e+L
)

.

(30)
The first two values are charge-conjugate, as the third and fifth
and respectively the fourth and sixth are. We note that the
right-hand doublet neutrino-electron and the left-hand doublet
antineutrino-positron cannot exist, neither the components of a
doublet can also appear as singlets. In these cases, indeed, the rule
that associates a given helicity to a fermionic field (respectively
doublet or singlet) and a helicity opposite to the corresponding
anti-fermionic field would be violated.
We can introduce the “weak isospin” of the left-hand pair
electron-neutrino as follows:

e− weak isospin+½
ν1 “ “ – ½

and consequently opposite values for the right-hand positron-
antineutrino pair:

e+ weak isospin – ½
anti-ν1 “ “ +½ .

The weak isospin of singlets is set to zero by definition. We
have the processes:

e− → ν1 +W−

ν1 → e− +W+

e− → e− + Z0

ν1 → ν1 + Z0

e− → e− + γ

which crossed become:

W+ → e+ + ν1 i.e., (−1/2)+ (−1/2)

W− → e− + anti− ν1 i.e., (+1/2)+ (+1/2)

Z0 → e+ + e− i.e., (−1/2)+ (+1/2)

Z0 → ν1 + anti− ν1 i.e., (−1/2)+ (+1/2)

γ → e+ + e− i.e., (−1/2)+ (+1/2).

The last interaction distinguishes electron by neutrino: only
external edges entering the minor vertex are coupled, with a
strength Q given by (28).
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Thus, there are gauge bosons derived by the fusion of two units
of “weak isospin” I=½. These bosons will be the following:

|−1/2,−1/2〉 W+ = 2−1/2 (A1 + i A2)
2−1/2 {|−1/2,+1/2 〉 + |+1/2,−1/2 〉} A3

|+1/2,+1/2〉 W− = 2−1/2 (A1 - i A2)
2−1/2 {|−1/2,+1/2〉 – |+1/2,−1/2 〉} B

The first three quanta form an isospin triplet I = 1 and are
associated with three fields that appear as generators of a group
SU(2) of gauge transformations. The fourth forms a singlet of
isospin I= 0 and is associated with a field that is the generator of a
group U(1) of gauge transformations; in practice a group of local
rephasements of the fermionic wave function. The iso-singlets
of (30) can be coupled with themselves through A3 and B. The
gauge group of the electroweak interactions is therefore the direct
product SU(2) x U(1) of the SU(2) group associated with weak
interactions and the U(1) group associated with electromagnetic
interactions. The bosons W+, W−, Z0 and γ are therefore linear
combinations of A1, A2, A3, B determined according to the
conventional scheme following the gauging of Equation (29). We
omit the details of the construction, which can be found in every
textbook on the subject (here we conform to the notation of [13]),
but we underline that at this stage the gauge invariance is exact
because there are no mass terms. In fact, we are talking about
centers of charge, not particles. The Lagrangian at this point is
the following:

3 = − 1

2
Tr Gαβ G

αβ − 1

4
Fαβ F

αβ +

+ i L̄
⌢

DL + i ēR
⌢

D eR + i ν̄1R
⌢

D ν1R (31)

where L is the left-handed iso-doublet. D̂ = Dµγ
µ, whereDµ is

the covariant derivative operator and the emisymmetric tensors
G and F are respectively connected to B and A fields according to
the usual relations.

The passage from the centers of charge to the particles involves
the appearance of mass terms. The origin of these terms is a
difficult topic that goes beyond the scope of this work. Note,
however, that each center of charge is subject to a spatiotemporal
localization within the particle to which it belongs, as we have
seen in section Fragmentation of the void. When an interaction
occurs during which are created, annihilated or recombined (in
different particles) virtual centers of charge, to be created or
annihilated are always pairs of centers with opposite quantum
numbers. The spatial and temporal scale of the appearance
of these pairs is limited, in accordance with the uncertainty
principle, and characterized by a finite Compton length for
each center of charge. In Equation (31) additional terms must
therefore appear that, suitably developed, generate the coupling
terms of each center of charge with itself, with a coupling constant
proportional to the reciprocal of the respective Compton length.
Of course, the appearance of these terms will destroy the gauge
invariance.

These terms, as they relate to individual centers of charge,
will not be precisely “mass terms” except in the case of particles

containing a single center of charge (leptons). Instead, the hadron
mass has not to be confused with the inverses (in natural units)
of Compton lengths of constituent quarks.

It is possible to generate these terms by introducing couplings
between a doublet of a given helicity and a singlet of opposite
helicity, mediated by a Higgs field φ. This field plausibly
represents the state of the universal oscillator when the direction
of the internal edge associated with the center of charge (and
hence the helicity, or the fact that the center is a fermion or
an anti-fermion) has not yet been defined. Coupling with the
Higgs field is therefore a dynamic description of the adynamic
definition of this direction in conjunction with an electroweak
interaction. From the point of view of the dynamics of this
interaction, the status of the oscillator logically prior to this
definition is a property of the vacuum, and in this sense the
Higgs field is a property of the vacuum. Since φ does not have to
change neither the spin nor the charge of the fields with which it
is coupled, it must be a neutral scalar field. In addition, it must
be an iso-doublet, because it must mediate the coupling of an
iso-doublet with an iso-singlet. In general, φ will therefore be an
iso-spinor with two complex components:

ϕ =
(

ϕ1 + ιϕ2
ϕ3 + ιϕ4

)

. (32)

The functions φi(x) (i = 1, 2, 3, 4), where x is a point-event of
the Minkowski space, are real; it is then possible to define the
function:

ϕ21(x) + ϕ22(x) + ϕ23(x) + ϕ24(x) = ϕ(x)ϕ(x). (33)

We impose to φ the particular property of not vanish in
the vacuum. This is possible if the generic point-event O is
assumed to be the origin of a de Sitter micro-space of radius
h̄ c/ν where v = 2M0c

2. This space originates as a double
fluctuation consisting of the creation and annihilation of the
two sheets (past and future) of the de Sitter horizon of O. The
creation (respectively, annihilation) of the future sheet involves
a contribution ετ (respectively, –ετ ) to the field amplitude φ
(respectively, ϕ) in O. The creation (respectively, annihilation)
of the past sheet involves a contribution ετ ′ (respectively, –
ετ ′) to the field amplitude φ (respectively, ϕ) in O. Both the
(uncorrelated) dichotomous and counterfactuals variables τ e τ ′

take the values −1,+1 with equal probability ρ = ½. The first
coupling is proportional to:

Tr
{

ρ(τ ) [(ϕ + ετ) (ϕ − ετ)]
}

= ϕϕ − ε2 (34)

The same result is obtained for the second coupling, replacing
τ with –τ ′ in (34). The total coupling is therefore proportional
to the product of these two half-couplings, i.e.,

(

ϕϕ − ε2
)

2.
This leads to the following Lagrangian of the free Higgs field
(σ = 0,1,2,3):

∣

∣Dσϕ(x)
∣

∣

2 − V (ϕϕ) (35)

where:

V (ϕϕ) = − µ2

2
(ϕϕ) + λ2

4
(ϕϕ) 2 (36)
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and Dσ is a covariant derivative. We will return on the meaning
of (36) in next section. The idea is anyway clear. At the energy
scale represented by the expectation value of the Higgs field in
the vacuum, each type of charge center is dissociated into virtual
pairs of opposite quantum numbers, and also the de Sitter space
that encloses these pairs is in a fluctuating, virtual state. This
situation corresponds to the state of the universal oscillator in
which the orientation of the internal edge related to that center
of charge (and therefore the fact that it is a fermion or an anti-
fermion) has not yet been defined. This energy scale is therefore
greater than or equal to the reciprocal (in natural units) of the
smaller Compton length that a center of charge can have. Below
the de Sitter radius corresponding to this length, de Sitter micro-
universes corresponding to elementary particles are not formed,
i.e., there is no particle formation. Thus, theHiggs field represents
the mentioned state of the universal oscillator at every point in
space time. This makes the role played by the Higgs field in the
renormalization of the standard model understandable.

The signature of the (36) is the only one compatible with
the existence of minima which differ from the vacuum. We now
choose a minimum ν of (36) and we pose, exploiting the gauge
invariance:

ϕ =
(

0
v + H

)

(37)

where the dependence of φ on x is entirely contained in H. In
this way an energy scale |ν| is defined which sizes the Compton
lengths of centers of charge interacting with the field (37). Now
we can add to (31) both the term (35) and the interactions
between the Higgs and the centers of charge:

− fe (L̄ eR ϕ + ēR Lϕ ) − fν1 ( L̄ ν1R ϕC + ν̄1R LϕC ) (38)

where the suffix C indicates the charge conjugation. With
the usual transformations the total Lagrangian thus obtained
becomes that of SM. In particular, the first term of (38) becomes
the sum of a coupling term with H and a coupling term with ν.
The latter takes the form:

1√
2
fe( ēL eR + ēR eL ) v = 1√

2
fe ē e v (39)

The second term of (38) undergoes a similar transformation. The
significance of the two coupling constants f becomes clear if we
remark that fν/21/2 = (h̄/λComc) where λCom is the Compton
length of the center of charge. This is to say that the centers
of charge (electron and neutrino respectively) “localized” in x
are subjected to virtual dissociation within a typical radius λCom
around x. Summing up: In the free propagation of a particle, the
fermionic fields associated with its centers of charge are coupled
with the expectation value in the vacuum of φ and this coupling
generates their Compton lengths.

In section Classification of elementary interactions it has been
seen that weak interactions lead to a mixing of flavors. Mixing
can be taken into account by repeating the previous reasoning
for each of the leptonic doublet:

(

e−

νe

)

L

,

(

µ−

νµ

)

L

,

(

τ−

ντ

)

L

. (40)

While right-handed leptons form singlets. Thus we have:





νe
νµ
ντ



 =





Ue 1 Ue 2 Ue 3

Uµ 1 Uµ 2 Uµ 3

Uτ 1 Uτ 2 Uτ 3









ν1
ν2
ν3



 (41)

where the mixing matrix U is unitary. For what concerns the
left-handed quarks, they form the doublets of weak isospin:

(

u
d ′

)

L

,

(

c
s ′

)

L

,

(

t
b ′

)

L

(42)

Instead, right-handed quarks form singlets of weak isospin. The
following relation then holds:





d ′

s ′

b ′



 =





V1 1 V1 2 V 13

V2 1 V2 2 V2 3

V3 1 V3 2 V3 3









d
s
b



 (43)

where, again, the V matrix is unitary. Determining the mixing
parameters remains an open problem.

SOME REFLECTIONS ON THE NATURE OF
THE HIGGS FIELD

Now let us return to the nature of the Higgs field ϕ. It is necessary
to consider that so far this field has been studied in the context
of the unitary evolution of field operators. But, to our knowledge,
no inquiry has ever beenmade about the relationship between the
Higgs field and the discontinuities of that evolution, namely the
quantum jumps (QJ). We can assume that actually the centers of
charge inside a particle are not coupled with the field ϕ = ϕ(xµ)
(µ= 0,1,2,3), but rather with the field:

ξ (xµ, τ , T) = ϕ(xµ)
{ [

1−2(τ )
]

+2(τ ) exp
[

− |τ |
/

T
] }

(44)

ξ (xµ, τ , T) = ϕ(xµ)
{

2(τ )+
[

1−2(τ )
]

exp
[

− |τ |
/

T
] }

(45)

Let’s now explain the symbols. First,2(x)= 1 for x≥ 0;2(x)= 0
for x < 0. The time interval between the present moment (x0)
and the quantum jump to which the particle quantum state
undergoes, measured in the rest frame of reference of the particle
to which the centers of charge belong, is denoted as τ . It should
be noted that the coordinate x0 and τ are independent variables.
The parameter T is connected to the particle massM through the
relation:

T = h̄

Mc2
(46)

We formulate this hypothesis in the context of the transactional
interpretation, which sees the QJ as a simultaneous emission
of the particle wave function ψ toward the future of the QJ
(τ > 0) and of the conjugate wave function ψ∗ toward the past
(τ < 0); the latter actually represents the absorbed component
of the particle field [14–17]. The (44) represents the field
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coupled to the centers of charge associated with ψ∗ while (45)
represents the field coupled to the centers of charge associated
with ψ .

Let us now look at the physical meaning of the hypothesis.
The (44) becomes ξ = ϕ before the jump (i.e., for τ < 0), while
ξ = ϕexp(–τ /T) after the jump (τ > 0). For (45) we have instead
the mirror situation ξ = ϕexp(τ /T) for τ < 0, while ξ = ϕ for
τ > 0. Therefore, in conclusion, the coupling of the centers of
charge with ξ coincides with the usual one with ϕ, except for
the appearance of exponential tails of ξ of duration ≈ T around
τ = 0. In the first tail, related to the absorbed wave function ψ∗,
the coupling vanishes and the centers return to the “original”
condition of gauge invariance. Instead, this coupling is reset in
the second tail relative to the emitted wave function ψ , starting
from the gauge invariance condition. The interested reader can
consult Chiatti [18] for a possible theoretical justification of these
tails.

From this it is understood that the Higgs field ϕ, autonomous
and independent of the specific particle, is in fact the limit case
of the field ξ dependent on the specific particle. The tails of ξ
in correspondence with a discontinuity in the evolution of the
quantum state of the particle are the particle, which is actually
localized on the temporal domain. This field manifests itself
when a massive particle undergoes a quantum jump. Operating
with the energy operator on (44) and on (45) respectively
we find:

ih̄∂|τ |ξ =
{

ih̄∂|τ |ϕ = 0 for τ < 0
ih̄∂|τ |ϕ exp(− |τ | /T) = (−ih̄/T)ξ for τ ≥ 0

(47)

−ih̄∂|τ |ξ =
{

− ih̄∂|τ |ϕ exp(− |τ | /T) = (ih̄/T)ξ for τ < 0
− ih̄∂|τ |ϕ = 0 for τ ≥ 0

(48)

The “absorbed” energy –ih̄/T and the “emitted” energy+ih̄/T add
up to zero, as it must be given the impossibility of net exchanges
of energy with the vacuum. They are imaginary, and thus define
the line width of a transient consisting of the particle that
contains the centers of charge. This result conforms to the notion
of particles as events rather than objects. The localization energy
Mc2 is conveyed byψ∗ andψ respectively, and is exchanged with
the vacuum as described elsewhere [3].

From what we have said there exist, for τ > 0, centers of
charge associated with the asymptotic state ψ regularly coupled
with ϕ as well as centers of charge associated with ψ∗ whose
coupling with ϕ is evanescent. For τ < 0 there is a mirror
situation with centers of charge associated with the asymptotic
state ψ∗ regularly coupled with ϕ together with centers of charge
associated with ψ whose coupling with ϕ is evanescent. Of
course, the net charge is conveyed by asymptotic states so that
the total charge of the centers of charge associated with tails must
be zero for each value of τ . The charges whose coupling with
ϕ is evanescent are therefore the virtual ones that in the QFT
description dress the net charges conveyed by the asymptotic
states. With this we have that the perturbative effects are limited
in this description to a range of extension ≈ T around τ = 0
and do not affect the asymptotic states (if these latter are free). In

other words, this description seems to correspond approximately
to QFT after performing the renormalization procedure, with
the consequent subtraction of free propagation diagrams. As can
be seen, the coupling described by (44), (45) represents at the
same time: (1) the localization of the particle in the temporal
domain; (2) the self-interaction of the particle induced by its
real interaction with the external world (the same that, inter alia,
causes the QJ); (3) the coupling of the centers of charge inside the
particle with the Higgs field.

In the case of particles containing a single center of charge
(leptons) the coupling constant with the Higgs field, multiplied
by the expectation value in the vacuum of this latter, is the
mass of the particle while the time constant T of (44), (45)
is the reciprocal of that mass. In the case of quarks, the first
quantity is the reciprocal (in natural units) of the Compton
length of the quark while T, which is the same for all quarks
of the same hadron, is the reciprocal of the hadron mass. All
these considerations assume a free asymptotic state ψ , although
this restriction is not necessary. The asymptotic state can also
contain virtual interactions, such as in the case of an electron in a
stationary atomic orbital, which exchanges virtual photons with
the nucleus.

At this point we can come back to the initial question of
this section, that is, the true nature of the Higgs field. The
Higgs field exists because there are fluctuations in the vacuum
(corresponding to the state of the universal oscillator with
undefined orientation of the internal edge) and suppressing
these fluctuations costs energy. The centers of charge inside a
particle are coupled, in the time neighborhood of a QJ, with
this fluctuations field. The coupling energy is given by the
product of the coupling constant for the expectation value of the
Higgs field in the vacuum. This product is the reciprocal of the
Compton length of the center of charge. The suppression/reset
of the coupling is manifested in the form of exponential tails
in (44), (45), and in the actualization of an asymptotic state
for the particle that contains conserved centers of charge. This
actualization is the creation of the charges; the decay constant
of this process is the reciprocal of the mass of the particle.
When an energy equal to that of coupling between the centers
of charge inside a particle and the expectation value of the
Higgs field is made available in the QJ, that particle may appear
as a virtual transient phenomenon; its actual creation requires
that energy equal to the mass of the particle is available. The
energy ν of the fluctuations of the Higgs field is the reciprocal,
in natural units, of the shortest Compton length of the pair
constituted by a center of charge and its anti-center. This “limit”
Compton length will then be the smallest value attributable to the
radius of the de Sitter space associated with the localization of a
particle.

The center of charge with the shortest Compton length is the
quark top; the reciprocal of its Compton length amounts to M0

≈170 GeV and the double of this value is 340 GeV. In accordance
with our interpretation, the value of ν is estimated to be 346 GeV.
It is also noteworthy that the quark top does not form hadrons,
which support the hypothesis that it is placed precisely at the
extreme limit beyond which the particle formation is no longer
possible (or very difficult).
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ARE ELEMENTARY INTERACTIONS A
FORM OF COMPUTATION?

In this section we intend to explain, before going on to the
conclusions, some reflections on the role played by the algebraic
structures in the present approach. To our best knowledge,
the peculiarity of this role distinguishes our proposal from
other algebraic models, available in literature, also aimed at the
theoretical justification of the Standard Model. In particular we
want to briefly discuss some correspondences and differences
with the recent (and fascinating) works of Furey [19–22] and
Stoica [23]. It is first necessary to consider that the questions
explicitly formulated by both these authors as motivations for
their research are the same ones that we have set ourselves and
which we have illustrated in the introductory part of this work.
These questions can be summarized in one: is there a general
theoretical principle that explains why the elementary particles
that we see in nature are those that are, and interact with the
modalities we actually observe? Furey and Stoica both answer
affirmatively, as we do. Like us, even these authors hypothesize
the existence of an algebraic constraint that selects the field
operators of the Standard Model. The identification of this
constraint thus becomes the fundamental goal of the research.

While these intentions are common to the two approaches
(ours and those of these authors), an important difference must
be found in the understanding of the constraint. Furey and Stoica
assume that the Standard Model can be formulated in terms
of a Clifford algebra on a numerical field representative of a
division algebra (real numbers, complex numbers, quaternions
or octonions) or on direct products of such fields. The operators
of the Standard Model then become elements of this Clifford
algebra, more precisely ideals, and this fact represents the
constraint sought. Both Furey and Stoica show that a complex
Clifford algebra Cl(6) can accommodate a single generation
of elementary fermions (quarks and leptons) of the Standard
Model. Furey goes further, succeeding in demonstrating: (1)
that the ideals of an algebraic structure built on the chains of
multiplications between octonions can be put in correspondence
with the three generations of elementary fermions [21]; (2)
that the ideals of a complex quaternionic algebra can be put
in correspondence both with Dirac spinors and with spacetime
quadrivectors [19, 22].

One may ask what is the physical reason which privileges
such algebraic structures. Field operators are used to describe
interactions, so it seems plausible that logical constraints on their
algebra derive from the nature of interactions. In this regard
Furey makes interesting considerations [19]. Her proposal is to
interpret interactions as algebraic operations, emphasizing how
both are irreversible. There is no way to uniquely return to the
addends 3 and 2 from the result 5 of their sum, as there is no way
to restore the wave function immediately after its collapse. The
physical world, understood as a network of interaction events, is
then a locally limited graph provided with a partial order relation,
i.e., a causal set. The nodes of this graph are operations and the
flow on the graph takes place in accordance with the rules of a
specific algebra.

Our idea is similar, in the sense that the vertices of interaction
are our starting point. However, there are three important
differences compared to the Furey proposal:

(1) We consider the lesson of non-locality as relevant
and assume that this concept has a far wider scope than
the entanglement that is, we think, a mere consequence.
Our algebraic structure constitutes an aspatial and timeless
background, which connects to the spatio-temporal domain
in discrete events that are the vertices of interaction. Real
interactions are considered here, corresponding to the collapse
of the quantumwave function. The interactions therefore have
a double dynamic role (due to their influence on the unitary
evolution of the wave function) and adynamic (collapse).
(2) The connection between the atemporal structure and
the temporal domain does not end with a single algebraic
operation, but consists in a succession of operations of
distinction (in the sense of Spencer-Brown) on the elements
of the structure.
(3) The structure is selected by its self-duality (section
Fragmentation of the void), which is seen as synonymous
with the condition of maximum elementarity (vacuum). The
particles come out of this condition, or return into it, in
conjunction with an interaction.

This difference between the starting points of our work and
those of Furey and Stoica immediately leads to a difference in
formalism. The algebraic structure considered in sectionDirected
glyphs and hypercomplex numbers for the description of matter
is in fact constituted by biquaternionic units, not by quaternions
in a general sense. No multiplication of these units for a real
number is defined, nor any addition operation (we only use
the weaker notion of cancellation of opposite units in section
Conclusions). The considered algebraic structure is therefore
drastically simpler than those examined by Furey and Stoica,
because no numerical field is present. The original quaternionic
units from which this “material” structure is defined can be
described as the vertices of a spherical triangle. Their relations
remain the same regardless of the choice of the arrangement of
the triad of vertices on the sphere, and the value of the spherical
radius. This allows the definition of a spatio-temporal order
co-emergent with the matter (section Fragmentation of the void).

To each particle involved in a real interaction event, described
in quantum mechanics by the collapse of the wave function,
corresponds to a succession of algebraic operations that leads
to the spatio-temporal manifestation of that particle, with its
centers of charge. These centers are the elementary fermions of
the Standard Model. These operations, carried out in succession,
cause the universal oscillator to pass from the symmetrical
vacuum state to that corresponding to the specific elementary
particle. Quantum amplitudes can be associated with these
transitions (section Field operators), which are connected to a
vacuum state through Fock operators and it is only at this stage
that the addition appears as requested by the superposition
principle. Superpositions of amplitudes can be used to
represent the quantum amplitude of the process before or after
collapse.
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It is the classification of field operators obtained in this way
that can be compared with those derived from other approaches.
In other words, the symmetry breaking associated with the
collapse of the wave function occurs at a level that is not that
of QFT and it leads to the base states of the QFT description;
it is only at this point that the superposition of these latter is
introduced, corresponding to the quantum (second quantization)
amplitude of the QFT description. This is a different procedure
from the usual one consisting in starting with a QFT state
provided with a certain symmetry and then selecting base states
from a process, also inside the QFT, of symmetry breaking. As
for the superposition principle, it can be simply postulated, as is
usual in quantum theory. In our opinion it can be justified on the
basis of the transactional approach (section Field operators).

We note that the field operators so defined belong to the
conventional formalism based on spinors, and it does not
seem necessary to resort to more esoteric numerical fields such
as quaternions or octonions. The vacuum state is here, by
construction, the authentic state of absence of particles and
not the lowest eigenvalue state as in the construction of Furey
[19, 20]. A further difference from the work of Furey and
Stoica is that the present approach leads to quarks correctly
assembled into mesons, baryons and anti-baryons which are the
actual asymptotic states emerging from (or entering) a vertex of
interaction, while an approach based on a algebraCl(6) or similar
is necessarily limited to centers of charge (quarks or leptons).

Having emphasized the differences, we now see the
convergences. In our approach the vertices of interaction
are localizations of certain packets of physical quantities on
spacetime; these packages are the particles. The interactions are
therefore distinguished by the type of quantities that localize. For
example, the photon γ localizes the electric charge, the Z0 the
weak charge. In [1, 2] it has been seen how each center of charge
(lepton or quark) corresponds to a “first type bootstrap graph.”
The connection between these graphs and the glyphs is described
in [2]. If we omit, in this description, the fermionic generation,
each graph corresponds to an ordered triple of three eigenvalues
σ (i)= ± 1, i= 1,2,3. The graphs are then graded as follows:

(–, –, –) neutrino; antimeutrino
(–, –,+), (–,+, –), (+, –, –) d quark in three colors
(+,+, –), (+, –,+), (–,+,+) u antiquark in three anticolors
(+,+,+) electron; positron.

Of consequence:

1) The Z0 couples with every σ (i) localizing it in time domain;
2) The W± couples with every σ (i) localizing it in time domain

and inverting it;
3) The γ couples with every σ (i) = +1, localizing it in time

domain and distinguishing it from σ (i) = −1.

The weak charge of a center of charge is then:

± 1

3

3
∑

i = 1

∣

∣ σ (i)
∣

∣ = ± 1

3
· 3 = ± 1 (49)

The electric charge is instead:

± 1

3

3
∑

i = 1

[

1

2

(

1 + σ (i)
)

]

= 0, ± 1

3
, ± 2

3
, ± 1 (50)

The different gauge quanta of electroweak interaction correspond
respectively to the localization of the σ (i), the distinction of
the two signs of the σ (i) and the inversion of these signs. The
gradation of the centers of charge corresponds to the left ideals of
the algebra Cl(6), as evidenced by Furey [19, 20]. In particular,
by applying the principle of quantum superposition to color
states, the same multiplets of the SU(3) group considered in
[19] are obtained. The singlet and the antisinglet correspond
to the two leptons, while the two triplets correspond to the
two quarks. The electric charge operator (50) is invariant for
color permutations and is the operator number of positive σ (i),
consistently with Furey’s results. However, unlike Furey’s work,
the three generations are obtained through the real part of
the biquaternion associated with each center of charge, without
recourse to the octonions. In particular, it does not seem
necessary to assume the non-commutativity of the “ordinary”
imaginary unity with the other units other than 1.

Glyphs can be interpreted in terms of the logic of Peirce’s
relations [2]; the correspondence between this logic and Clifford’s
algebras is shown in [24]. However, the fact that our approach is
structured on two levels, one timeless and the other diachronic,
leads to greater caution in the modeling of physical phenomena
through algebras. If it seems plausible to model the atemporal
level using an abstract algebraic structure, the transition to the
diachronic level (the only experimentally accessible in a direct
way) could correspond to the choice of a specific representation
of this structure by nature. If this were the case, quantum
theories could have algebraic ancestors, but they would assume
the necessary relational meaning only if they were formulated in
that representation. A strict test for every algebraic approach is
represented by the calculation of the mixing angles, because the
setting of such a calculation depends on the level (dynamic or
timeless) to which the superposition principle appears. While,
to our knowledge, nothing has been done for the mixing of
quark flavors and neutrino oscillations, Stoica has derived a good
estimate of the Weinberg angle [23]. His calculation is based on
an algebraic structure directly implanted on QFT operators; the
duplication of this result is therefore an open problem for our
approach.

Finally, we point out that the five questions of the “binary
system” considered by Furey [19] are the glyph edges, and the
binary answers to these questions are the directions assigned to
these edges (with the difference that the sign of the electric charge
is replaced, in the Furey system, by the couple weak isospin +
helicity). The same information is coded in before mentioned
“first type bootstrap graphs.”

CONCLUSIONS

In this work we have attempted to analyse what occurs when an
elementary particle is localized in spacetime in correspondence

Frontiers in Physics | www.frontiersin.org 16 August 2018 | Volume 6 | Article 95

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Chiatti Thinking Non Locally

of an interaction vertex, following its coupling with other
particles. The most important results, in our opinion, are
those reported in sections Field operators and Classification of
elementary interactions. We hypothesize that the localization
of a particle (and the centers of charge inside it) in spacetime
domain can be described in three successive stages starting
from an algebraic background whose elements are balanced
with their own opposite. This background therefore represents
a “vacuum” not associated with a definite spacetime position; it
represents rather a condition of delocalization over the entire
spacetime. The spacetime localization induced by an interaction
corresponds to a second stage in the course of which the balance
is disrupted; the retarded and advanced time components of the
background separate, while only one of the two spatial structures
included in it is selected by the interaction: the triadic or the anti-
triadic one. An asymptotic state appears that corresponds to a
lepton, meson or baryon in one case; to an antilepton, meson
or antibaryon in the other one. It is at this stage that the color
associated with the individual centers of charge appears. In the
third stage of the process, which by now concerns the individual
center of charge, the interaction selects the weak isospin of the
center and the generation to which it belongs. The center will
therefore appear as a lepton or antilepton if its color is white;
otherwise it will appear as a quark.

The entire process of manifestation (or de-manifestation) of
a particle and its centers of charge can be represented in a
natural way by means of a specific graph called glyph. All the
glyphs associated with the different particles can be derived from
a single graph, the universal oscillator, through distinctions or
identifications of the edges of this latter. In this sense it can be said
that the different elementary particles that appear as asymptotic
states of the interaction (leptons, mesons, baryons) are “states”
or “excitations” of the universal oscillator. These excitations can
be represented as QFT operators of creation or annihilation of
the elementary fermions that constitute the centers of charge of
each particle. This result links up the description suggested here
with the conventional QFT formalism with the advantage that

QFT base states are inferred from first principles, instead that
merely postulated. Also the systematics of possible asymptotic
states (“particles”) is consequently constrained.

While the excitations of the universal oscillator represent the
various particles, the transitions of the oscillator from one state to
another represent the interactions between particles; these, too,
therefore can be classified. The picture that emerges reproduces
various essential aspects of the Standard Model, including the yet
mysterious mixing of flavors in weak interaction. The essential
addition to the Standard Model concerns the strong interaction:
during the interaction the single quark can change the hadron
it belongs to, but it always belongs to a well-defined hadron.
The membership of quarks consists of their participation to the
glyph of the same hadron. This relation cannot be mapped with
the usual concept of “interaction.” In Bohmian terms [25, 26]
we can say that the color degree of freedom belongs to an
explication level of physical reality other than -for example- that
of the electroweak interaction. Although these arguments are
developed elsewhere [11, 18], it is interesting to note that in
this approach the QCD description can be anyway recovered,
with the unexpected gift of a solution for classical problems of
hadronization and confinement. From this point of view the
concept of de Sitter micro-space associated with elementary
particles, with a radius sized by the “chronon,” is of particular
relevance. It refers to a whole literature concerning precisely the
structure of the strong interaction and the quark confinement
[27–31]. A geometric view of the Higgs field [32] reconnects the
peculiarities of this field to the time localization of the particles
and the centers of charge contained therein. In subsequent work
will be examined more appropriately the dynamical aspects of
particle structure implied by this approach and those associated
with the particle mass spectrum.
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