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Computational studies using mathematical models of the sinoatrial node (SAN) cardiac

action potential (AP) have provided important insight into the fundamental nature of cell

excitability, cardiac arrhythmias, and potential therapies. While the impact of ion channel

dynamics on SAN pacemaking has been studied, the governing dynamics responsible

for regulating spatial and temporal control of SAN synchrony remain elusive. Here, we

attempt to develop methods to explore cohesion in a network of coupled spontaneously

active SAN cells. We present the updated version of a previously published graphical

user interface LongQt: a cross-platform, threaded application for advanced cardiac

electrophysiology studies that does not require advanced programming skills. We

incorporated additional features to the existing LongQt platform that allows users to

(1) specify heterogeneous gap junction conductivity across a multicellular grid, and (2)

set heterogeneous ion channel conductance across a multicellular grid. We developed

two methods of characterizing the synchrony of SAN tissue based on alignment

of activation in time and similarity of voltage peaks among clusters of functionally

related cells. In pairs and two-dimensional grids of coupled cells, we observed a

range of conductivities (0.00014–0.00033 1/�-cm) in which the tissue was more

susceptible to developing asynchronous spontaneous pro-arrhythmic behavior (e.g.,

spiral wave formation). We performed parameter sensitivity analysis to determine the

relative impact of ion channel conductances on cycle length (CL), diastolic and peak

voltage, and synchrony measurements in isolated and coupled cell pairs. We also defined

measurements of evaluating synchrony based on peak AP voltage and the rate of wave

propagation. Cell-to-cell coupling had a non-linear effect on the relationship between ion

channel conductances, AP properties, and synchrony measurements. Our simulations

demonstrate that conductivity plays an important role in regulating synchronous firing of

heterogeneous SAN tissue, and demonstrate how to evaluate the role of coupling and

ion channel conductance in pairs and grids of SAN cells. We anticipate that the approach

outlined here will facilitate identification of key cell- and tissue-level factors responsible

for cardiac disease.
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INTRODUCTION

The sinoatrial node (SAN) generates the electrical impulse
that coordinates mechanical contraction of the heart [1, 2].
Proper SAN function is an essential component for normal
pacemaking at baseline and heart rate variation in response
to external regulators such as exercise or stress [3, 4]. SAN
dysfunction is common in a wide variety of cardiac diseases,
and is characterized by sinus bradycardia, sinus pause, and/or
inappropriate heart rate responses to exercise and stress [5].
Regulation of SAN activity has great therapeutic potential for
a rapidly aging population where SAN disease affects 1 in 600
heart patients over the age of 65 [6]. The only effective treatment
for patients with chronic symptomatic sinus node dysfunction is
pacemaker implantation [7].

SAN cells demonstrate spontaneous action potential (AP)
activity and exhibit a wide variety of dynamic phenomena similar
to other coupled oscillators, including collective synchronization
[8]. One challenge for studying synchronization of cardiac
pacemaking activity is the multiscalar and heterogeneous nature
of the sinus node. Pacemaking is governed by a delicate source-
sink relationship between the SAN and surrounding atria defined
by the need for a relatively small structure (SAN) to excite a
much larger tissue mass (surrounding atria) [9, 10]. This source-
sink relationship is altered in disease due to increased fibrosis
and/or cell loss leading to a shift of the primary pacemaker site,
emergent behavior of ectopic foci, or otherwise reduced capacity
for SAN pacemaking [11–13]. There is a critical need to expand
knowledge regarding regulation of membrane ion channels in the
SAN, as well as to further develop quantitative tools to assess the
sensitivity of the SAN to changes in coupling and ion channel
regulation [14].

Mathematical modeling has been used to investigate and
advance our understanding of cardiac electrophysiology,
arrhythmia mechanisms, and potential therapies [15]. Models
have been particularly helpful in elucidating the ionic basis of
SAN activity and cardiac pacemaking [16, 17]. For example, SAN
cell models have furthered our understanding of the relative
importance of coupling between Ca2+ cycling and membrane
ion channels in automaticity [18] and the genetic basis of
human SAN disease [19]. At the same time, multicellular models
of coupled SAN cells have demonstrated dynamic changes
in the location of the primary pacemaker site in response to
β-adrenergic stimulation [20]. Other studies have coupled
heterogeneous cell types in multicellular preparations to examine
the influence of inexcitable cells (e.g., fibroblasts) on pacemaking
[21, 22].

Although mathematical modeling has undoubtedly advanced
our understanding of SAN function, there remain significant
barriers to more widespread use of mathematical modeling and
simulation in the field. To reduce these barriers a cross-platform
user interface called LongQt has been developed for advanced
cardiac electrophysiology and arrhythmia simulations [23]. Here,
we present an extended user interface for LongQt, which adds
support for performing advancedmulticellular simulations.With
this added utility, the influence of perturbations in SAN cell
electrophysiology (ion channel conductance and gap junction
conductivity) on synchronization of coupled heterogeneous

SAN cells was investigated. Two complimentary measures were
defined to quantify the level of synchronization between coupled
cells: synchrony factor and peak transmembrane potential
(Vm,peak) similarity. Parameter sensitivity analysis was performed
in single cells and in coupled cell pairs to determine the impact
of ion channel and gap junction properties on cycle length (CL),
peak and diastolic Vm, and measures of synchrony. Finally,
we performed two-dimensional simulations in a network of 7
× 7 heterogeneous SAN cells to examine the influence of cell
properties and gap junction conductivity on pacemaking. These
studies generate a number of interesting findings, including: (1)
conductivity caused small but potentially important differences
in the relative impact of ion channel conductances on AP
properties in coupled cells; (2) a specific coupling range
promoted emergent asynchronous behavior; and (3) quantitative
measurements were defined to evaluate synchrony based on
peak AP voltage and the rate of propagation within a group of
coupled firing cells. While our findings highlight the difficulty of
relating events at the single cell level to an emergent behavior
like pacemaking, they also point to more robust methods for
understanding the ionic basis of cardiac pacemaking.

MATERIALS AND METHODS

Ion channel kinetics were simulated using an existing well-
validated model of the rabbit SAN cell implemented in LongQt
simulation software [23, 24] (Figure 1A). Briefly, the LongQt
simulation software has three main user interfaces: the grid
editor, the main user interface, and the grapher. The simulations
performed for this study were set up using the grid editor,
which allows the user to select tissue geometry and gap junction
conductivity for a set of simulations. The files generated by the
grid editor can be selected to run in the main user interface,
which also allows the user to select the cell model and measure
properties of the simulation. Simulation results generated at
the end of the simulation can be visualized by the grapher
interface.

Multicellular Simulations
Multicellular simulations were performed in either a cell pair or
7× 7 grid. The two-dimensional cable equation was solved using
the Peaceman-Rachford alternating direction implicit method.
The level of conductivity between cells was perturbed about a
default value of 0.33 1/�-cm. A heterogeneous population of
SANAPs were created by varying eight ion channel conductances
(ICa,L, ICatt, Ih, IKr, IKs, INCX, INaK, Ito) lognormally, with a
mean of 1 and a standard deviation of 0.2. Spontaneous APs
were simulated for 50–100 s until steady state was reached. AP
properties such as CL, Vm,peak, and maximum diastolic potential
(MDP) were measured using LongQt. All other analysis was
performed with scripts written in Python version 3, which are
available on Github.

Synchrony Measurements
In order to develop measurements of synchrony in multicellular
simulations, we organized APs from individual cells in the grid
into “activation clusters,” which represent a group of neighboring
cells whose activation could be considered related both in time
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FIGURE 1 | (A) LongQT simulation software uses an object-oriented design where a “Cell” class describes the workings of an individual cell, i.e., Rabbit SAN cell vs.

Human Ventricular cell. Cell classes then are used by “Protocol” classes to define what type of simulation is being run on the cell. This could be a simulation with

constant stimulus or periodic stimulus. Simulations of fiber and grid tissue require additional objects that go between Protocols and Cells to define properties of the

tissue like its geometry and conductivity. Finally there is a ”Measure” class which tracks values such as Peak Voltage or Ca2+ minimum. (B) Schematic diagram of the

rabbit SAN cell model, which includes mathematical representations of ion currents important for generating the sinoatrial node cell action potential: L-type and T-type

Ca2+ currents (ICaL and ICaT ), Rapid and slow components of the delayed rectifier K+ currents (IKr and IKs), 4AP-sensitive transient outward and sustained K+

currents (Ito and ISus), acetylcholine-sensitive K+ current (IKach), Hyperpolarization-activated funny current (Ih), Na
+/Ca2+ exchanger (INCX ), Na

+/K+ pump (INaK ),

and Ca2+ signaling uptake (jup) into the network sarcoplasmic reticulum (NSR), transfer (jtr) into the junctional SR (JSR), and release (jrel) into the subspace.

and space. To organize cells into clusters, we ordered them
sequentially according to their respective activation times. The
sequence was then processed in order and a cell was added
to a cluster if its position was within three cells of any cell
already in the cluster. For higher gap junction conductivities,
we increased the spatial window to five cells to account for
increased communication between cells. If an activated cell was
not spatially close enough to any existing group of firing cells,
then it was marked as the focus of a separate and distinct cluster.
Any cluster would be considered complete when one of its
constituent cells fired again. This allowed for characterization of
multiple clusters simultaneously within the same grid (common
in lower conductivity grids).

For example, given an ordered sequence of cell activation
times (Cell1,1,Cell1,2,Cell5,5,Cell1,1,Cell1,3), where Celli,j is

located in the ith row and jth column of a two-dimensional grid,
the clustering algorithm would select Cell1,1 as the beginning
of a new cluster, C1, as there are no other existing clusters. The
second cell in the sequence, Cell1,2, would then be added to C1

as it is within three cells of Cell1,1. Cell5,5, however, is too far
away from C1 and so would be marked as the beginning of a new
cluster, C2. Since Cell1,1 is already assigned to C1, its appearance
a second time in the sequence causes the algorithm to initialize a
new cluster C3. Finally, the last element in the sequence, Cell1,3,
would be added to C3.

Vm,peak similarity is calculated as the inverse of the standard
deviation of Vm,peak in each cluster. The synchrony factor is
calculated as the inverse of the slowest propagation time between
the closest cells in a cluster. These two measurements are then

weighted by the size of the cluster in order to account for the
number of oscillators in the network.

Software and Hardware
LongQt simulation software utilizes the Qt application
framework (version 5.6 or later found at https://www.qt.io) and
may be compiled to run on Mac (OS X 10.10 or later), Windows
(version 7 or later) or Linux systems. Python bindings for LongQt
are available for more extensive simulation use. Compiled
versions of LongQt are available as downloadable executable files
under the “Research” section of the Hund lab website1, and are
accessible through Github2. LongQt incorporates C++ code for
the Kurata SAN cell model (Figure 1B). Differential equations
for the simulated model are solved in LongQt using the forward
Euler approach, with a maximum timestep of 0.05ms and a
minimum timestep of 0.005ms. A subset of simulations were
run using Ohio Supercomputer Center resources [25]. Data
supporting conclusions of this manuscript are available upon
request to the corresponding author.

RESULTS

Effect of Coupling on Parameter Sensitivity
in Coupled Pairs of Sinoatrial Node Cells
Parameter sensitivity analysis has been performed mostly on
models of the single cell to elucidate mechanisms underlying

1https://hundlab.engineering.osu.edu
2https://github.com/hundlab
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cardiac AP generation [26–30]. Using the extended LongQt
platform, we sought to address the extent to which coupling
influences the dynamics of synchronous firing in a network of
SAN oscillators with heterogeneous ion channel activity. We first
coupled a simulated wild-type (WT) to a variant SAN cell (scaling
factors defined as follows: ICa,L = 3.19472, ICatt = 2.59237, Ih =
2.64054, IKr = 2.3018, IKs = 2.93799, INCX = 2.79239, INKA =

2.45686, Ito = 2.06311) and observed spontaneous AP properties
for coupled and uncoupled pairs (Figures 2, 3). As expected,
despite very different AP properties of the individual cells, a
normal degree of coupling eliminated differences between the
two cells. Interestingly, the steady-state CL, DDR, and MDP
values of the coupled cells were closer to that of the single cell with
the shortest CL (in this case, the variant cell). This phenomenon
is consistent with observations of shifts of the SAN pacemaker
site in cardiac disease from the original area of excitation to areas
with the earliest depolarization [31].

To provide insight into the influence of coupling on
spontaneous AP dynamics, we performed parameter sensitivity
analysis on the single cell by generating 616 AP variants and
performing linear regression on the dataset. We compared these
results to a separate regression analysis on a dataset where the
variant was coupled to a WT cell (Figure 4). For the most part,
regression coefficients relating ion channel conductances to AP
properties were similar for single and coupled cells. For example,
perturbations in maximal conductances of the L-type Ca2+

current (ICa,L) and the transport rate of the Na+/K+ ATPase
(INaK) have a large positive influence on Vm,peak in both single
and coupled simulations, while perturbations in conductances of
the T-type Ca2+ current (ICatt), rapid delayed rectifier K

+ current
(IKr), and transient outward K+ current (Ito) are inversely
related, i.e., an increase in ICatt, IKr, or Ito decrease peak Vm.
Despite the overall agreement, there are small but interesting
differences between sensitivity of the single vs. coupled cell. First,
while ICa,L has a positive effect on CL and Vm,peak in both single
and coupled cells, its influence is diminished in the coupled cell.
Likewise, coupling reduces the influence of ICa,L on DDR and
MDP. In contrast, our simulations predict that coupling increases
the effect of IKr, at least with respect to DDR and CL.

To provide additional insight into the influence of coupling
strength on sensitivity analysis, we performed 6160 simulations
(10 conductivities, 616 simulations of a WT cell coupled to
a variant cell) over a range of conductivities (Figure 5). In
many instances, the regression coefficients mapping ion channel
conductances to AP properties were found to be independent
of coupling strength, especially for Vm,peak and MDP. However,
interesting exceptions to this behavior were observed for CL and
DDR, where regression coefficients for specific ion channels were
highly dependent on coupling strength (e.g., ICa,L, ICa,tt, Ih for
CL and Ih and IKr for DDR) This series of simulations suggests
that the relative importance of specific ion channels for cardiac
pacemaking changes in subtle but important ways across a range
of coupling values.

We sought to explore coupling effects over a range of 25
different coupling strengths with a WT cell coupled to 20
different variants (totaling 500 different simulations of two
coupled cells). We plotted the average steady-state values of the
MDP, Vm,peak, and CL for both the coupled WT and variant cells

FIGURE 2 | Simulated spontaneous SAN action potentials in one WT cell and

one cell with lognormally perturbed ion channel factors. Simulations were run

to steady state (50 s). (A) At a conductivity of 0.33 (1/�-cm), which is the

normal conductivity between two WT cells, the cells synchronize both the

voltages and the times at which they fire. (B) At a conductivity of 0 (1/�-cm)

the cells are uncoupled and act the same as if they were run independently.

at each coupling value. As expected, values for MDP, Vm,peak,
and CL converge in the WT and variant cell as gap junction
conductivity increases (Figure 6). Interestingly, CL appears to
synchronize at lower conductivity values compared to other AP
properties. Furthermore, a small window of interesting dynamics
characterized by increased standard deviation values for AP
properties was observed around 10−3.8 1/�-cm.

Effect of Coupling in Two-Dimensional
Simulations of Heterogeneous SAN Cells
We hypothesized that the range of conductivities identified
in Figure 6 with large standard deviations would promote
asynchronous activity in two-dimensional simulations of
heterogeneous SAN cells. We simulated 7 × 7 grids of
variant SAN cells with homogeneous cell-to-cell coupling,
for 25 different conductivities. At low coupling values most
SAN cells oscillate without interacting with each other
(Supplementary Videos 1, 2). The range of values indicated
by arrows in Figure 6 was also the range in which spiral wave
activity was sustained in the two-dimensional grid simulation
(Supplementary Videos 3, 4). For higher degrees of cell-to-
cell coupling, cells across the grid were fully synchronized
(Supplementary Videos 5, 6). This set of simulations suggests
that coupling can promote an arrhythmogenic substrate, even in
a small group of pacemaker cells.

Quantifying Synchrony in Two-Dimensional
Simulations of Heterogeneous SAN Cells
We sought to quantify the level of synchrony in a two-
dimensional grid in order to quantitatively distinguish between
spiral wave formation (Supplementary Videos 3, 4), completely
asynchronous activity (Supplementary Videos 1, 2) and
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FIGURE 3 | Measured steady state values from the last action potential in the simulation. The differences between the two cells are resolved at full conductivity to a

value somewhere between the two cells. (A) Cycle length, (B) diastolic depolarization rate, (C) max diastolic potential, (D) max voltage.

synchronous firing (Supplementary Videos 5, 6). Plotting beat-
to-beat CL for all 49 cells in a 7 × 7 grid for three different gap
junction conductivities demonstrates a wide range of steady-state
CLs when the propagating wave is random (Figure 7A), large
deviations when spiral waves are formed (Figure 7B, <20 s),
and a uniform CL across the grid when the tissue is oscillating
synchronously (Figure 7B, >20 s and Figure 7C). Plotting
beat-to-beat CL at normal conductivities shows uniform CL
across all cells in the simulation (Figure 7C).

The synchrony factor, which represents the inverse of the
longest conduction time between two cells in the same cluster,
approaches zero and demonstrates noise (0.5 amplitude trace)
for chaotic asynchronous simulations where the cells are not
interacting with each other (Figure 7D). When coupling is in
a range that sustains spiral wave activation, the spiral waves
can be visualized in the peaks and valleys of synchrony factor
over time (Figure 7E, <20 s). As coupling increases to normal
consistent propagation across the entire grid, the synchrony
factor increases and maintains a steady value (Figure 7E, >20 s
and Figure 7F). Synchrony factor values above 1 consistently
represented fully synchronized grids, and below 0.5 consistently
represented asynchronous random poorly coupled oscillations.

Vm,peak similarity, which represents the inverse of the
standard deviation of peak voltages in one beat, approaches
zero with high-amplitude fluctuations for chaotic asynchronous
simulations (Figure 7G). As a simulation transitions from
asynchronous (Figure 7H, <5 s) to an organized, complex
activation (spiral wave, Figure 7H, >5 and <20 s) Vm,peak

similarity rapidly reaches a single steady-state value after a brief

period of low amplitude fluctuation. Synchronized activation
produces a large steady-state value for Vm,peak similarity with a
brief latency (Figure 7I). These results demonstrate the utility of
quantifying synchrony measures to distinguish between random,
spiral, and synchronous propagating waves sustained by coupling
differences in heterogeneous SAN tissue. Vm,peak similarity
values above 15 consistently represented fully synchronized grids,
and below 10 consistently represented asynchronous random
poorly coupled oscillations.

We performed parameter sensitivity analysis on coupled
cells to determine the relative ion channel contributions to
the synchrony factor and peak voltage similarity measurement
(same 616 simulations as Figures 4A–D). At normal gap junction
conductivity, synchrony factor is not dominated by any single
ion channel conductance (relatively small regression coefficients
for all conductances) with surprisingly little contribution from Ih
(Figure 8A). However, ICa,L and INaK both had a large negative
contribution and Ito a large positive contribution to Vm,peak

similarity (Figure 8B). The relationships observed in Figure 8B

also seemed to be an inverse of the contributions to peak voltage
in previous simulations (Figure 4A). When we performed
parameter sensitivity analysis over a range of conductivities,
we observed that the relationship between each individual ion
channel’s contribution and synchrony factor was non-linear with
respect to conductivity (Figure 4C). Interestingly, any shifts from
a positive to negative contribution occurred in the range of 10−4

1/�-cmwhich is the same range that we observed sustained spiral
wave activity (Supplementary Videos 3, 4) and large standard
deviations in CL (Figure 6C).
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FIGURE 4 | Partial least-squares regression analysis of ionic gating variables in the rabbit sinus node model. Regression coefficients showing how changes in model

parameters affect membrane dynamics in two coupled simulated SAN cells. 616 simulations were performed at a normal coupling strength (0.33) between one WT

and one variant cell with random ion channel factors (L-type Ca2+ current ICa,L, T-Type Ca2+ current ICa,T, hyperpolarization-activated current IH, rapidly activating

delayed rectifying K+ current IKr, slowly activating delayed rectifying K+ current IKs, Na
+/Ca2+ exchanger INCX, Na

+/K+ ATP-ase INaK, transient outward K+ current

Ito) perturbed over a lognormal distribution, with a mean of 1.0 and a standard deviation of 0.2. Parameter sensitivities of ion channel conductance parameters affect

(A–B) peak membrane voltage, (C–D) cycle length, (E–F) max diastolic potential (MDP), and (G–H) diastolic depolarization rate (DDR). The impact of ICa,L, ICatt, Ito,

IKr, and INaK contributed highly to membrane voltage dynamics including peak (ICa,L, INaK, Ito), cycle length (ICatt), diastolic membrane voltage (IKr, INaK ), and

diastolic depolarization rate (INaK ).

DISCUSSION

In this study, we use mathematical modeling to explore the role

of coupling on spontaneous AP dynamics and synchronization

of pacemaking. Our simulations led to a number of important
findings, including: (1) While parameter sensitivity analysis

reveals a similar relationship between ion channel conductances
and AP properties in single and coupled cells, our simulations

predict small but potentially important differences, including
complicated effects of coupling on the influence of ICa,L and
IKr; (2) a specific coupling range in simulations promoted
complex emergent behavior (including spiral wave activation)
and at values higher than this coupling range cells fired
together synchronously; (3) We define an approach for first
defining groups of related cells (activation clusters) and
then characterizing their synchrony (synchrony factor and
peak voltage similarity), which facilitates quantification and
visualization of synchronous behavior in a two-dimensional
heterogeneous grid of SAN cells. Our studies are distinct from

previous studies investigating coupling between spontaneously
activating oscillators in that we employ an AP model that
describes detailed ion channel kinetics. Another novel aspect
of this set of studies is the introduction of updated LongQt
simulation software to explore the impact of heterogeneous
ion channel expression and gap junction conductivity in
multicellular simulations. LongQt is cross-platform and available
for download at hundlab.org, and may be useful in future
exploration of conductivity in two-dimensional simulated tissue.

Previous studies have explored coupling inhomogeneity
between simulated SAN cells and observed trends of synchronous
firing and heterogeneous tissue becoming homogeneous through
a democratic entrainment process at sufficient coupling values
[20, 32, 33]. Our studies also support the theory of a democratic
entrainment process both at the level of two coupled cells
(Figure 6) where both cells adjusted their transmembrane
dynamics to adjust to a new value that was distinct from firing
alone. All grid simulations with uniform wave propagation began
activation from a cluster of cells firing together rather than a
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FIGURE 5 | Partial least-squares regression analysis of ionic gating variables vs. cell conductivity. Two cells were paired where one was lognormally perturbed with a

mean of 1 and a standard deviation of 0.2, while the other cell was WT. 616 simulations were run at each conductivity for the least-squares regression at each of 10

different conductivities. Regression coefficients are shown over a range of gap junction conductivities for: (A) Max voltage, (B) cycle length, (C) max diastolic potential,

(D) diastolic depolarization rate.

FIGURE 6 | Conductivity vs. cell properties for two coupled SAN cells where one cell was perturbed lognormally, while the other cell is a WT. Data points are the

average of 20 simulations with the error bars corresponding to one standard deviation. (A) Max diastolic potential vs. Conductivity. Max diastolic potential

synchronizes at higher conductivities and the means become equal around 10−1.6 1/�-cm. Larger standard deviations are observed around 10−4 1/�-cm. (B) Peak

voltage vs. conductivity. Peak voltage equalizes at higher conductivities and the means become equal around 10−1 1/�-cm. Larger standard deviations are observed

in the 10−4 and 10−3 1/�-cm range. (C) Cycle Length vs. Conductivity. Cycle length synchronization happens at much lower conductivities than the others, with the

means equalizing between 10−4 and 10−3 1/�-cm. It is in this range that the cells are highly interactive but not fully able to synchronize, which is indicated by large

standard deviations.
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FIGURE 7 | Simulations were run on a 7 × 7 grid for 50 s. Each cell was randomly perturbed using a lognormal distribution with a mean of 1 and a standard deviation

of 0.2. (A–C) Cycle length for 49 cells is shown over time. At low conductivities (A) cells do not synchronize, and as conductivity increases the cells begin to interact

and find a common cycle length (B) and eventually fire at a common cycle length immediately (C). (D–F) Synchrony factor vs. Time. The synchrony factor

measurement is the longest amount of time it takes the peak of the action potential to propagate from any cell to its neighbor. Low values indicate random and low

synchrony factor waves (D). The larger peaks and valleys that appear in higher conductivities (E) correlate with spiral wave formation and multiple wave fronts in the

grid. When cells interact and fire in cohesive synchronization (F), synchrony factor becomes higher and stabilizes. (G–I) Peak voltage similarity vs. Time. The peak

voltage similarity measurement is the inverse of the standard deviation of the voltage values across the grid. Low conductivities indicate random noisy peak voltage

similarity waves (G). As conductivity increases, peak voltage similarity increases and stabilizes initial noisy values (H). At higher conductivities, peak voltage similarity

display no errant behavior (I).

single cellular driver (Supplementary Videos 1–6). This cluster
size was different for different coupling values, indicating that
the multicellular simulations demonstrated mutual entrainment
of SAN cells.

The SAN is a small structure that is insulated from the
rest of the right atrium, and employs a limited number of
conduction pathways in order to activate the surrounding tissue
[34, 35]. In the SAN, cells form groups with high degrees of
coupling between cells in a group and much lower amounts of
coupling at the border of groups [36, 37]. Conduction barriers
due to fibrosis or structural remodeling may inhibit healthy
SAN activation, and initiate SAN microreentrant waves [38].
Previous simulation studies have observed that microreentrant
conduction was not sustained by AP changes, and required

a large center of fibrotic tissue to produce microreentry [22].
We identified a specific range of low coupling that sustained
emergent spiral wave behavior in a heterogeneous grid of SAN
APs, indicating that increased coupling is a crucial component to
synchronization of pacemaker cells and sufficient coupling may
override differences in cell-to-cell transmembrane dynamics.
Notably, our simulations did not require implementing a “track”
of fibrotic tissue around which the AP wave could propagate,
but still resulted in emergent behavior. The synchrony factor
measurement, which best represents how closely together cells
are firing within a beat, demonstrated a non-linear relationship
with respect to coupling (Figure 8A). This further supports the
idea that coupling non-linearly alters the ability of SAN cells to
fire synchronously.
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FIGURE 8 | Partial least-squares regression analysis of synchrony factor and

peak voltage similarity metrics. 616 simulations were run with two paired cells

where one was lognormally perturbed with a mean of 1 and a standard

deviation of 0.2, while the other cell was a WT. Ion channel coefficients did not

have a significant impact on (A) synchrony factor. In contrast, parameter

sensitivity analysis indicates that the impact of ICa,L, INaK, and Ito greatly

(Continued)

FIGURE 8 | impact the (B) peak voltage similarity metric. (C,D) Partial

least-squares regression analysis of ionic gating variables vs. cell conductivity.

At each conductivity simulations were run as in (A) and (B) and a total of 10

different conductivities were examined. (C) Synchrony factor is very non-linear

with a range between 10−4 and 10−3 1/�-cm in which all the ion channel

coefficients are very close to 0. (D) Peak voltage similarity is mostly linear with

an exception between 10−4 and 10−3 1/�-cm where most of the ion channel

coefficients pinch toward 0.

In previous work, Michaels et al. examined the effects of cell-
to-cell coupling strength on entrainment [20, 33]. They tested
both paired cells as well as small grids. In paired cells they
observed that the cells tended to synchronize to a CL closer
to the faster cell. In a grid they found that the apparent wave
front slowed as coupling strength decreased, however they did
not see spiral waves or other conduction issues. They also tested
a grid with a partial wall of inexcitable tissue and found that
the cells on the other side were still trained, although slightly
delayed.

Shifts in the location and size of the SAN pacemaker may
occur as a compensatory mechanism in response to sinus node
dysfunction, vagal nerve stimulation, or pharmacological block
of the Na+ current or L-type Ca2+ current [31]. Our simulations
show that a heterogeneous SAN with low coupling will sustain
pro-arrhythmic behavior, but increasing coupling may help
synchronize the entire grid. A shift in size and location of the
pacemaker may be beneficial due to coupling changes; this shift
transforms the pacemaker into a larger group of highly coupled
cells, which our simulations show can synchronize through
a democratic entrainment process regardless of ion channel
heterogeneity. These studies also suggest that altering gap
junction coupling in the SAN may promote healthy pacemaking
activity.

The studies presented here perform a variety of parameter
sensitivity analyses in order to deconstruct the relationship
between ion channel conductance, conductivity, SAN
transmembrane properties (DDR, MDP, peak voltage, and CL),
and the proposed measurements of synchrony (synchrony factor
and peak voltage similarity). Both ICa,L and IKr demonstrated
a high contribution to transmembrane dynamics and non-
linear behavior with respect to transmembrane properties and
synchrony metrics. This is further supported by experimental
evidence of sinus node impairment or dysfunction related to
modulation of L-type Ca2+ current [39, 40] or hERG channel
function [41, 42]. The parameter sensitivity analysis also
demonstrates that the relationship between specific ion channel
conductances may vary depending on cell-to-cell coupling values
(Figures 5, 8). This suggests that it is not necessarily sufficient
to extrapolate effects of single cell perturbation to emergent
behavior at the tissue level.

The emergent behavior of coupled oscillators has been
widely explored in both computational and experimental
studies of multiple areas of biology such as mitochondrial,
circadian rhythms, synaptic firing, and broader ecological
studies. Synchronization and its quantification has been widely
discussed in networks of coupled oscillators [43–46]. Our hope
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is that these set of studies contributes to an already diverse
set of work and adds to understanding of the impact of ion
channel behaviors as well as coupling in the SAN pacemaker.
We also believe that the synchrony metrics presented here
would be useful for quantifying dynamics in larger tissue
experiments such as optical mapping experiments. Future studies
quantifying synchronization of coupled SAN oscillators in tissue
or determining the impact of ion channel changes on generation
of microreentrant arrhythmias may help support the findings in
the simulations shown here.

LIMITATIONS

While these mathematical modeling studies are based on

a well-validated single cell model of the rabbit SAN AP,
the two-dimensional simulations have important limitations

based on experimental data. For the sake of simplicity,
SAN cells were coupled in a uniform rectangular grid with

homogeneous coupling strengths, but this does not match the
detailed physiology of the three-dimensional atrium. Similarly,

heterogeneity of the SAN is modeled as either a gradient with AP

differences between the central and periphery of the node, or a
mosaic with a variable mix of SAN and atrial cells from periphery

to the center. The gradient model is supported by a wide range

of experimental data and simulations showing a change in the
transmembrane properties of the SAN between the periphery and

the center, a change in the density of ion channels responsible

for INa and If, and a lack of atrial cells in the center of the

SAN [47, 48]. The studies presented here more closely represent
the mosaic model, but are distinct in that only SAN cells are

implemented (no randomly placed atrial cells are simulated in the
grid simulations). It is also important to note that the grid used in
our studies contains a relatively small number of cells compared
to the actual SAN. However, based on previous work [36, 37],
it is possible to consider each cell in the grid as representative
of a group of cells so that the behavior observed in our grid
should scale to larger dimensions. Finally, these simulations did
not implement parasympathetic stimulation of tissue, or patch of
atrial tissue surrounding the SAN to further explore activation of
atrial tissue by the SAN complex. This is especially important to

note in two-dimensional simulations using a rabbit SAN model,

since the architecture of the rabbit sinus node and its subsequent
conduction pathways is distinct from human [31]. Conductivities
between cells in these simulations were fixed, so the tubular
shape of cells was ignored. In addition, we observed emergent
behavior at the edges of large grid simulations, which may be an
artifact of the simulation setup. While outside the scope of the
current study, going forward it would be interesting to design
experiments to test model predictions in in ex vivo preparations.
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Supplementary Videos 1–6 | Movies of cell voltages in 7 × 7 grids depicting

asynchronous activity (Video 1), spiral waves (Video 3), and synchronous activity

(Video 5) from Figure 7. As propagation across the grid happens very quickly, the

movies are slowed by a factor of 2X. The end of the spiral wave from Figure 7B

thus happens at t = 40 s in the video as opposed to t = 20 s in the simulation.

Additional movies depicting clusters in the same 7 × 7 grids from Figure 7 are

labeled Videos 2, 4, 6 for asynchronous, spiral waves, and synchronous activity,

respectively. These movies show clusters of cell action potentials forming and then

being removed. Colors for the clusters repeat regularly and are not for any

purpose besides distinguishing the clusters. As the time for a cluster to propagate

is very fast, these movies are slowed by a factor of 4X. All movies were created at

a constant 40 fps using python plotting library (matplotlib).
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