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We present an algorithm for quantum-assisted cluster analysis that makes use of the

topological properties of a D-Wave 2000Q quantum processing unit. Clustering is a form

of unsupervised machine learning, where instances are organized into groups whose

members share similarities. The assignments are, in contrast to classification, not known

a priori, but generated by the algorithm. We explain how the problem can be expressed

as a quadratic unconstrained binary optimization problem and show that the introduced

quantum-assisted clustering algorithm is, regarding accuracy, equivalent to commonly

used classical clustering algorithms. Quantum annealing algorithms belong to the class

of metaheuristic tools, applicable for solving binary optimization problems. Hardware

implementations of quantum annealing, such as the quantum annealing machines

produced by D-Wave Systems [1], have been subject to multiple analyses in research,

with the aim of characterizing the technology’s usefulness for optimization, sampling,

and clustering [2–17]. Our first and foremost aim is to explain how to represent and solve

parts of these problems with the help of the QPU, and not to prove supremacy over every

existing classical clustering algorithm.

Keywords: quantum computing, machine learning, quantum physics, clustering, quantum algorithms, quantum-

assisted

INTRODUCTION

The idea behind quantum-assisted machine learning [18–26] is to either take parts of a classical
algorithm and augment the tricky parts with a quantum subroutine or to find entirely new
algorithms that exploit quantum effects and/ or the specific topology of a quantum processing
unit (QPU). Most of the commercially available QPUs we see today are based on superconducting
qubits, and couplers connecting these. The couplers can be seen as weighted connections and
the qubits as vertices, so any problem that can exploit the topology of the QPU may be worth
examining. The introduced quantum-assisted clustering algorithm falls into that category, as it
utilizes the topological properties of the chip for assigning clusters. Besides the known problems,
we see the potential for solving problems such as the finite element method, neural networks, and
traffic flow, to name only a few, as in all of these we see interactions between elements and seek to
minimize a quantity.

Quantum annealing is a class of algorithmic methods and metaheuristic tools for solving search
or optimization problems. The search space for these problems usually consists of finding a
minimum or maximum of a cost function. In searching a solution space for a problem, quantum
annealing leverages quantum-mechanical superposition of states, where the system follows a time-
dependent evolution, where the amplitudes of candidate states change in accordance of the strength
of the transverse field, which allows for quantum tunneling between states. Following an adiabatic
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process, a Hamiltonian is found whose ground state closely
describes a solution to the problem [1, 2, 27].

Quantum annealing machines produced by D-Wave Systems
leverage quantum annealing via its quantum processor or QPU.
The QPU is designed to solve an Ising model, which is equivalent
to solving quadratic unconstrained binary optimization (QUBO)
problems, where each qubit represents a variable, and couplers
between qubits represent the costs associated with qubit pairs.
The QPU is a physical implementation of an undirected graph
with qubits as vertices and couplers as edges between them.
The functional form of the QUBO that the QPU is designed to
minimize is:

Obj (x,Q) = xT · Q · x (1)

where x is a vector of binary variables of size N, and Q
is an N × N real-valued matrix describing the relationship
between the variables. Given thematrixQ, finding binary variable
assignments to minimize the objective function in Equation (1)
is equivalent to minimizing an Ising model, a known NP-hard
problem [16, 28].

CLASSICAL CLUSTERING

In cluster analysis, the aim is to group sets of objects, i.e., points or
vectors in d-dimensional space, such that some objects within one
group can be clearly distinguished from objects in another group.
An additional taskmay be the ability to quickly assign new objects
to existing groups (clusters), i.e., by calculating the distance to
a previously calculated cluster-centroid instead of running the
re-running the complete clustering algorithm.

Clustering is a form of unsupervised machine learning, and
used to find representative cases within a data set for supporting
data reduction, or when needing to identify data not belonging
to any of the found clusters [29]. Clustering helps to identify
instances similar to one another, and to assign similar instances
to a candidate cluster. A set of clusters is considered to be
of high quality if the similarity between clusters is low, yet
the similarity of instances within a cluster is high [30]. The
groups are, in contrary to classification, not known a priori, but
produced by the respective clustering algorithm [31]. Clustering
is, amongst others, supported by self-organizing feature maps,
centroid-based algorithms [32], distribution-based algorithms,
density-based algorithms, orthogonal partitioning clustering.

We only explain one very common algorithm in detail—
self-organizing feature maps—as this classical algorithm shares
some similarities to the introduced quantum-assisted clustering
algorithm.

Self-Organizing Feature Map
Self-organizing feature maps (SOFMs) are used to project high-
dimensional data onto a low-dimensional map while trying
preserve the neighboring structure of data. This means that data
close in distance in an n-dimensional space should also stay
close in distance in the low-dimensional map—the neighboring
structure is kept. SOFMs inventor, Teuvo Kohonen, was inspired
by the sensory and motor parts of the human brain [33].

Figure 1—Self organizing feature map—the scheme of a
SOFM shows that every component of the input vector x is
represented by an input neuron and is connected with the low
dimensional layer (in this case) above it. During a learning phase,
the weight vectors of a SOFM are adapted by self-organization
[34]. As other artificial neural networks (ANNs), the SOFM
consists of neurons (n1, . . . , nn), each having a weight vector
wi and a distance to a neighbor neuron. The distance between
the neurons ni and nj is nij,. As Figure 1—shows, each neuron is
allocated a position in the low-dimensional map space. As in all
other ANNs, initially the neuron weights are randomized. During
learning, the similarity of each input vector to the weights of all
neurons on the map is calculated, meaning that each member of
the set of all weight vectors D is compared with the input vector
d ∈ D. The SOFMs learning algorithm therefore belongs to the
group of unsupervised learning algorithms. The neuron showing
the highest similarity, having the smallest distance dsmall to d ∈ D
is then selected as the winning neuron nwin (Equation 2) [35]:

dsmall =
min
1≤j≤n d{(d ∈ D,wj)} (2)

The weights of the winning neuron are adapted, as well as
the weights of the neighbor neurons utilizing the neighborhood
function ϕn and the learning rate µ. The neighborhood function
has the following characteristics [35]:

• µ has its center at the position of nwin and is a maximum at
this point.

• The neighboring neurons are considered according to a radius.
Within this radius, for distances smaller than r, ϕn leads to
outcomes greater than zero, and for distances greater than r,
it takes on a value of zero.

Choosing a Gaussian function fulfills all the requirements in this
case. The adaption of the weights is then carried out as described
in Equation (3):

w
(t+1)
i = w

(t)
i + µϕn

(

wnwin,w
(t)
i , r

) (

d ∈ D− w
(t)
i

)

(3)

During training, the learning rate and the neighborhood radius
has to be reduced in each iteration, done by σ (t+1) (Eq. 4) [35, 36]:

σ (t+1) = σ ∗
s

(

σe

σs

)(t+1)/(t+1)e

(4)

where σs represents the starting value and σe the ending value,
also being the function value of t(+1)e.

Similarities to SOFM and
Quantum-Assisted Clustering
In the example depicted in Figure 1, the SOFM is a two-
dimensional lattice of nodes, and depending on a presented
instance, different nodes will fire with different strengths.
The ones firing with the greatest amplitude give the cluster
assignment. The QACA works similar in the sense that the
two-dimensional topological properties of the D-Wave are
exploited for cluster assignments. Assuming we embed two-
dimensional clusters on the chip (higher-dimensional structures
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FIGURE 1 | Self-organizing feature map.

can be mapped as well—see the explanations in chapter 3), an
assignment of cluster points to qubits may look as described in
Figure 2:

Figure 2 shows schematically that qubits 1–8, and 17, 18,
21 would “fire,” thus take the value 1 in the result-vector, and
qubits 9–16 and 19, 20, 22–24 would not fire, thus take the
value 0. We need to set the couplings accordingly, so that when
a candidate instance is fed into the cluster-form (see QUBO-
form and embedding, Figure 3) and embedded onto the QPU,
the result allows us identify “areas” of activity or groups of qubits
set to 1 for similar instances.

Figure 3 shows how an instance is fed into the cluster-form.
−→
X = (x1, . . . , xn) represents the input vector.

QUANTUM-ASSISTED CLUSTERING
ANALYSIS (QACA)

The introduced algorithm can be used as a probabilistic and
definite clustering-algorithm, depending on how the result-
vector is interpreted.

Quantum-Assisted Clustering With
n-Dimensional Polytypes
The underlying idea is to classically define n-dimensional
polytypes, such as the tetrahedron, the pentachoron, the tesseract,
or even typeless polygons, which serve as clusters into which the
instances projected, and map these onto the two-dimensional
graph of the quantum annealing chip. The structure is derived
from the number of input attributes in the data set. If each
instance comes with 3 attributes, the structure of choice is a
tetrahedron, and if the number of input attributes is 4, the
structure of choice is a tesseract (see Figure 4).

FIGURE 2 | Qubits and clusters.

The tetrahedron in three dimensions is given by four vertices,
and assuming the intention is to cluster a four-dimensional data
set into three clusters, three tetrahedra need to be defined. We
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FIGURE 3 | Feeding an instance into the cluster-form.

do this by generating three random centroids, from which we
calculate the remaining vertices. The centroid of the tetrahedron
in Figure 4 is given by the coordinates c = (2, 2, 2). The
remaining coordinates can be easily calculated, depending on the
desired cluster size. Assuming we define a distance of 2 from the
centroid, the set of tetrahedral coordinates P =

{

p1, p2, p3, p4
}

are calculated as described in Equations 5–9:

p1 =
(

cx, cy, cz + 2
)

(5)

p2 =
(

cx − 2, cy − 2, cz − 2
)

(6)

p3 =
(

cx + 2, cy − 2, cz − 2
)

(7)

p4 =
(

cx, cy + 2, cz − 2
)

(8)

where the centroid c is defined as

c =
(

cx, cy, cz
)

(9)

As this approach does not generalize to other polytypes,
the three-dimensional tetrahedron serves only as an example.
Another way of defining clusters is by typeless polygons,
based on randomly chosen coordinates from within a range
of min(x) and max(x). Due to the inner workings of the
introduced algorithm strongly overlapping clusters can be seen as
probabilistic clustering, and clusters within clusters would help to
identify clusters in data sets such as described in Figure 5, where
the rows describe different the data sets, and the columns some
algorithms used to cluster them:

Depending on how far we move the clusters apart, the less
probabilistic QACA becomes, as the farther the clusters are apart,

the smaller the probability of overlapping clusters becomes. If,
classically (non-quantum), clusters do not overlap at all, we find
definite cluster assignments for each of the instances. To give a
first indication about how we define probability in terms of the
introduced quantum-assisted clustering algorithm, we consider
definite states of qubits post-measurement. Each qubit can be
in one of the states S = {−1, 1}. The more qubits of a cluster
kx ∈ K =

{

k0, . . . , km−1

}

take the state 1 for a specific instance
ix ∈ I =

{

i0, . . . , il−1

}

, the more probable it is that the instance
ix is a member of kx. What’s particularly elegant about this
approach is that if clusters do not overlap in space, the nature
of our algorithm still allows for probabilistic clustering (and to
solve non-linear problems as depicted in Figure 3). However, the
farther apart wemove the clusters, the more the respective cluster
coordinates differ from each other, and the more likely it is that
we find definite assignments. We initialize the clusters based on
n-dimensional typeless polygons as described in Algorithm 1:

Algorithm 1 Cluster definition based on n-dimensional typeless
polygons.

Initialize: ic, nv,M, i+, rmin, rmax

For each k ∈ M:
For each v ∈Nv:
vcx= rand (rmin,rmax)

vcy= rand (rmin,rmax)

vcz= rand (rmin,rmax)

rmin=rmin+i+∗ǫ

rmax=rmax+i+∗ǫ
Breakdown

ic: the initial coordinate for cluster vertex calculations, given
by Eq. 8.
nv: set of all vertices per cluster, i.e., four vertices per cluster:
Nv = {1, 2, 3, 4}.
k: cluster
M: set of all clusters, i.e., three clusters:M = {1, 2, 3}.
i+: increment by which the coordinate range for finding
random vertices is shifted, given by Eq. 9.
rmin: minimum range value for finding random vertices which
define a cluster. Initialized as rmin=ic.

rmax: maximum range value for finding random vertices which
define a cluster. Initialized as rmax=rmin+i+.
vcx, v

c
y, v

c
z: x, y, z coordinates of the vertex v in the cth

cluster. In the introduced example space is 3-dimensional, but
the algorithm generalizes to n-dimensional space, and even
complex manifolds.
ǫ: sliding factor.

ic = min(X) (10)

i+ =
max (X) −min(X)

m
(11)

where X is the matrix of input attributes and m the number
of clusters. In Algoritham 1, we assign coordinates to each
vertex of an n-dimensional typeless polygon. For each cluster,
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FIGURE 4 | Tetrahedron in three dimensions.

we shift the coordinate range r = (rmin, rmax) by the increment
i+ and a sliding factor i+, which is increases or decreases in
coordination with desired inter-cluster distances. We emphasize
that large inter-cluster distances, i.e., in the Euclidean sense,
do not necessarily imply definite cluster assignments. For an
instance ix, the introduced algorithm may still calculate a certain
probability of ix belonging to cluster k1, but also to kx, even when
k1 and kx do not overlap in n-dimensional space.

QUBO-form and Embedding
We present the problem to the D-Wave in QUBO-form. The
definition of the matrix in QUBO-form is done in two steps.

1. The first step is in defining a matrix in QUBO-form or
what we call a cluster-form (CF). The CF is defined only
once for all presented instances, and subsequently modified
as instances are fed into it. It is worth pointing out another
major difference to classical clustering algorithms such as k-
means or self-organizing feature maps: instead of training
regimes, i.e., iterative distance-based calculation of centroids,
or strengthening the weights of nearest neighbors around a
firing neuron, we only need to allocate instances to the CF
once to obtain the cluster assignment.

The QUBO-matrix is an upper triangular N × N-matrix
defined by i ∈ {0, . . . ,N − 1} by j ∈ {0, . . . ,N − 1}. In the
demonstrated example, each entry is initialized with 0, and
subsequently updated with the values calculated for the CF,
which come from Algorithm 1. The CF will hold all values of
the vertices based on the simple calculations in Algorithm 1.
While calculating each vertex coordinate vcx, v

c
y, v

c
z , we also

assign an ID to each of these and store this information in
a lookup-table. The x-coordinate in first vertex in the first
cluster is given the ID 1: v1x (or more accurately: v11x , where
the exponent defines the cluster, and the subscript the vertex
number and the respective coordinate), the y-coordinate in
the first vertex of the first cluster the ID 2, and so on.
We additionally create a list L of length l = nv∗m, which
contains a list of the coordinate values, i.e., the first three

entries of this list give the x, y, z coordinates of the first
vertex in the first cluster. The values in L may also be scaled
as described in Eq. 20, but this strongly depends from the
variance in the data set. We define the number of vertices as
nv and m the number of clusters. Additionally, we store the
qubit-to-cluster assignments in a lookup-table D in the form
{

k1 : [0, 1, 2] , k2 : [3, 4, 5] , . . . , kn :
[

qx−3, . . . , qx−1

]}

that we
use in step 2. We assign kx as the cluster number, and qubits
are given by the respective arrays. The CF is then defined as
described in Equation (12):

CF
(

i, j
)

=























CF
(

i, j
)

−

√

(

L2i + L2j

)

, ifc1

CF
(

i, j
)

+

√

(

L2i + L2j

)

, if c2

CF
(

i, j
)

, otherwise

(12)

where

c1 : S1 ≡ S2 and i ≤ j (13)

and

c2 : S1¬ ≡ S2 and i ≤ j (14)

In Equations (13, 14) the conditions for assigning positive
or negative signs to an entry are defined. If c1 is met, our
tests show that setting the respective entries to 0 instead

of −

√

(

L2i + L2j

)

may provide better results, but there is a

noticeable variance over differing data sets. The basic idea is
to iterate over the qubit-IDs of each cluster, and to compare
if the set of qubit IDs S1 is identical to the set of qubit IDs
S2. If the sets are identical, negative intra-cluster couplings
are set, and if not, positive inter-cluster couplings are set. The
reason for this is that once we introduce an instance to the
CF. The coupling-strengths values around the most probable
cluster’s qubits are lowered, and in the same instance the
values the inter-cluster couplings help to raise the entries of
the remaining clusters. This results in lower probability of the
most probable clusters being activated.

2. The second step is iterating over all cluster-instances: the
instances are fed into the cluster-form one by one, and each of
the resulting instance-cluster matrices (ICM) are embedded
on the QPU. For each cluster, we go over the number
of vertices and calculate a distance from each attribute-
coordinate to each cluster-coordinate. The number of qubits
per cluster must be a multiple of the number of data set
attributes, i.e., when the data set is three-dimensional, a cluster
may be represented by 3 qubits (point), 6 qubits (line), 9
qubits(triangle), and so on. If a cluster in a 3-dimensional
space is defined by 6 points, we require 18 qubits to represent
it on the QPU. For each of the cluster coordinates, we now
calculate the distance to each instance and update the list L
accordingly. L, as defined in step 1, was used to define the
cluster-form and was set with negative intra-cluster couplings,
and positive inter-cluster couplings. For each instance, L is
updated as described in Algorithm 2:

Frontiers in Physics | www.frontiersin.org 5 June 2018 | Volume 6 | Article 55

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Neukart et al. Quantum-Assisted Cluster Analysis

Algorithm 2 Instance to cluster distance calculation.

Load: D, L, ix
Initialize: cc=0

For each k ∈ D:
For each qubit ∈ k:
L

[

qubit
]

= L
[

qubit
]

−i[cc]2

cc = cc + 1

if cc == d: then
cc=0

end if
Breakdown

D: Cluster dictionary D :

{

k1 : [0, 1, 2] , k2 : [3, 4, 5] , . . . , kn :
[

qx−3, . . . , qx−1

]}

L: List with qubit-IDs and their values as initialized in the
cluster-form
ix: an instance
cc: coordinate counter. Counts up to 3 if the instance has 3
coordinates, up to 4 with 4 coordinates, and so on
d: number of dimensions per instance
k: key/ cluster in D
qubit: the qubit IDs per entry in D
L[qubit]: the value of L at entry qubit

With Algorithm 2, the distance from an instance ix to any
point in any cluster in the cluster-form is calculated. Once this
is done, the ICM is updated as described in Equations 15–20:

CF
(

i, j
)

=































CF
(

i, j
)

−

(

L2i + L2j

)

, ifc1

CF
(

i, j
)

−
(

L∗i Lj
)

, if c2

CF
(

i, j
)

+

(

L2i + L2j

)

, if c3

CF
(

i, j
)

+
(

L∗i Lj
)

, if c4
CF

(

i, j
)

, otherwise

(15)

where
c1 : S1 ≡ S2 and i < j (16)

and
c2 : S1 ≡ S2 and i = j (17)

and
c3 : S1¬ ≡ S2 and i < j (18)

and
c3 : S1¬ ≡ S2 and i = j (19)

The last step before embedding the problem onto the QPU
is scaling the values in the ICM, which is done according to
Equation (20):

xscaled =
xi −mean(x)

σ (x)
(20)

where σ (x) is the standard deviation. The features are centered
to the mean and scaled to unit variance.

Once the ICM has been processed, the spin-directions
provided in the result-vector tell us which qubits are “turned
on,” and which are “turned off.” Three ways to extract the cluster
assignments are probabilistic and definite:

1. Definite: For the turned-on qubits, the respective values of L
are extracted, and by looking up D we can identify the cluster
this qubit belongs to. In D, we can find the qubits per cluster,
and from the result-vector we get the turned-on. We look up
the respective IDs in L, and sum the values over the remaining
qubits. The lowest sum of “on”-qubit values per cluster gives
the cluster assignment.

2. Probabilistic 1: The number of turned-on qubits per cluster, as
defined by qubit-assignments inD, is counted. The percentage
of turned-on qubits per cluster gives the probabilistic
assignments of an instance to clusters.

3. Probabilistic 2: For the turned-on qubits, the respective values
of L are extracted, and by looking up D we can identify the
cluster this qubit belongs to. In D, we can find the qubits per
cluster, and from the result-vector we get the turned-on. We
look up the respective IDs in L, and sum the values over the
remaining qubits. The percentage of turned-on qubits-values
per cluster gives the probabilistic assignments of an instance
to clusters.

EXPERIMENTAL RESULTS AND
CONCLUSIONS

Our intention was to obtain the results without having to
split the QUBO so that a singular embedding is possible.
We verified QACA with commonly used low-dimensional
verification data sets, such as the Iris data set. For verification, we
chose Expectation Maximization, k-means, and Self-Organizing
Feature Maps, all three known to perform well on the Iris
data set. We ran QACA 5 times and averaged the performance,
as due to the randomness in the cluster-form the results
can vary. In brackets, we provide the individual cluster
assignments. The accuracy is defined as percentage of correctly
assigned instances, and the cluster-assignment is definite
(Tbl. 1).

Some example results for the “Probabilistic 2”-method, which
is as accurate as the definite results described in Table 1 when
assigning highest probability to an instance, are as follows
(Table 2):

Summing up, the quantum-assisted clustering algorithm can
compete with classical algorithms in terms of accuracy, and
sometimes outperforms the ones used for comparison on the test
data sets. However, the results strongly vary depending on the
cluster-form, and better ways for cluster-form initialization have
to be found.

In the experiments described above, the number of
used physical qubits used for the embedding varied
from instance to instance, with a minimum of 967 and a
maximum of 1,455. Finding a valid performance-comparison
in terms of runtime is challenging due to the following
reasons:

1. QACA does not require training, classical algorithms do:
Compared to classical algorithms, the introduced algorithm
does not require training, whereas classical algorithms’
training time increases with the number of attributes and
instances.
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FIGURE 5 | Some non-linear data sets and some ways to cluster them [37].

TABLE 1 | Algorithm comparison.

EM k-means SOFM QACA

Accuracy in % 86 89.7 70.7 Avg.: ∼85.6

Ind.: (87.33 (131), 90 (135), 83.33

(125), 80 (120), 87.33 (131))

2. QACA requires to embed instances, but classical algorithms
don’t: Classical algorithms will most likely always be faster in
the application phase, as finding a solution on the D-Wave
depends on the embedding time, which may vary from
instance to instance.

Apart from the accuracy results, we see another strength of the
QACA-algorithm in the ability to identify new clusters without
training: if the introduced algorithm is not constrained by n

TABLE 2 | Probabilistic assignments.

instance 0 probabilities: 1.06, 20.96, 77.97

instance 1 probabilities: 1.06, 20.96, 77.97

instance 2 probabilities: 2.62, 20.99, 76.38

instance 3 probabilities: 0.76, 20.92, 79.83

instance 4 probabilities: 1.06, 20.96, 77.97

instance 5 probabilities: 4.019, 23.99, 80.02

predefined polytypes, but instances are fed into the whole lattice,
different activation patterns allow the identification of unknown
behavior.

FUTURE WORK

In our future work, we intend to further exploit the chip topology
to identify cluster assignments. By identifying where on the QPU
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we can find the turned-on qubits, an implementation of full
feature map should be possible.
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