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Mapping tissue microstructure accurately and noninvasively is one of the frontiers of

biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is at the forefront of

such efforts, as it is capable of reporting on microscopic structures orders of magnitude

smaller than the voxel size by probing restricted diffusion. Double Diffusion Encoding

(DDE) and Double Oscillating Diffusion Encoding (DODE) in particular, are highly promising

for their ability to report on microscopic fractional anisotropy (µFA), a measure of the

pore anisotropy in its own eigenframe, irrespective of orientation distribution. However,

the underlying correlates of µFA have insofar not been studied. Here, we extract µFA

from DDE and DODE measurements at ultrahigh magnetic field of 16.4T with the goal

of probing fixed rat spinal cord microstructure. We further endeavor to correlate µFA

with Myelin Water Fraction (MWF) derived from multiexponential T2 relaxometry, as

well as with literature-based spatially varying axon diameter. In addition, a simple new

method is presented for extracting unbiased µFA from three measurements at different

b-values. Our findings reveal strong anticorrelations between µFA (derived from DODE)

and axon diameter in the distinct spinal cord tracts; a moderate correlation was also

observed between µFA derived from DODE and MWF. These findings suggest that

axonal membranes strongly modulate µFA, which—owing to its robustness toward

orientation dispersion effects—reflects axon diameter much better than its typical FA

counterpart. µFA varied when measured via oscillating or blocked gradients, suggesting

selective probing of different parallel path lengths and providing insight into how those

modulate µFA metrics. Our findings thus shed light into the underlying microstructural

correlates of µFA and are promising for future interpretations of this metric in health and

disease.

Keywords: microscopic anisotropy, MRI, microstructure, diffusion MRI, myelin water fraction, spinal cord, axon

diameter

INTRODUCTION

Diffusion Magnetic Resonance Imaging (MRI) has become a mainstay of contemporary
microstructural imaging in biomedical applications. Diffusion MRI can provide rich information
on the sample’s microstructure by interrogating micron-scale dimensions within millimeter-scale
voxels [1]. In the hierarchical scaling of dimensions in biological systems, the micron-scale is
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fortuitously a characteristic length scale of many (sub)cellular
structures of interest, such as axons, dendrites or cell bodies,
which cannot be accessed using routine spatial resolutions in
MRI. Most diffusion MRI methods utilize variants of Stejskal
and Tanner’s [2] Single Diffusion Encoding (SDE) technique [3],
which probes diffusion using a single diffusion epoch spanned
by diffusion-sensitizing gradient waveforms. The flexibility of
SDE in terms of parameter space led to numerous variants
[4], as well as diffusion models [5, 6], that have been devised
to probe different aspects of the microstructure. For example,
Diffusion Tensor Imaging (DTI) models diffusion using a single
tensor [7, 8] under the assumption of (time-dependent) Gaussian
diffusion, and the tensor’s rotationally invariant properties can
then report on diffusion anisotropy and parallel/perpendicular
diffusivities. Other methods, such as q-space imaging [9, 10]
or diffusion spectrum imaging [11] utilize Fourier relationships
between the diffusion propagator and signal decay with the q-
value (where q = 1

2π γδG is the wavevector, γ is the gyromagnetic
ratio, δ represents the gradient duration, and |G| is the gradient
amplitude) to extract information on pore size or orientation
distributions, respectively. Diffusion time- and/or frequency-
dependence can also provide much insight into the restricting
geometry by probing the way in which the diffusion path is
modulated with time and/or the diffusion spectrum, respectively
[12–19]. Furthermore, more advanced biophysical modeling has
been recently put forth to characterize specific microstructural
components such as neurite density [20, 21], or water fractions
tentatively associated with axons in white matter [19] from
specific acquisition schemes. Such SDE methods have been
widely useful in neuroscience [22] and biomedical applications,
typically targeting longitudinal processes such as stroke, learning,
or chronic disease progression [1].

One interesting metric that can be probed by diffusion is the
microscopic diffusion anisotropy (µA) [23–25], from which its

FIGURE 1 | Diffusion MRI pulse sequences used in this study. (A) DODE and (B) DDE weightings were overlaid on a basic SE-EPI sequence. The diffusion gradient

orientations are independent and can vary in any of the axes, the particular instantiation here represents one particular case where G1 is oriented along the PE axis

and G2 is at an angle in the PE-RO plane. Other than the relative orientations that varied, identical waveforms were used for the two diffusion encodings.

normalized counterpart – the microscopic fractional anisotropy
(µFA) – can be derived. µFA defines a single compartment’s
anisotropy in its own eigenframe [26], e.g., for a sphere µFA = 0
while for an infinite cylinder µFA can approach 1. However, in
practice, the MRI signal will always originate from an ensemble,
thereby making it necessary to account for orientation dispersion
within the ensemble [27]. In systems comprising coherently-
aligned anisotropic objects where orientation dispersion is ideally
zero, µFA would be equivalent to the fractional anisotropy (FA)
derived from DTI. However, in conventional SDE methods,
when orientation dispersion is significant, estimated FA values
typically do not represent the true anisotropy, or µFA, as they
are conflated with orientation dispersion [28, 29]. For example,
in ideal randomly oriented infinite cylinders, the averaging of
anisotropic compartments results in FA = 0, which—without a-
priori knowledge or extensive modeling—would suggest that the
microscopic geometry is spherical.

In recent years, the Double Diffusion Encoding (DDE)
methodology (Figure 1) has been gaining increasing attention
for its potential to refine and identify microstructural aspects
not so easily probed by SDE [25, 30]. Unlike SDE, DDE
probes diffusion correlations using—as its name suggests—
two diffusion encoding periods, spanned by two independent
gradient wavevectors, which are separated by a mixing time
(τm). Comparing q-space-like signal decays using parallel
and perpendicular relative gradient orientations, Cheng and
Cory have been able to measure the sizes of randomly
oriented elongated (anisotropic) yeast cells, and distinguish
them from spherical cells [24]. Similarly, Callaghan and
Komlosh have shown that diffusivities extracted from parallel
vs. perpendicular DDE experiments could provide insight into
µFA in randomly oriented liquid crystals characterized by
Gaussian diffusion [23]. Such measurements provided the first
clues that µFA (termed using many divergent terms [3])
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could be recovered from DDE irrespective of orientation
dispersion.

Mitra [25], and later Özarlsan [31] derived exact solutions
for DDE signals, and have identified the importance of the
mixing time in decoupling µA from other effects. In the short
mixing time regime, interesting diffusion-diffraction phenomena
can be produced [32–36], and angular dependencies can provide
insight into pore sizes as shown experimentally first by Koch and
Finsterbusch [37, 38] and then by others [39–41]; however, by
analyzing the displacement correlation tensor [42], the short τm
angular DDE experiment aiming to measure compartment sizes
was found by Jespersen to be equivalent to a time-dependent SDE
experiment [43]. By contrast, in the long mixing time regime,
the second order term in the displacement correlation tensor,
from which sizes are measured, is decoupled from µA, making
its measurement much less complicated [25, 31]. The ability to
measure accurate µA values was validated in Shemesh et al.
[34] and its importance was shown in biological systems such
as ex-vivo neural tissues [44], yeast cells [45], and preclinical
in-vivo experiments [46], where the orientational variance
of the measurements was highlighted. Lawrenz et al. have
proposed rotationally invariant schemes for mapping an index
of µA [47, 48], and Jespersen et al. subsequently generalized
rotationally invariant DDE measurements up to 5th order (in
q-values) via a measurement scheme termed DDE 5-design
[26]. Numerous promising studies have also been performed
on human scanners [37, 38, 48–51], suggesting quite promising
potential for disentangling µFA from the underlying orientation
dispersion. Additional recent experiments have even extended
the DDE methodology toward MR spectroscopy, aiming to
impart specificity toward specific cell populations via cellular-
specific metabolites [52, 53].

As alluded to above, the diffusion process in biological
tissues is highly time-dependent, and thus the filter with
which the diffusion experiment is performed can be important.
Oscillating Diffusion Encoding (ODE) experiments [14, 54, 55]
have been widely used in SDE to enhance contrast in neural
tissue, likely since they access shorter diffusion time than
could be reached using pulsed-gradient-spin-echo methods [56].
Additionally, ODE has been shown to be highly beneficial for
mapping axonal sizes in rat spinal cord [57, 58] as well as
for contrasting malignancy in tissues [59, 60]. More recently,
the DDE framework was extended toward accommodation
of oscillating gradients, termed Double Oscillating Diffusion
Encoding (DODE, Figure 1A), first in theory [61], and more
recently, in experiment [62]. Importantly, DODE enables the
time/frequency-dependence of µFA to be studied. Furthermore,
DODE sequences reach the long mixing time regimes much
more easily than their DDE counterparts, thereby making the
experiments less mixing-time dependent [61], and, as a result,
offering the benefit of reduced echo times. This property is likely
due to the mixing beginning already from the first gradient
pair, and accumulating over the entire gradient waveform. Such
DODE experiments were recently reported for the first time in
the ex-vivo mouse brain, and µFA maps derived from DODE
indeed showed richer contrast than those of their DDE-derived
counterparts [62].

Many studies have investigated the underlying
microstructural correlates of FA, mainly in white matter
(for a classical review, the reader is referred to Beaulieu [63]).
It is clear that although myelin strongly modulates FA, it is
not necessary for detection of anisotropy in biological systems.
Axonal membranes, for example, can impede the diffusion
processes with orientational preference and thus can contribute
to FA. However, in most studies attempting to investigate the
origins of restriction in tissues, orientation dispersion was
conflated with SDE-driven metrics; an interesting question is
therefore whether µFA, which should not suffer from orientation
dispersion effects, could be associated with microstructural
features to different extents than FA. The goal of this study was
therefore to investigate how µFA and FA correlate underlying
microstructural features such as myelin water fraction (MWF) or
axonal diameters. As well, we aimed to investigate whether these
parameters are differently correlated, and to qualitatively assess
the importance of orientation dispersion, especially in the white
matter. The final goal of this study was to determine whether
µFA is modulated when different length scales are probed
via DODE and DDE sequences. A well-characterized system,
namely, fixed spinal cord—which has been extensively used in
the past to study diffusion [15, 58, 64–66] or relaxation [67–70]
microstructural correlates—was used for these investigations.
Our findings demonstrate interesting differences in correlations
between µFA and FA and MWF, as well as with the a-priori
known axonal sizes in white matter, when measured using
DODE or DDE. Interesting findings in gray matter tissues are
also presented. Implications for D(O)DE contrasts and future
routes for investigations of the origin of µFA in neural tissue, are
discussed.

THEORY

Most DDE-MRI studies up to date have used only a single b-
value to extract µFA. However, very recently, Ianus et al. showed
that for most plausible microstructural scenarios, µFA obtained
in such a way can be highly biased due to neglecting the higher-
order terms in the signal decay [62]. Ianus et al. proposed tomore
accurately estimate µFA in both DDE and DODEmethodologies
by performing D(O)DE experiments at multiple b-values, and
fitting both µA (from which µFA is then calculated) and the
higher-order term via polynomial fits. That is, the D(O)DE signal
decay at long mixing times can be expanded with b-value as:

log

(
1

12

∑
S‖(b)

)
− log

(
1

60

∑
S⊥(b)

)
= µA2b

2
+ P3b

3,

where µA2 = 3
5var (σi) , σi=1,2,3 are the diffusion tensor

eigenvalues, S‖ and S⊥ represent the D(O)DE signals acquired
using parallel and perpendicular gradients, respectively, and P3
contains the higher-order terms up to third order (even higher-
order terms are neglected). Ianus et al. showed that polynomial
fitting can be used to estimate µA2 and P3 from Equation 1.
When the mean diffusivity (MD) is additionally measured at
lower b-values (e.g., from fitting a tensor to the 12 parallel
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orientations in the 5-design),µFA can be directly calculated from
Eq. 2:

µFA =

√
3

2

µA2

µA2 + 3
5MD2

.

Although polynomial fitting probably yields more accurate
estimates of µA2, it should be noted that ideally, many b-
value shells would be required for robust fitting. An alternative
approach would be to acquire a much more minimalistic
dataset and still be able to quantify µA2 and P3. Setting
1
12

∑
log

(
S‖(b)

)
− 1

60

∑
log

(
S⊥(b)

)
≡ ǫ̃(b), Eq. 1 can be

rewritten for two different b-values b1 and b2:

{
ǫ̃
(
b1
)
= µA2b

2
1 + P3b

3
1

ǫ̃
(
b2
)
= µA2b

2
2 + P3b

3
2

.

It is then straightforward to show that from twomeasurements at
different b-values, µA2 can be directly obtained from

µ̃A2 =

ǫ̃
(
b2
)
− ǫ̃

(
b1
) b32
b31

b22 −
b32
b1

,

which can then be plugged into Equation 2 to obtain µFA
directly. Note that we use the tilde to distinguish the extracted
µ̃A2 from the real µA2. This approach for accurate µFA
extraction thus requires, in principle, only two measurements,
one at low b-value, fromwhichMD and ǫ̃

(
b1
)
would be obtained,

and another at higher b-value, where ǫ̃
(
b2
)
would be obtained.

However, since at low b-values required for accurate estimation
of MD, ǫ̃

(
b1
)
may be very small and comparable to noise levels,

it is more appropriate to acquire ǫ̃
(
b1
)
and ǫ̃

(
b2
)
at somewhat

higher b-values (where the b2 terms are more dominant) and
perform a separate, third acquisition for extracting MD at lower
b-values. This 3-shell approach was thus preferred in this study.

MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of the directive 2010/63/EU of the European
Parliament of the Council, authorized by the Champalimaud
Centre for the Unknown’s Animal Welfare Body, and approved
by the national competent authority (Direcção Geral de
Alimentação e Veterinária, DGAV).

Specimen Preparation
Spinal cord specimens were obtained from adult male Wistar
rats (N = 2) weighing ∼300 gr. The rats underwent standard
transcardial perfusion under deep pentobarbital anesthesia.
Cervical spinal cords were extracted, washed in PBS, and kept in
4% paraformaldehyde (PFA) for 24 h at 4◦C. The samples were
then placed in freshly prepared phosphate buffer saline (PBS) for
at least 48 h prior to MRI experiments. The samples were cut
to ∼1 cm segments and placed in a 5mm NMR tube filled with
fluorinert (Sigma Aldrich, Lisbon, Pt).

MRI Experiments
All MRI experiments were performed on a vertical 16.4T (700
MHz 1H frequency) Aeon Ascend scanner (Bruker, Karlsruhe,
Germany) interfaced with a Bruker AVANCE IIIHD console.
A Micro5 probe equipped with a 5mm birdcage coil for
transmit and receive functions and a gradient system capable of
producing amplitudes of up to 3T/m isotropically was used. The
sample was kept at a constant temperature of 23◦C throughout
the experiments by means of air flow, and the samples
were allowed to equilibrate with the surrounding temperature
for at least 4 h before acquiring any diffusion or relaxation
experiments.

All diffusion sequences were written in-house and were based
on an Echo Planar Imaging (EPI) readout. For both DODE
and DDE, the same acquisition parameters were used, namely,
two-shot and double-sampled EPI with a readout bandwidth
of 555.555 kHz, Field of View (FOV) of 6 × 4 mm2 and in-
plane matrix size of 120 × 80, leading to an isotropic in-plane
resolution of 50 × 50 µm2. The slice thickness was 500µm, and
TR/TE = 2,500/52ms. For both DODE and DDE acquisitions,
Jespersen’s 5-design sampling scheme [26] was used for the
diffusion weighted images, and, additionally, eight images with
zero b-value were acquired, such that the total number of images
acquired in a given scan was 80. For both DODE and DDE,
three separate acquisitions were performed with different b-
values, namely, 2b = 1.2, 2.4 and 3.0 ms/µm2 (where the factor
of 2 reflects the accumulated diffusion weighting along the two
diffusion epochs). The specific b-values were chosen based on
signal-to-noise and contrast considerations: on the one hand,
they have to be sufficiently low such that even higher-order terms
do not contribute, but on the other hand, they have to be high
enough for µFA contrast to be detectable. The lowest b-value
scans were acquired with 12 averages, while the other two b-
value shells were acquired with 32 averages each. The DODE
diffusion parameters were: TDODE = 13ms, N = 5, τs = 2ms.
The DDE diffusion parameters were 1/δ = 12/1ms, τm = 12ms,
see Figure 1 for definitions of the parameters.

Additional experiments were performed for mapping myelin
water fraction. Those consisted of a Carr-Purcell-Meiboom-Gill
(CPMG)-based acquisition performed using a modified pulse
multi-slice-multi-echo (MSME) sequence. The same slice was
acquired as in the diffusion images with identical in-plane
resolution and FOV. The acquisition bandwidth for the pulse
sequence was 100 kHz, and the pulses used for slice-selective
excitation and refocusing had durations of 1.16ms (Shinnar-
Le-Roux design) and 50 µs (Gaussian shape), respectively. The
respective bandwidths of the excitation and refocusing pulses
were 3625 and 32,100Hz, respectively, such that the refocusing
pulse provided complete refocusing on the entire slice. The 1TE
that could be achieved using these parameters was 2.85ms, and
96 echoes were acquired from 2.85 to 273.6ms. The repetition
time was 2500ms and two averages were acquired.

Diffusion Data Preprocessing
All preprocessing and analyses were performed using MatLab R©

(The MathWorks, Inc., Natick, Massachusetts, United States).
Raw images were registered using an implementation of
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Guizar-Sicairos et al. [71] found in https://goo.gl/3bGU8b.
The images were then denoised using Veraart’s method based
on Marchenko-Pastur distributions in Principal Component
Analysis of redundant data [72]. Gibbs unringing was performed
using Kellner’s method [73] implemented in Matlab. Finally, the
denoised and unrung images were very slightly smoothed using a
[2 2] median filter.

Relaxation Data Preprocessing
The preprocessing steps for the relaxation data were identical to
the diffusion data preprocessing steps, except for an additional
step in the very beginning of the pipeline whereby the magnitude
data was converted to real data using Eichner’s method [74]. All
steps listed above including denoising, unringing and median
filter smoothing were then executed in sequence.

Diffusion Data Analysis
The first analysis step for D(O)DE data was to fit the diffusion
tensor. Diffusivities were computed using a simple linear fitting
of S‖ data acquired at the lowest b-value experiments followed by
diagonalization and extraction of the diffusion tensor eignevalues
and eigenvectors. The mean diffusivity and fractional anisotropy
were then calculated from the tensor eigenvalues as MD =

1
3 (λ1 + λ2 + λ3) and FA =

√
3
2

(λ1−MD)2+(λ2−MD)2+(λ3−MD)2

λ21+λ22+λ23
,

where λi represent the tensor eigenvalues.
The second step in the analysis was to use the data from the

two higher b-values to extract µFA. First, µ̃A2 was extracted
directly from Eq. 4; the mean diffusivity estimate was then used
along with the extracted µ̃A2 to obtain µFA via Equation 2.

Relaxation Data Analysis
Following the preprocessing steps listed above, the filtered
relaxation data were subject to a voxelwise inverse Laplace
Transform (iLT) using 150 T2 components log-spaced between
2.1 and 328.3ms. The T2 spectra were smoothed by minimum-
curvature constraint as in Dula et al. [75] and extended
phase graph analysis was performed to account for any B+1
inhomogeneity and ensuing stimulated echoes [76]. The myelin
water fraction (MWF) was computed from each spectrum as the
fraction of signal originating from components with peak T2

smaller than 17ms. ROIs were drawn manually on the raw data
closely following Dula et al. [75], and the ROI data underwent the
same analysis using the mean signal decay in each ROI.

Statistical Analysis
Gray matter and white matter masks were created by
thresholding MWF maps with MWF < 0.22 for gray matter and
MWF > 0.25 for white matter. The histograms in Figure 4 were
then generated for each metric/method using Matlab’s histogram
function which automatically selects the bin width to represent
the underlying distribution in the most accurate way. Parameter
means and standard deviations are reported in the text and
Tables.

Correlation analyses between different diffusion metrics were
performed using automatic outlier rejection (Grubbs test for
outliers) followed by calculation of Spearman’s ρ (µFA and

FA data from all methods were not normally distributed). An
analysis of variance (ANOVA) was performed to compare µFA
and FA arising from DODE and DDE methods, with post-hoc
Bonferroni tests corrected for multiple comparisons.

To correlate MWF with µFA or FA extracted from the
different methods, the diffusion maps were registered to the
MWF using Matlab’s imregister function using a multimodal
configuration, initial radius of 1e-5, maximum number of
iterations= 1,000, and allowing for affine transformations due to
the small differences in image geometry arising from EPI-based
(diffusion) and line-by-line (relaxation) acquisitions.

When linear fits are presented (Figure 8), Matlab’s robustfit
function was used to extract the coefficients.

RESULTS

Diffusion data quality can be appraised in Figure 2, which
plots representative raw data from one of the spinal cords,
obtained from experiments with zero b-value (Figure 2A),
parallel (Figure 2B), and perpendicular (Figure 2C) diffusion
orientations at the highest b-value used in this study. Before
denoising, the worst-case signal to noise ratio (SNR)—measured
at the highest b-value and with significant diffusion weighting
gradients in the direction parallel to the spinal cord’s principal
axis—was ∼20 in white matter. The middle column in Figure 2

shows the corresponding preprocessed data and the ensuing
enhancement of image quality from denoising and Gibbs
unringing (Figures 2D–F). Figures 2G–I show the result of
subtracting raw and denoised images. The lack of structure
in the subtracted images suggest that indeed only noise was
removed and that no significant signal components were lost
during denoising [72]. The SNR of the preprocessed images was
enhanced by a factor of∼2.

To assess the different maps obtained in this study,
representative µFA and FA maps derived from DODE as
well as DDE experiments (hereafter referred to as µFADODE

and µFADDE or FADODE and FADDE, respectively) are shown
in Figure 3. Several interesting qualitative features can be
highlighted from these images: (1) both µFADODE and µFADDE

maps (Figures 3A,C) have higher values than their FADODE and
FADDE counterparts (Figures 3B,D) in white matter, as well as
in gray matter; (2) µFADDE is higher and less tract-specific when
compared with µFADODE (for approximate definitions of tract
locations and spinal cord anatomy, the reader is referred to
Figure 3E); (3) µFADDE appears quite homogeneous in the WM
while µFADODE shows more variation within WM; (4) similarly,
FADDE is more homogeneous in white matter compared with
FADODE, which shows a greater variance in different tracts. To
provide a more quantitative view on these features, Figure 4 plots
histograms of µFA and FA in white matter and gray matter (c.f.
Figures 4A,B for the ROI masks). In white matter, µFADODE is
higher than its FADODE counterpart (Figure 4C), while in gray
matter, µFADODE is distributed at much higher values compared
to FADODE (Figure 4D). Similar trends were observed for DDE
but with µFA or FA shifted toward somewhat higher values
(Figures 4E,F).
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FIGURE 2 | Quality of diffusion MRI data and preprocessing in a representative spinal cord. (A–C) Raw data with zero b-value, parallel, and perpendicular waveforms

acquired at the highest b-value, respectively. In this particular direction, the perpendicular waveform had more significant components along the spinal cord principal

axis and thus show greater attenuation. (D–F) Results of preprocessing the data in A–C (denoising and Gibbs unringing). Notice how the noise is highly reduced in the

preprocessed images without adverse effects to image quality. (G–I) Subtraction of denoised and raw data, showing only noise and thus demonstrating that no

significant signal components were removed during Marchenko-Pastur PCA denoising.

FIGURE 3 | Parameter maps for a representative spinal cord. (A) µFADODE; (B) FADODE; (C) µFADDE; (D) FADDE. Notice the differences in contrast both in white and in

gray matter tissues both between metrics and between sequences. Most notably, µFA is higher than FA and DDE-driven metrics are higher than DODE-driven

metrics, especially in white matter. (E) Anatomy of the spinal cord for reference, displayed over a smoothed false-color image of the cervical segment. The gray matter

is shown in red and green, while the tracts are highlighted on the left side of the cord.
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FIGURE 4 | Histogram distributions of the different metrics in white matter and gray matter. (A,B) Masks for the white and gray matter tissues, respectively.

(C,D) µFADODE and FADODE for white and gray matter. (E,F) µFADDE and FADDE for white and gray matter. Notice the different distributions in white matter for both

DODE- and DDE-driven metrics, as well as the higher µFA as compared to FA in all tissues.

It is also interesting to compare differences between methods
within the same tissue type (e.g., comparing same-color
distributions down the columns of Figure 4). µFADODE is clearly
lower and more widely distributed compared with µFADDE in
white matter. In gray matter, µFADDE is high, while µFADODE

is somewhat smaller. Another interesting finding in gray matter,
is that FADODE and FADDE values are only slightly different. The
means and standard deviations of µFA and FA for each method
are tabulated in Table 1.

A statistical analysis of these data is given in Figure 5, which
presents box plots of the data. A one-way ANOVA revealed that
in each tissue type (e.g., white matter or gray matter), all four
metrics are highly statistically significantly different from each
other (corrected p < 1e-12, post-hoc Bonferroni test). However,
it should be noted that although the metrics are different, they
are not completely uncorrelated. Table 1 reports Spearman’s
ρ and its significance levels when comparing µFA and FA
(extracted by the same method) in each ROI. While µFADODE
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TABLE 1 | White matter and gray matter microscopic and fractional anisotropies, along with their spearman correlation coefficient and significance.

µFA DODE FA DODE Spearman’s ρ p-value µFA DDE FA DDE Spearman’s ρ p-value

White Matter 0.41 <10−10 0.19 <10−10

Mean σ 0.77 ± 0.10 0.49 ± 0.12 0.89 ± 0.16 0.69 ± 0.13

Gray Matter 0.22 <10−10 −0.10 <0.002

Mean σ 0.71 ± 0.10 0.24 ± 0.15 0.79 ± 0.10 0.31 ± 0.18

FIGURE 5 | Box-and-whisker plots of the different metrics. (A) White matter analysis. (B) Gray matter analysis. *p < 10−12 between all pairs from ANOVA with

Bonferroni post-hoc comparison and corrected for multiple comparisons.

and FADODE are correlated in white matter (Spearman’s
ρ = ∼0.41), µFADDE and FADDE metrics are only weakly
correlated (Spearman’s ρ = ∼0.19). In gray matter, the
correlations between µFA and FA were weak for both methods
and (Spearman’s ρ = 0.22 and −0.10 for DODE and DDE,
respectively). Note that although outlier rejection was used, in
all cases < ∼1% of the data were identified as outliers and
rejected.

To establish whether and how myelin modulates the
anisotropy metrics, Carr-Purcell-Meiboom-Gill (CPMG) MRI
experiments were performed on the same slice with the same
resolution as the diffusion experiments. To assess the quality of
the data, Figures 6A,B show the preprocessed data at short and
very short TE of 2.9ms and very long TE of 142.5ms, respectively,
in a representative spinal cord. Even at the very long TE, the
SNR remains very high, especially after denoising. Denoising
and unringing procedures were validated and found to have
no negative impact on the quality of T2 fitting procedure (data
not shown), while improving the fits significantly. Figure 6C
shows ROIs drawn in the major tracts of the spinal cord, while
Figures 6D,E show the T2 decays (with the ordinate drawn
in log scale) and the resultant T2 spectra (with the abscissa

drawn in linear scale), respectively. The decays in white matter
are clearly non-linear, and the myelin water can be seen as
an early peak in the T2 spectrum with its peak T2 around
∼10ms.

A representative myelin water fraction (MWF) map arising
from pixel-by-pixel quantification of the spectra is shown in
Figure 7A. Note the sharp contrast between the different tracts
in MWF: for example, the dCST shows the lowest MWF
(MWF∼0.30) while VST and FC exhibit the highest MWF
(MWF∼0.45). Scatter plots between MWF and µFA or FA in
white matter are shown in Figure 7 for DODE (Figure 7B)
and DDE (Figure 7C), respectively. Table 2 summarizes the
correlation coefficients and associated statistics. A moderate
anticorrelation between MWF and µFADODE is observed in the
white matter (Spearman’s ρ = ∼ −0.36), while FADODE did
not correlate with MWF in a statistically significant manner.
The DDE counterparts µFADDE and FADDE exhibited weak
anti-correlation and correlation, respectively. Figures 7D,E show
similar plots as described above, but for gray matter. Notably,
correlations between MWF and FADODE, as well as FADDE were
very weak and their statistical significance not very high; on the
contrary, µFADODE was found to correlate somewhat with MWF,
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FIGURE 6 | Relaxation data and analysis in a representative spinal cord. (A,B) Preprocessed data at short and long TEs, respectively, reveal excellent SNR. (C) ROI

definitions. (D) Mean ROI signal decays with TE (symbols) along with their respective fits (solid lines). N.b. the log scale in the ordinate. (E) T2 spectra (plotted in log

scale in the abscissa) extracted from an iLT fit to the ROI data. The myelin water is associated with the peak corresponding to shorter T2 values. The ROI colors in (C)

correspond to the color of the plots in (D,E).

while µFADDE correlated moderately with MWF, with very high
statistical significance (c.f. Table 2).

Finally, the correlation of the mean µFA in the different
tracts with literature regional averaged axon diameter was
assessed. Figures 8A,B plot mean µFA and FA against the axon
diameters reported in Dula et al. [75] for the different spinal cord
tracts. These data, along with the values tabulated in Table 3,
demonstrate that µFADODE exhibits very strong anticorrelation
with axon diameters (Spearman’s ρ = −0.96, p = 0.0028). All
other metrics are not significantly correlated with axon diameter.

DISCUSSION

µFA has been recently gaining increasing attention as a
potentially useful source of contrast in microstructural MRI
due to its ability to disentangle anisotropy from orientation
dispersion. Methods other than D(O)DE, targeting µFA
such as tailoring b-tensor shapes are emerging, with many
potential applications [77–80]. However, such methods may
be confounded by time-dependent diffusion effects [27, 81–
83], whereas D(O)DE at long mixing times naturally avoids
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FIGURE 7 | Myelin Water Fraction (MWF) and its correlations with diffusion-derived metrics. (A) MWF from a representative spinal cord, showing excellent contrast

between the white matter and gray matter as well as within most white matter tracts. (B–E) Correlations between DODE and DDE metrics with MWF in white and gray

matter tissues. Blue circles represent FA whereas black diamonds represent µFA. Red lines represent−1*identity to guide the eye.

TABLE 2 | Statistical analysis of correlations between (µ)FA and myelin water

fraction in white matter and gray matter.

µFA DODE FA DODE µFA DDE FA DDE

WHITE MATTER

Spearman’s ρ −0.36 0.02 −0.07 0.30

p-value <10−10 NS 0.0011 <10−10

GRAY MATTER

Spearman’s ρ 0.23 0.11 0.45 −0.1

p-value <10−10 0.0002 <10−10 0.0015

these confounds [43]. It is therefore imperative to investigate
how µFA may be correlated with underlying microstructural
features such as axon dimensions and myelin, much like the
early studies aiming to understand the sources for FA [63, 67,
84, 85]. In general, perhaps the most significant findings of
prior studies on FA (conducted nearly invariably with SDE)
were that (1) anisotropy in white matter depends on axonal
membranes; and (2) the presence of myelin can further modulate
FA metrics [63]. The application of oscillating gradients has
also been shown to generate more contrast and more accurate
estimations of small dimensions as compared to long diffusion
time experiments, presumably due to the more efficient probing
of smaller dimensions via the shorter diffusion times [58, 86, 87].

The present study aimed to investigate how µFA differs
from FA in terms of correlations with myelin water and axonal
diameters, and to compare those metrics when measured with
DDE or DODE sequences. We first focus attention to our results

arising from white matter tissue. Notably, µFA was always
larger than FA (Figures 3–5 and Table 2), in agreement with
previous DDE experiments in fixed tissues [26] and in-vivo [88].
Since the µFA and FA metrics were extracted from the same
acquisition, it is unlikely that other effects such as exchange or
relaxation contributed to µFA > FA. Thus, our finding supports
the notion that that orientation dispersion is significant even
in highly structured tissues, such as spinal cord white matter.
This is in excellent agreement with a recent study of SDE-
derived diffusion tensor and kurtosis time-dependencies which
also pointed to the same conclusion in pig spinal cord [15],
as well as with histological studies attempting to measure the
dispersion directly in white matter [89]. It is difficult to draw
conclusions on whether the orientation dispersion arises within
intra- or extra-axonal spaces (or both), or, whether undulations
[90] or passing collateral fibers [91] can contribute to these
observations. Performing similar spectroscopic measurements
utilizing cell-specific markers such as NAA or mI [52, 53],
or performing much more extensive time/frequency/b-value-
dependent measurements on water [19, 59, 92], or onmetabolites
[93, 94] may further assist in addressing this question in the
future.

Another interesting aspect when comparing µFA with FA
in white matter, is that the two metrics are only moderately
correlated when measured with DODE, and very weakly
correlated when measured with DDE (c.f. Table 1). This finding
suggests that when diffusion is encoded using oscillating
gradients, spins experience less orientation dispersion than when
they are probed using block gradients, since µFA would be
perfectly correlated (and identical) to FA for perfectly aligned
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FIGURE 8 | Correlations of diffusion metrics with literature-based average axon diameters in the different white matter tracts. (A) Correlations of metrics derived from

DODE. (B) Correlations derived from DDE. The best linear regressions to the experimental data are also given as solid lines. Note the excellent inverse agreement

between µFADODE and axon diameter, which also had a very high anticorrelation coefficient of ρ ∼−0.96 while all other metrics did not show significant correlations.

TABLE 3 | Statistical analysis of correlations between (µ)FA and literature-based

average axon diameter (extracted from Dula et al. [75]) in the rat spinal cord.

µFA DODE FA DODE µFA DDE FA DDE

WHITE MATTER

Spearman’s ρ, p-value −0.96, 0.0028 −0.68, NS −0.14, NS −0.43, NS

fibers. Hence, our findings point to specific length scales for
orientation dispersion that are probed differently using the
different sequences.

Next, we consider the relationships between myelin and
µFA. Akin to its FA counterpart–µFA is ambiguous in that a
compartment with length “L” and radius “R” can give rise to the
same µFA as a compartment with length 2L and radius 2R. The
axial path length could be restricted due to nodes of Ranvier, non-
ideal cylindrical structure, varicosities, etc. However, if the path
length parallel to the (assumingly) ellipsoids is constant, then one
could predict that when larger amounts of myelin surround an
axon, the µFA will be smaller as the restriction will increase in
the perpendicular direction. However, in our study, a moderate
negative correlation was observed between MWF and µFADODE

in white matter (Figure 7 and Table 2). This can be explained
by considering the dependence of MWF and axon diameter via
the g-ratio [95]: the larger the axon, the thicker the myelin
around it in (healthy) mammalian white matter [96]. Hence, the
negative correlation between µFADODE and MWF would reflect
indirectly the approximately constant g-ratio in healthy tissue,
rather than enhanced restriction. Interestingly, µFADDE showed
a much weaker, yet still negative correlation with MWF. Since
the microstructure has not changed between measurements,
this likely reflects that DODE and DDE probe different path
lengths parallel to the spinal cord’s major axis: the larger the
diffusion time, the longer path will be probed in the unrestricted

dimension, and thence theµFAwill be larger and less reflective of
axon diameter or, by proxy, its myelin thickness. FADDE showed a
small positive correlation with MWF, which perhaps reflects the
ambiguity of probing restriction and orientation distribution at
the same time. Extracellular space contributions again cannot be
neglected here, but for coherently aligned systems the arguments
are similar as one could potentially treat the space between
densely packed axons as potentially even more restricted than
the intra-axonal space itself [45]. It is also worth mentioning
that MWF extracted frommultiexponential T2 measurements, as
performed in this study, have been shown in the past to reflect
microstructural metrics such as axon size and myelin thickness
very faithfully in white matter [67, 75, 97].

Our most striking findings in this study, perhaps, is that
µFADODE showed an extremely high, and statistically significant,
negative correlation with axon diameters reported by Dula et al.
[75] and Harkins et al. [98] for the different tracts (Table 3).
This observation lends further credence to the explanation
above: the finite parallel length scale probed by DODE makes
the measurement strongly dependent on the perpendicular
restriction, which in this case is reflected through axon sizes.
Although the axon diameters were obtained from literature, it is
worth stressing that axon diameter dependence in healthy spinal
cords is highly reproducible and that the tracts analyzed were
obtained from very similar cervical slices as in Dula et al. [75].
Such a strong correlation is also highly unlikely to be obtained
randomly. It is very interesting to also note that all other metrics
did not correlate in a statistically significant fashion with axon
diameters: µFADDE likely due to its probing of longer parallel
lengths, and the FA from both methods due to its inherent
conflation or restriction with orientation dispersion.

In the spinal cord gray matter, very low FADODE and FADDE

values were measured, suggesting a much lower degree of
restriction compared to white matter diffusion. However, the
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µFADODE and µFADDE metrics in gray matter were still very
high in the gray matter. In fact, the values reported in Table 1

also reflect
µFAGM

DODE

µFAWM
DODE

= ∼ 0.92 and
µFAGM

DDE

µFAWM
DDE

= ∼ 0.89.

Combined with the low FA values in the gray matter, our
findings suggest that a significant component of gray matter
tissue experiences restricted diffusion but with a large degree of
orientation dispersion. This finding is also in good agreement
with previous literature demonstrating significant angular DDE
modulations in ex-vivo gray matter [44, 45]. Further studies are
needed to establish which underlying biological components give
rise to such high µFA in gray matter, but dendrites, astrocyte
branches, and nonmyelinated or myelinated axons traversing
gray matter could be suspected [93, 99]. Time-dependent or
spectroscopic experiments on metabolites could provide insight
into such questions in the future.

Several limitations can be identified in this study. First, we
have introduced a new way of measuring µ̃A2 harnessing the 5-
design acquisition at two b-values to reduce the recently-reported
bias in µA2 estimation due to higher order terms. Our new
method is likely inferior to a sampling of a large range of b-
values and the ensuing polynomial fitting as done in Ianus et al.
[62]. However, the advantage of the current approach is that
it manages to avoid a prohibitively long experiment duration.
Future studies will identify the accuracy and precision of the
method proposed above vis-à-vis the ground-truth, and attempt
to find optimal b-values for measuring µ̃A2 as accurately and
with as little bias as possible. Second, to compute µFA, we
executed a third measurement at lower b-value to extract MD,
which is then input into Eq. 2 along with µ̃A2. However, MD
itself may be conflated with higher-order terms, as pointed
out recently by Chuhutin et al. [100]; in this study, this issue
was not accounted for, and may induce minor biases in the
measurements of µFA. Better estimation of MD could probably
be performed by sampling one or more low b-values and
fitting kurtosis and MD at the same time from spherically
averaged data. In addition, we have not explored the impact
of specific b-value selection. At too low b-values, the difference
in the log signals is very small, while at higher b-values, even
higher-order terms may come into play. Third, the sample size
was quite small (N = 2 spinal cords, only a single slice per
cord), such that the variability across animals was not very
well sampled. However, it is worth noting that the results were
actually very consistent between both spinal cords: the meanµFA
and FA, for both DODE and DDE, varied <10% between the
cords (both in gray and white matter tissues), and the MWF
varied <6% between the tissues. Although this consistency is
promising for the robustness of the approach, the small number
of samples renders this study perhaps more exploratory. Fourth,
the experiments were performed at a relatively long TE of 52ms.
Given that the MWF was associated with T2 < 20ms and that
the other water T2s were distributed between ∼20 and 60ms,
the diffusion experiments can be considered completely filtered

for (directly contributing) myelin water, as e
−TE

T2myelin ∼ 0.005.
Exchange between myelin water and intra/extra-axonal water is
likely to occur, which may also confound the measurements,

although it should be noted that at least for conventional
DODE MRI, the relatively long TE is nearly unavoidable due
to the necessity of non-negligible diffusion gradient waveform
durations. Double-stimulated-echo approaches [101, 102] would
thus be nearly impossible to execute for DODE, even before
considering the significant SNR reduction associated with such
sequences, (1/2)N, where N is the number of stimulated echoes.
Finally, a histological study was not here performed, and the
study relies on literature reports of correlations between MRI-
derived MWF and myelin thickness and the values for axon
diameters. Future studies can expand the findings here and
perform more direct correlations with histology, although it
should be pointed out that big differences in these parameters are
unlikely to be observed for healthy tissues. In addition, it would
be fruitful to modulate the microstructure actively and to observe
how µFA varies, e.g., using genetic mutations that alter myelin
content. All these highly interesting avenues will be pursued in
the future, but the present study provides the first steps in this
direction.

CONCLUSIONS

This study investigated the microstructural correlates ofµFA and
FA using high resolution D(O)DE experiments in fixed spinal
cords at 16.4 T. Our results indicate very strong anticorrelations
of µFADODE with axon size, and moderate anticorrelations
of µFADODE with MWF, whereas µFADDE, FADODE and
FADDE correlate to a much lesser or no extent with those
microstructural features. These findings shed light on the
mechanisms of restriction in spinal cord white matter when
investigate without conflation by orientation dispersion. The
correlations of µFADODE with axon diameters and myelin
water fraction are thus promising for future investigations of
longitudinal variations in these properties, e.g., in disease or with
learning.
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56. Drobnjak I, Zhang H, Ianuş A, Kaden E, Alexander DC. PGSE, OGSE,
sensitivity to axon diameter in diffusion MRI: insight from a simulation
study.Magn Reson Med. (2016) 75:688–700. doi: 10.1002/mrm.25631

57. Xu J, Does MD, Gore JC. Quantitative characterization of tissue
microstructure with temporal diffusion spectroscopy. J Magn Reson. (2009)
200:189–97. doi: 10.1016/j.jmr.2009.06.022

58. Xu J, Li H, Harkins KD, Jiang X, Xie J, Kang H, et al. Mapping
mean axon diameter and axonal volume fraction by MRI using
temporal diffusion spectroscopy. Neuroimage (2014) 103:10–9.
doi: 10.1016/j.neuroimage.2014.09.006

59. Reynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG.
Surface-to-volume ratio mapping of tumor microstructure using oscillating
gradient diffusion weighted imaging. Magn Reson Med. (2016) 76:237–47.
doi: 10.1002/mrm.25865

60. Xu J, Li K, Smith RA, Waterton JC, Zhao P, Chen H, et al.
Characterizing tumor response to chemotherapy at various length scales
using temporal diffusion spectroscopy. PLoS ONE (2012) 7:e41714.
doi: 10.1371/journal.pone.0041714
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