
ORIGINAL RESEARCH
published: 24 May 2018

doi: 10.3389/fphy.2018.00048

Frontiers in Physics | www.frontiersin.org 1 May 2018 | Volume 6 | Article 48

Edited by:

Pushpendra Singh,

Johns Hopkins University,

United States

Reviewed by:

Erdinc Sezgin,

University of Oxford, United Kingdom

Jesus Perez-Gil,

Complutense University of Madrid,

Spain

Rajeshwer Singh Sankhala,

Walter Reed Army Institute of

Research, United States

*Correspondence:

Stefano Piotto

piotto@unisa.it

Specialty section:

This article was submitted to

Membrane Physiology and Membrane

Biophysics,

a section of the journal

Frontiers in Physics

Received: 17 January 2018

Accepted: 03 May 2018

Published: 24 May 2018

Citation:

Piotto S, Di Biasi L, Sessa L and

Concilio S (2018) Transmembrane

Peptides as Sensors of the Membrane

Physical State. Front. Phys. 6:48.

doi: 10.3389/fphy.2018.00048

Transmembrane Peptides as Sensors
of the Membrane Physical State
Stefano Piotto 1*, Luigi Di Biasi 1, Lucia Sessa 1 and Simona Concilio 2

1Department of Pharmacy, University of Salerno, Fisciano, Italy, 2Department of Industrial Engineering, University of Salerno,

Fisciano, Italy

Cell membranes are commonly considered fundamental structures having multiple roles

such as confinement, storage of lipids, sustain and control of membrane proteins. In

spite of their importance, many aspects remain unclear. The number of lipid types is

orders of magnitude larger than the number of amino acids, and this compositional

complexity is not clearly embedded in any membrane model. A diffused hypothesis is

that the large lipid palette permits to recruit and organize specific proteins controlling

the formation of specialized lipid domains and the lateral pressure profile of the bilayer.

Unfortunately, a satisfactory knowledge of lipid abundance remains utopian because

of the technical difficulties in isolating definite membrane regions. More importantly, a

theoretical framework where to fit the lipidomic data is still missing. In this work, we

wish to utilize the amino acid sequence and frequency of the membrane proteins as

bioinformatics sensors of cell bilayers. The use of an alignment-free method to find a

correlation between the sequences of transmembrane portion of membrane proteins

with the membrane physical state (MPS) suggested a new approach for the discovery of

antimicrobial peptides.

Keywords: peptides, membrane physical state, AMP, TMP, alignment-free, proteome

INTRODUCTION

Cell membranes are complex structures made of hundreds of different types of molecules [1, 2].
In recent years, the concept of biological membrane evolved from a simple physical barrier
with extremely low water permeability into a highly sophisticated system capable to control
protein activity, intracellular signaling, and stress response. Most biological membranes are
both laterally and transversally asymmetrical. The cross-sectional asymmetry reflects the lipid
composition of each leaflet. The asymmetric distribution of phospholipid types explains most of
the differences between inner and outer layers. The formation of lateral segregation is the result
of chemical-physical differences in lipids and, in some cases, the effect of cytoskeletal structures
supporting the membrane that restrict the movement of both lipids and proteins. The lateral
asymmetry is observed both in model systems and in biological membranes and it is mainly due
to limited lipid miscibility. Lipids influence the activity of membrane proteins by means of their
chemical nature and the physical properties of lipidmixtures in function of their composition [3–5].
The proportions and types of membrane lipids define different types of membrane microdomains
that regulate: (i) the activity of the proteins; (ii) their localization; and (iii) protein–protein
interactions and ensuing signal propagation [6]. Furthermore, during pathological conditions such
as cancer [7] or Alzheimer’s disease [8] and ageing processes [9, 10] membrane lipid composition
can change significantly. Each of these changes causes a membrane remodeling, with consequent
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modifications of the organization and dynamic properties of
lipids. Consequently, the activities of manymembrane-associated
proteins and transporters also change dramatically. Therefore,
it is conceivable that molecules capable of interacting with
membrane lipids may induce modifications in membrane
composition, protein function or gene expression and reversion
of the pathological state. It is well known that when temperature
changes, cells produce adaptive responses [11]. Recently a
new hypothesis suggests the role of the membrane as a
sensor [4, 12], in which the remodeling of microdomains
and the physical proprieties of the membrane are involved in
the heat shock response (HSR) without protein denaturation.
Changes in membrane lipid composition and altered heat
shock protein levels are often found in some disease such as
diabetes, cancer or neurodegenerative diseases. The function of
transmembrane proteins is extremely dependent on the lipid
environment [13] and on the amino acid composition and the
distribution of amino acids along the helix [14, 15]. Membranes
control also recruitment and clusterization of proteins [5].
Generally, transmembrane segments (TM) are found to adopt
α-helical conformations, and this requirement along with the
hydrophobicity necessary for the insertion in the bilayer, should
severely limit the variety of involved amino acids. In fact,
compositional analyses of TM segments of membrane proteins
have shown that they are dominated by hydrophobic amino acids
such as Ile and Val, but the exact composition reflects, among
others, the type of aggregation and the lipid environment.

Some antimicrobial peptides are synthesized in the absence
of infection or inflammation, whereas others are upregulated
in response to endogenous or infectious “alarm” signals,
suggesting different functions for these peptides under different
physiological settings. Some antimicrobial peptides (AMP) are
produced in cell by proteolytic cleavage of a membrane protein
[16, 17]. Others AMP can selectively intercalate and self-assembly
in bacterial membranes only. The role of cholesterol in AMP
selectivity was also extensively studied [18]. All these aspects
rise several important questions: how is a TM selected for a
particular lipid environment? Does exist any correlation between
AMP and TM composition of a given organism? What is
happening to the peptide-membrane interaction when the system
is physically or chemically altered, for example by changing
temperature, pressure, composition or upon the effect of a
pathogen organism? Do membranes play a role in governing the
AMP selectivity? The interplay between transmembrane regions
and lipid environment become even more evident if we consider
thermophiles. Thermophiles are bacteria or archaea that live at
temperatures above 60◦C. In some cases, they can survive at
water temperature higher than 100◦C and high pressures. Those
organisms, regardless their evolution, learn to cope with high
temperature using special lipids [19] that cannot be found in cells
living at lower temperature because the membrane would be far
too rigid to permit life. How do thermophiles adapt, if so, the
amino acid composition of their TM portions to deal with exotic
lipids?

The main goal of the present work is to try to answer these
questions by means of comparative analysis of the membrane-
interacting peptides composition.

Our main assumptions are summarized in Figure 1. The
peptide function, for example, its capability to perturb a
membrane, or to kill an organism, or to self-assembly, is a
function of the amino acid sequence and of the membrane
physical state (MPS). The MPS is a key concept to understand
peptide-membrane interaction [3, 12] and, occasionally, it
has been approximated by the lateral pressure profile [20].
Unfortunately, the MPS, like a previously used descriptor such
as “fluidity,” cannot be uniquely determined in lipid membranes.
In fact, fluidity refers to the viscosity of a fluid. In this case, the
lipid bilayer of a cell membrane. Cell membranes are anisotropic
and the internal frictions in the middle of a membrane is
very different to that under the headgroups. Commonly used
fluorescence measures, for example, rely on the assumption
that the probe is uniformly distributed in the all membrane
and that the probe itself does not alter the bilayer fluidity
[21]. As suggested by several authors [22, 23], lateral stress
profile could be considered a better descriptor of the physical
state, but it cannot be measured experimentally [23]. Even the
calculation cannot be easily done because the lipid composition
of a membrane is difficult to access experimentally [24]. MPS
depends on the temperature, external conditions, and the cell
cycle phases.

Pep function = f
(

sequence, MPS
)

, where as (1)

MPS = f
(

lipid composition, time, temperature, . . .
)

For the sake of clarity, Figure 1 represents the typical case
of a transmembrane peptide. On the top left, the peptide
exhibit an alpha helix structure that fits a particular lipid
environment. If the temperature rises (top right), both bilayer
and peptide are influenced and the peptide can eventually
lose its secondary structure. Analogously, an alteration in lipid
composition may also affect the inner fluidity and the peptide
geometry (bottom left). In fact, similar alteration of the peptide
conformation can be achieved, and is experimentally observed,
in different membranes. Organisms living at high temperature
need more rigid membranes and the peptide sequence could,
therefore, be modified to permit the best interaction. When
an organism is forced to live at higher temperature, the lipid
composition must change replacing some lipids with molecular
species having higher transition temperatures. Consequently, the
transmembrane peptide sequence can be modified to guarantee
the best interaction in the new environment (bottom right) and,
therefore, to permit the recovery of the functional secondary
structure.

Summarizing, instead of considering the peptide sequence
only, the peptide function must be understood in terms of both
sequence and MPS. The MPS is, in turn, function of temperature
and lipid composition.

Pep function = f
(

sequence, MPS(T, lipids)
)

(2)

If we assume that specific peptides are well adapted to a particular
MPS to show a specific function, then we can use sequence
analysis to infer information on the MPS that, more than the
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FIGURE 1 | Peptide activity is a function of its 3D structure, which, in turn, is influenced by membrane composition and external conditions (top left). Changes in lipid

composition (bottom left) or temperature (top right) may alter the secondary structure. Proper changes in lipid composition and in the amino acid sequence may

reverse the temperature increase effect, and therefore, recover the peptide activity (bottom right).

lipid composition, is the driving force of peptide-membrane
interactions. Moreover, the MPS has a fundamental role in
controlling the protein recruitment and the peptide self-assembly
[5, 25].

It is reasonable to assume that a particular sequence has
been selected by the evolution to offer the best interactions with
other parts of the protein, or with the membrane, in a given
condition. The best interactions mean we are considering more
than simply the possibility to insert a membrane [26]. In fact,
from an energetic point of view, the integration of a peptide into a
bilayer is mainly a matter of hydrophobicity, and can be achieved
with few amino acids only [27]. Even the helicity of a peptide
can be obtained with the regular distribution of residues, whereas
the ability to self-assemble into a pore, for example, requires a
sophisticated adaptation to that particular lipid environment.

The different lipid composition is generally assumed of being
a key factor for the selectivity of AMP toward bacterial cell [28]
(Figure 1, bottom left) and, more generally, for the interaction
of peptides with bilayers [29]. Along with lipid composition,
other chemical or physical factors can influence the MPS. For
example, temperature, water pressure, ionic strength or extreme
pH can also severely affect the folding and integration of peptides.
The understanding of the interplay between peptide sequence
and MPS is favored by the study of membrane composition of
thermophiles [30].

In fact, the temperature can induce some bacteria to modify
the lipid composition of their membranes, and this alteration
selects particular sequences for transmembrane peptides. The
investigation of the amino acid distribution in thermophiles pave
the way to the understanding of selectivity of peptides to different
cell membranes. A relevant case is the one of antimicrobial
peptides (AMP) that are, in many cases, capable to discriminate
among different cell membranes [31].

Though the above considerations may appear acceptable and
even obvious, the prediction of the peptide function and the
design of novel peptides is surely not. Previous investigations
[32–34] evidenced particular amino acids abundance or sequence
pattern in some classes of proteins. The search of regularities
in transmembrane regions made intensive use of pair-wise
alignment techniques. Such techniques are well suited for the
investigation of homolog proteins, but fail to detect regularity in
secondary structures. Moreover, the computation of an accurate
multiple-sequence alignment is an NP-hard problem, which
means that the alignment cannot be solved in a realistic time
frame [35].

The difficulty in defining a metric for sequence dissimilarity
is also recognizable in the analysis of natural language texts [36].
The quantification of similarity between sequences is not unique
and unambiguous, since it depends on the relative importance
assigned to words and to the overall context of its occurrence. The
vast majority of biological sequence comparison methods rely
on first aligning reference homologous sequences and deriving
a score for the alignment of individual units. Pair-wise tools are
based on a very strong hypothesis: the contiguity conservation,
which assumes that two similar sequences (representing two
biologic entities) must derive from a common ancestor [37].
This assumption allowed the use of string similarity algorithms
(global and local pair-wise methods, dynamic programming) on
biologic sequences. When a pair-wise tool is used, the algorithms
need to handle permutations, substitutions (with many different
matrices depending on the kind of analysis to be performed),
deletions and gaps. Moreover, most of the pair-wise algorithms
(not the heuristic version) are related to Smith-Waterman and
Needleman-Wunsch (two dynamic programming algorithms)
and are not efficient on large sequences [38]. Since the presence
of sequence patterns seems to be the exception rather than
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the rule, but assuming that some regularity must govern the
lipid-peptide interactions, we considered an alternative paradigm
called “alignment-free”: this paradigm avoids some problems
related to pair-wise analysis [37].

For our sequence analysis, we concentrated on “alignment-
free” method. In our approach, which exploits novel metrics
to calculate similarity among sequences, we use transmembrane
peptides as a sort of bioinformatics sensors of the MPS.

The experimental section is organized into three parts. First,
we describe how we developed a new metric for calculating the
distance between two strings. In the second part, we show how
we collect the raw data to analyze. In the third part, we compress
the information and we apply the metric.

In the Results and discussion section, we validate the approach
on known systems and we demonstrate how lipid composition
and membrane evolution is, in some ways, encoded in the
transmembrane proteome composition.

METHODS

To analyze the peptide sequences we have chosen an alignment-
free approach. The metrics we proposed have been implemented
in the software ProtComp (www.yadamp.unisa.it/protcomp).
ProtComp can work on heterogeneous sequences, but it is
optimized for working on proteomes and genome in FASTA
format. It consists of python scripts to parse the input files and
prepare them for the analysis. The preprocess consists mainly
of the removal of all unneeded data, like FASTA headers. The
preprocess script works on all plain text files and with some
binary files (like BMP, PNG or JPEG). A second script permits
the extraction of substrings of length k (k-mer). This step is
computationally demanding and, for this reason, we used a
sliding windows approach that is naturally parallelizable and
distributable. The input file is divided into chunks and each
chunk is assigned to a core that handles a sliding window. All
the chunks share j symbols (also, two chunks are overlapped by
j symbols) in the cut point, to avoid loss of information. When
all chunks of an input file have been processed, they are joined
in a single MEFr,k and this set are truncated to r length: all the
pairs (ci, oi) in this set are sorted in descendent order by oi.
Notice that an execution of ProtComp can producemultipleMEF
sets, one for each k used by metrics. ProtComp uses metrics
(described below) that needed multiple k-mer lengths (at the
same time it uses k-mer of different length) so for each chunk
different sliding window can be executed with different a value of
k, to extract k-mer. This approach ensures computational speed
benefits because for each computer and for each core we can
assign a chunk and a value of k for k -mer extraction.

In general, we refer to the features that discriminate an entity,
meaning all the common patterns more repeated that could
be extracted. For example, if we consider strings of mRNA, a
feature is the presence of the start or stop codons. Each biological
entity (following named BE) could be represented by distinctive
features. The conservative features (ci) for the BE X have high
weight |ci| [39] compared to the total weight |X| =

∑
∣

∣cj
∣

∣ ∀cj ∈

X of features that represent a BE. If ci is more expressed than cj in

X then we will have:

|ci|

|X|
≥

∣

∣cj
∣

∣

|X|
∀i 6= j (3)

Each BE evolves independently [39]. Therefore, the same feature
ciis free to appear with different weight and position in two
different BE (X and Y). In addition, two features ci and cj can
derive from a common feature cr even containing insertion,
transformations, deletions or swaps.

The second assumption has a very strong implication: during
the calculation of the similarity between two sequences, the
weight of the feature, expressed as the number of occurrences,
determines the similarity and not the position of the conservative
features.

Basic Definitions
It is possible to define an Expressed Feature (from now EF) of
length l as a pair (ci, oi) where ci, is a segment of length l that
occurs oi times in a sequence X with oi ≥ 1. The EFl set contains
all pairs of features expressed as len (ci) = l sorted in descending
order by value oi.

Consequently, it is possible to define the set of the Most
Expressed Features MEFr,ml (X) of a X sequence as the set of the
first r elements taken from the EFl subsets with l = 1 → ml (ml
= string maximum length).

The definition of MEF (Most Expressed Features) is strictly
linked to the concepts of “weighting characters” and “correlated
characters” defined by Felsenstein [39], to the results reported
in Attwood and Sims et al. [40, 41] and to two empirical
observations described in the following. The value r in this
work is defined as the maximum resolution and, therefore,
the ml is the maximum length considered for the analysis.
Increasing the values of r and ml the accuracy of the analysis
also increases. The set MEF (X) (without subscripts) indicates
the union ∪MEFr,ml (X) ∀r,ml. The strings considered here are
formed by characters only: the amino acid one letter symbols.

The similarity between two strings is based on the dimension
of the MEF(X). For the development of MEF, we defined two
metrics: the Easy Similarity Score (ESS) and the Weighted
Similarity Score (WSS) hereafter described. ESS is defined as:

ESSr,ml (X,Y) =

∑ml
i= 1 |MEFri (X)∩MEFri (Y) |

MIN(X,Y)
(4)

whereMIN(X,Y) indicates the min (|MEF (X)| , |MEF (Y)|), that
is the size of the smallestMEF set.

TheWSS is a variation of ESS, in which we add the number of
times that the intersection MEFri(X)∩ MEFri(Y) is not empty
(iUsed):

WSSr,ml(X, Y ) = ESSr,2 +

∑ml
i= 3(i · |MEFri(X)∩ MEFri(Y)|)

(iUsed + 1) ·MIN(X, Y )
(5)
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Both metrics measure the similarity degree, so it is possible to
define the distance as:

DE (X,Y) = 1− ESS (X,Y) and DW (X,Y) = 1−WSS (X,Y)

(6)

The metrics have the following properties:

1. ESS (X,Y) = WSS (X,Y) = 1 if X = Y
2. WSS (X,Y) = d ∈ [0, 1] if X and Y share common

characteristics.
3. ESS (X,Y) = d ∈ [0, 1] if X and Y share common

characteristics.

The metric WSS uses the index i to give more importance to
longer strings, respecting the above assumption: if two features
are both common and conserved in two entities, then the entities
should be evolutionarily very close.

For the purposes of this work, the similarity is limited to 1. For
the ESS metric, the range [0; 1] is closed, so the similarity value
could be used even as a probability. These metrics can be used
to estimate the similarity between two text objects for example
proteomes.

It is easy to observe that the use of MEF is robust to deal
with insertions, substitutions and permutations. In particular,
insertions at the end of a string are less penalized than insertions
in the middle. Both metrics penalize substitutions more than the
insertion, mimicking the behavior observed in natural systems.

MEF, by the definition, manage the problem of the insertion
during the comparison of two sequences. It is possible to consider
the segments X = {a1a2a3a4a5} and Y = {a1a2Za3a4a5} taken
from the same BE in two different moments; in Y is occurred
the insertion (Z before a3). In this case, the insertion is in an
internal point of the segment. In the model presented in this
work, the gap management is implicit, because the presence of
a gap is equivalent to the presence of a blank character within
the sequence. This character will be detected by metrics as an
insertion (if the sequence length is different) or as a replacement.

The pseudocode of the algorithm is shown in Figure 2.
The detailed description of the algorithm and some

mathematical subtleties will be given in an upcoming paper.

FIGURE 2 | Algorithm 1- Pseudocode of the parser.

Substitutions reduce the algorithms performance more than
insertions, and the substitutions in the external positions
are less performing than the substitution in the internal
positions.

We made these two metrics available with a tool that
can be used in many types of architecture: singular PC, grid
and cloud. For example, nowadays, it is common to provide
web services that implement algorithms (like UNIPROT with
BLAST or NCBI with FASTA) in such a way that final user
can request a computation and download their results, when
computation is completed. However, in some cases, a company
may need private computation or want to build up their own
private grid: in this case, they need a standalone software and
not a web service. We have implemented the two metrics in
the software ProtComp, available in two flavors: the first is
a standalone package written in a C++ and enabled to use
OpenMP. In this implementation, heavy emphasis was placed
on performance, scalability and distributability because this
version will be used as black box in a computational pipeline
for other tools; this package uses a structure directory sub tree
in order to maintain results for each dataset processed. The
high number of execution parameters, described in Usability,
permits the configuration of the level of granularity and the
file parser to use. In this version, it is possible to use FASTA
Parser and Plain-text parser. The second flavor of ProtComp is
a web service (http://yadamp.unisa.it/protcomp) that allow the
users to upload their files in their own space and permit to
submit their computation in a batch queue: the service is written
in ASP.NET and is based on IIS7 web server. The results of
computation are stored in user-space and will be accessible for
further analysis.

Set Definition
The AMP datasets were downloaded from the database Yadamp
[31]. Yadamp permitted us to select peptides produced by specific
class of organisms (see Supplementary Materials, Table 1). The
AMP were chosen on the basis of their capability to interact with
few selected organisms (namely, E. coli, B. subtilis, S. aureus),
having a length comprised between 14 and 50 amino acids, with
no disulfide bridges. The 3D structure of the peptides is available
in the Yadamp database. The transmembrane (TM) portions of
the proteomes (hereafter indicated as transmembrane proteomes
TMP), were identified bymeans of a computational investigation.
Among the many TM helix prediction tools we have chosen
Phobius [42] a hidden Markov model (HMM) that models the
different sequence regions of a signal peptide and the different
regions of a transmembrane protein in a series of interconnected
states. The false classifications of transmembrane helices are kept
as low as 7.7%.

All proteomes (listed in the Supplementary Materials, Table
2) have been processed with Phobius, and the collection of
all predicted transmembrane sequences of a given proteome
called transmembrane proteome (TMP). Therefore, there is a
TMP for any proteome. After the setting stage, we have three
types of dataset. The collections of sequences of antimicrobial
peptides active against a specific organism are called AMP. The
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collections of all the transmembrane sequences calculated in a
given organisms are called TMP.

In order to calculate the distances between any pair of sets,
we must extract the dictionaries Di. The routine that permits
to extract the most abundant strings of the set, and therefore
to create the dictionaries, is available, free of charge, at http://
yadamp.unisa.it/protcomp/main.aspx.

The distances have been calculated applying the appropriate
metrics to the dictionaries.

The evolutionary history was inferred using the Minimum
Evolution (ME) method [43]. The ME tree was searched using
the Close-Neighbor-Interchange (CNI) algorithm [44] at a search
level of 1. The Neighbor-joining algorithm was used to generate
the initial tree. Evolutionary analyses were conducted in MEGA7
[45].

RESULTS AND DISCUSSION

Validation Test
We have followed the same validation protocol presented in Sims
et al. [41]. In that work, the authors used an alignment-free
method to measure the similarity of whole genomes and books.
In Figure 3, the result of the validation test is shown.

The first validation test was made on a set of English books
as reported in Sims et al. [41]. MEF was performed using as
parameter r= 10 andml= 10. The books were downloaded from
the Free eBooks—Project Gutenberg (https://www.gutenberg.
org) and were converted into a single long string by removing all

spaces between words, all punctuation and all characters different
from the sets [a–z] and [A–Z]. The list of eBooks is listed in the
Supplementary Materials, Table 3. To avoid some phenomena of
bias we removed common words such as CHAPTER, SECTION,
PROJECT, GUTENBERG etc.

In the output tree, five branches are clearly defined. The title
of each branch is our description of the books therein. The
algorithm does not use any assumption nor any keywords to
organize and cluster the books. Surprisingly, without any bias,
ProtComp can find similarities among books of same authors, as
well as similarities among authors. For example, Charles Dickens
and Jane Austen are the closest pairs of authors. Another pair of
related authors is H.G. Wells and J.M. Barries. These two pairs
of authors are then related and correspond to what is easy to
recognize as “Children’s literature.” The only case in which books
of the same author are in a separated branch, is Plato whose
works are closely related to Spinoza, and Aristotle. The metric
we proposed was capable, without any instruction or training, to
catch the main differences among different works and authors of
different periods.

The metric was then further applied to proteome analysis
with similar results. The overall clustering follows the general
topology obtained with the unrooted 16S-like rRNA-based and
gene-shared phylogenies [46]. The results confirmed that the
metric we developed permit to easily obtain the fundamental
relationships among organisms.

Themethod we presented can be easily applied to calculate the
distances among any arbitrary dictionary. We have applied the

FIGURE 3 | Text comparison with MEF method.
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method to compare the relationships among complete proteomes
and TMP.

Proteome Analysis
Alignment-free methods on whole proteomes do not rely on
one of few proteins to derive the phylogeny and the results
can differ from those conducted on one gene only. This aspect
is particularly critical for the determination of the position
of thermophiles in bacterial phylogeny. If for Woese [47]
thermophiles are the earliest species of bacteria, Korbel [48]
offered a different view.

In Figure 4, we report the phylogenetic tree obtained with
substring length between 6 and 12 with the Equation (2). The
calculation of the distance matrix among 51 full proteomes (see
Supplementary Materials, Table 2) is extremely fast and lasts
few seconds on i3 processor. It permitted to cluster clearly
the organisms in different phyla. Only two bacteria with small
proteome, M. tuberculosis and C. phaeobacteroides, fall in the
archaea branch, but this is known to be an accuracy problem in
the calculation of similarity.

Following the hypothesis that transmembrane portion of
proteins might be well adapted to the particular chemical-
physical environment in which they work, we conducted the
same analysis of proteomes on transmembrane proteomes.

TMP Analysis
Figure 5 represents the ME tree of TMP. Contrarily to Figure 4,
the organisms did not cluster according the phylogenetic
relationships. The TMP are organized in a sort of temperature
ramp with organisms living at low temperature separated by
those living in extreme condition. The need to adapt to high
temperatures, poses a dramatic challenge to a cell that cannot
use ordinary lipids for their membranes. In fact, the living
temperature cannot be more than few degrees hotter than the
transition temperature of the lipid mixture. It is well known that
thermophiles have a special lipid fingerprint [10, 19, 49, 50]. In
the tree of TMP, few organisms do not respect the temperature
rule. For example, B. anthracis is a Gram-positive, endospore-
forming bacterium capable to survive at extremes of temperature.
Another example is C. aurantiacus, a photosynthetic bacterium
isolated from hot springs, belonging to the green non-sulfur
bacteria. This organism is thermophilic and can grow at
temperatures from 35◦C to 70◦C. The organism that, though
extremely thermophilic, has a TMP related to non-thermophilic
organisms, is Thermus thermophilus. T. thermophilus is a Gram-
negative bacterium with an optimal growth temperature of about
65◦C.

A particular case is the one of bacteria belonging to the
genus of Methanosarcina. These archaea contain pyrrolysine, a
α-amino group (which is in the protonated form under biological
conditions). Its pyrroline side-chain is similar to that of lysine in
being basic and positively charged at neutral pH.

The presence, in the proteome, of this unique amino acid,
puts M. acetivorans far from other more related organisms. In
fact, whereas a pair-wise alignment can add simply a penalty to
an extra character, alignment-free analysis is more sensitive to
amino acid replacement, since any string containing pyrrolysine

has no counterpart in other sets. Following our hypothesis
that transmembrane peptides must be well adapted to the lipid
environment, it is clear that we observed a kind of peptide
coevolution for organisms sharing the same hostile medium. To
the best of our knowledge, this is the first time that this type of
coevolution was evidenced.

It is important to recall the fact that transmembrane portions
of proteins contain a high percentage of hydrophobic residues
(necessary to accommodate in membranes) and few or no charge
amino acids. Consequently, the alphabet of TMP is limited if
compared with that of proteomes. The metrics used in this
work can successfully discriminate among TMP regardless the
limited compositional variability. If the metric can calculate
similarity between sets of TMP, we hypothesized that it could
provide insights on AMP. Antimicrobial peptides interacting
with membranes, that constitutes the vast majority of linear
peptides [31], share the same amino acid frequency of TMP. As
matter of example, in Figure 6 we show the ME tree obtained
comparing the set of all linear peptides active on B. subtilis with
MIC lower than 50µM, and with activity on erythrocytes higher
than 200µM, with the set of TMP shown in Figure 5.

Eukarya TMP appear very distant from B. subtilis AMP and
archaea appear to be more related. Interestingly, the closest
TMP to the peptides active on B. subtilis is B. anthracis. These
two bacteria have a considerable variation in protein-coding
sequences. There are ca. 6,700 genes of B. anthracis predicted
by open reading frame (ORF) analysis [51]. About 4,470 of
these ORFs have functional assignments based on homology to
known genes. The remaining 2,324 ORFs do not have database
matches. Approximately 3,250 of the B. anthracis ORFs have
orthologs identified in the B. subtilis genomic sequence. This
leaves a large number of genes without orthologs in B. subtilis
genome.

This kind of analysis may offer novel routes to identify
antimicrobial peptides, considering related set of TMP as a sort
of peptides mine. We explored this possibility and some results
are shown in Figure 7.

In Figure 7, we reported the scaled distances among
proteomes, TMP and AMP sets. Proteomes and TMP are taken
from four eukarya and nine bacteria. The values represent
the distances between TMP and proteomes with the set of
AMP extracted by the Yadamp database and active against
three common pathogens: B. subtilis, E. coli, and S. aureus.
The AMP considered are those with low hemolytic activity
only. Interestingly, peptides with the lowest hemolytic activity
are those having the minimum distance from the human
proteome and the maximum distance from human TMP. It
would be easy to consider this distance as a kind of toxicity
descriptor for further QSAR analysis. Even more interesting is
the observation that this regularity appears with peptide sets
active on the three pathogens. The same investigation with
other sets of AMP led to the same conclusions and this will
be the object of an upcoming paper where the distance herein
defined will be used for a statistical analysis. Moreover, the
distances between AMP sets and S. flexneri are similar to those
of H. sapiens. Following the working hypothesis, this should
indicate that peptides active on B. subtilis with low hemolytic
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FIGURE 4 | Evolutionary relationships of proteomes obtained with Equation (2) and substring length between 6 and 12. Eukarya are shown in green, Bacteria in black

and Archaea in red.

activity should be ineffective on S. flexneri. Unfortunately,
we do not have enough microbiological data to support this
observation. These data could also be used for searching novel

potential antimicrobial sequences. For example, S. flexneri could
be regarded as a sort of reservoir of potential antimicrobial
sequences.

Frontiers in Physics | www.frontiersin.org 8 May 2018 | Volume 6 | Article 48

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Piotto et al. Transmembrane Peptides as Membrane Sensors

FIGURE 5 | Evolutionary relationships of TMP obtained with Equation (2) and substring length between 6 and 12. Thermophiles are shown in pink.
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FIGURE 6 | Similarity relationships among the set of 147 AMP active against B. subtilis (AMP Bacillus subtilis) and the TMP dataset obtained with Equation (2) and

substring length between 6 and 12. The AMP active on B. subtilis are shown in red.
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FIGURE 7 | Distance matrix between sets of AMP having low hemolytic activity (MIC0 > 200µM) active against B. subtilis, E. coli and S. aureus (with MIC0 < 50µM),

and proteome and TMP sets of 13 representative organisms. The distances are scaled from 0 (farthest) to 1 (closest).
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CONCLUSIONS

Lipid membranes are complex structures with transversal and
lateral asymmetry. Membranes of different organisms, as well as
from different organelles, and from different life cycle, exhibit
different lipid composition. Thousands of lipid species found in
different organisms are a strong warning that membranes are
much more than an envelope. From an experimental point of
view, the determination of lipid composition is a challenging
task, mainly because the composition can vary gradually in the
same membrane and the separation of different sub membranes
is hardly possible.

The present work is based on the hypothesis that the
activity of any peptide acting in or on membranes depends
on the peptide sequence and the MPS. The MPS depends
on the local lipid composition that is, more often than not,
not accessible experimentally. The MPS variations related with
temperature and lipid composition are taken into account.
To determine the similarity among proteomes and other
peptide sets, we exploited an alignment-free method. We
have demonstrated the coevolution of transmembrane peptides
obtained by phylogenetically uncorrelated organisms. We
have also correlated the transmembrane peptide sets with
antimicrobial peptides acting on a selection of organisms.
For some extents, we have used amino acid sequences of

transmembrane peptides to infer information on the MPS
and, therefore, we used peptides as bioinformatics sensors of
membranes. This approach, though in its early stage, offers
unprecedented possibility to design better antimicrobial peptides
as well as partially unravels the fundamental role of lipids in
organism evolution.
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